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The temperature dependence of the Debye-Wailer factor (DWF) near the critical point of ferroelectrics,
"antiferroelectrics, " 315 structure compounds, etc., is investigated. Using the compressibility sum rule it is

shown that the critical part of the DWF exponent quadratic in the momentum transfer is rigorously
determined by the renormalized static phonon frequencies and thus will not be directly affected by the
occurrence of a central peak. It is found that the mean-square particle displacement has a cusp at T„rather
than the critical divergence predicted by various authors. The critical exponents associated with the cusp are
estimated from scaling arguments and related to those of the specific heat. The extent to which this cusp-

shaped anomaly might be detected experimentally is briefly discussed. The results obtained here are also

relevant for the electron-paramagnetic-resonance linewidth in the "slow-motion" regime.

I. INTRODUCTION

In considering Mossbauer -fraction experiments
or Bragg-peak intensities of x rays and neutrons
being scattered from crystals, one has to deal with
the well-known Debye-Wailer factor (DWF) for the
zth sublattice of a crystalline structure:

(Q)
-w~(Q)

at a momentum transfer Q. The exponent of d„(Q)
follows from its definition1:

~„(Q)-=-l &
""&=2(- "i . )&(Q )").. (l)

t 1

The scalar products ((Q . u)"), in the cumulant ex-
pansion on the right-hand side of (l) involve suc-
cessively higher powers of momentum transfers
Q" and higher -order lattice-particle displacement
correlation functions or cumulants (u"), of dis-
placement operators u(((i) of the ((th lattice particle
in the 1th unit cell, giving rise to a first nonvan-
ishing term:

W„(Q)=-,'Q &u(((l)u(((l)) Q+ ~ ~ ~ .
At second-order structural phase transitions the

ordering involves spontaneous shifts of lattice par-
ticles to new equilibrium positions within the unit
cell which, in the low-temperature phase, may or
may not be enlarged by the resulting static distor-
tion depending on the system. Thus, one expects
W„(Q) to be rather directly affected by such transi-
tions. An anomalous temperature dependence of
the DWF has indeed been reported from the ferro-
electrics BaTi03 and PbTi03, from the stoichio-
metric compounds Ge„Sn1 „Te, from the A15-
structure compound Nb3Sn, ' etc.

Theoretical treatments concentrate upon the first
term in the cumulant expansion of '(1) anticipating
that (Q ~ u) ) should dominate in an appropriate
choice of the momentum transfer Q in the scatter-

ing process. Muzikar, Janovec, and Dvorak as
well as Bhide and Hedge predicted a divergent
mean-square sublattice displacement &u~) at T„
using an Einstein-oscillator approximation for the
soft optical-phonon mode, whereas Schuster and
Bostock came to the same conclusion employing
the traditional Debye model and relating the Debye
temperature to the vanishing shear modulus (C~|
—C(2)/2 of Nb3Sn at the transformation tempera-
ture. Finally, Rigamonti and Petrini obtained
a critical divergence, assuming an inappropriate
dispersion curve for the soft optical-phonon branch.
While these crude treatments are clearly inade-
quate, Borsa and Rigamonti predicted a cusp-
shaped anomaly of &u ) at T,. This result was ob-
tained assuming an Ornstein-Zernike expression
for the Fourier transform &u(((l q)u(((I —q)) of the
displacement correlation function which, therefore,
has to be integrated over the Brillouin zone in or-
der to obtain &u2(((1)). As we shall see below, their
quantitative predictions are not valid either.

We present in the following an investigation of
the temperature dependence of the exponent of the
DWF, quadratic in the momentum transfer, near
structural phase transitions, not resting upon the
harmonic approach, which is a high-frequency ap-
proximation. It will rather be shown that the
mean-square sublattice displacements &u ) near
critical points T, are determined by the xeno~maI;
ised static phonon frequencies. Possible forms of
soft phonon branches in the vicinity of T, are ana-
lyzed from the point of view of lattice dynamics.
Their implications on the behavior of the DWF at
T, and on the electron-paramagnetic-resonance
(EPR) linewidth in the slow-motion regime —where
the major part of the displacement fluctuations is
slow in comparison with the magneti. c relaxation
they produce —are investigated. Critical exponents
associated with a cusp-shaped anomaly of the DWF
are estimated from scaling arguments and related
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to those of the specific heat. The extent to which
the anomaly of the DWF at T, is related to the oc-
currence of a central peak and to which this anom-
aly might be detected experimentally is briefly dis-
cussed.

II. MICROSCOPIC FORMULATION

((Q ~ u) }= (k T,/N) g Q ~ g„-„-(ax
~ q, 0) ~ Q . (3)

In a unit ceQ of s lattice particles the static dis-
placement susceptibility

p)

„t
d(d X,o~e(KK I q4p)

X~~~ (KK )q, 0
~QQ W CO

(3a)

is an element of a 3s&&3s matrix, since ~=1, 2, . . . ,
s and the Cartesian components of the displace-
ment operator u are denoted by a = 1, 2, 3.

The quantity which we are interested in for our
considerations concerning the DWF is the rigorous
expression

+a

&(Q u)'&=@J
2

~'gQ X-„'„-'(~~lq, ~).Q
q

x coth(Ph &a/2), (2)

where the sum over wave vectors q is confined to
the first Brillouin zone of the crystal of N unit
cells. The fluctuation-dissipation theorem has
been used in order to relate the equal-time dis-
placement correlation function {u(zl)u(vl)) and the
spectral function g„-'„-'(va I q, ~) of the zth sublattice.
This spectral function may be defined as the Four-
ier transform of the expectation value of the com-
mutator of displacement operators at the inverse
temperature P= 1/ksT. ~0 For investigations in the
vicinity of a structural phase transition it is use-
ful to measure wave vectors q in the first Brillouin
zone from the soft-mode mave vector qo as origin
[in ferroelectrics or in 215-structure compounds
q0=0, of course; whereas in "antiferroelectrics"
such as SrTiOs, qo=q„=(v/a)(1, 1, 1), for instance,
where a is the lattice constant].

Since critical anomalies are attributed to long-
range correlations we have to consider the con-
tribution q-0 at the transition temperature T- T„
and owing to the cratical slowing down, we also
have ~- 0. ~ Therefore, if critical divergences
would exist, they were still obtained correctly by
using coth(pKu/2) = 2ksT, /h&o. As we shall show

later, the mean-square displacement (u ) does only
exhibit a cusp-shaped anomaly at T, and no criti-
cal divergence. The critical exponents describing
this cusp, however, are still obtained correctly
from this approximation, since many studies have
revealed that "quantum effects" are irrelevant for
the values of the exponents. Therefore, we deduce
from Eq. (2) as T-T, ,

A prominent feature of the present approach now
is that the exponent of the DWF can still be reduced
to the well-known formula

Csg

in diagonalizing the 3s x3s matrix g(q, 0) by means
of the eigenvalue equation of its inverse,

{rn„rn„) g (KK
~ q, 0) e ~ (v'q)

d~ y„.(sjlq~))
7f (d (R —8)

(6)

where y .{~x'Iq&o) is a generalized frequency-de-
pendent phonon damping function. While a full mi-
croscopic understanding of this quantity near dis-
placive phase transitions is still lacking, ~3 it is
well known~ that its minus. first frequency moment
connects the inverse of the low- and high-frequency
displacement response:

y.
' .(~~

I q, ) —X
' .(sN

I q, 0)
'"

d(o y .(~~'I qu))
Plg 0 (6a)

The normal modes of the crystal in the harmonic
approximation are then approximate eigenvalues
of the inverse of the high-frequency response func-
tion y,', (z~'Iq, ~) of (6a), to be denoted by

~', (q, ")=~',(q)+~g(q) . (6b)

These frequencies uP&(q, ~), which may readily be
calculated microscopically, "therefore, will differ
from the renormalized static phonon frequencies
or~(q) entering into Eq. (4) of the DWF exponent by
the amount 6&(q), to be obtained from

p+

d&o y~„(Ice'~ q, v)/s&u .
A microscopic determination of the co&{q), in gen-

eral, turns out to be considerably more compli-

= ~', (q) e'.(~q),

where m„and m„. denote lattice-particle masses.
The eigenvalues of X

~ .(ze'Iq0) for each value of
q thus are the Ss squares of the xenormalized stat-
ic pkonon frequencies, &u&(q), with the eigenvectors
e~(eq). One should keep in mind, however, that
these ~~(q) may considerably deviate from the har
monic phonon frequencies. Nevertheless, Eq. (4)
is valid irrespective of the complicated structure
of the frequency dependence of the displacement
correlation function near T„being reflected, for
instance, by the dispersion relation given in Ref.
10:
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e iu -&(.LgLz) gm m -1/l
il(X, (2)) BX, (1))'

1 ~

(7)
of the Hamiltonian H of the crystal with lattice-
particle position operators X (1) and X (2). The
t~ —tz integration in (7) is along the imaginary time-
temperature axis in the interval (0, —iP), R(X&Az)
-=(X(X,)) -(X(zz)), and l-=y, t„where x, -=«,1,.
Since the phonon self -energy is connected with the
inverse of the displacement correlation function
via the Dyson equation~'

g
' .(««'~ qz) = —m„[z 5""

~ —M„.(««'~ qz)],
its static value

y ~~~.(««
~
q, 0) = m„M .(««

~
q, 0)

(6c)

(6d)

is determined by the static (z- 0) phonon self-en-
ergy. Equations (V) and (6d) are rigorous but for-
mal. The utility of the approach is that consistent
approximations can be generated for M .(««'l q, 0)
and Z ~„.(««'I q, 0), respectively, using the func-
tional-derivative technique. ' A detailed develop-
ment of such consistent approximations, though
feasible, is extensive to carry out, in particular
with regard to a determination of temperature
anomalies including effects of fluctuations, which

. is not our present concern.
The important point in this context is, however,

that these frequencies uP&(q) and not the zeros of the
inverse of the response function of Eq. (6), which
would be the physically observable phonon "peaks, "
have to be inserted in Eq. (4) for the exponent of
the DWF. These features of our theory might well
be elucidated in terms of the well-known Mmovell-
Drude or Debye interpolation formula~

2

y, '(q, z)= —m z' —(u', (q)+iz V, +
&0

(6)

which has frequently been used in order to ana-
lyze experimental data of those branches jo of the
"diagonalized" form of (6}which exhibit a soft-
mode behavior. The zeros of (8) allow for the ex-
perimentally observed three-peak structure: a
central peak at co = 0 in addition to two "phonon"
peaks, approximately located at ~= + [~& (q)
+5&0(q)]', provided that &or~ » 1 and that I'~ is
sufficiently small.

From our discussion it is clear that the central-
peak parameters ~3~ and v& do not enter directly

cated. A possible program of such a calculation
may start from a rigorous functional-derivative ex-
pression of the wave-vector- and frequency-depen-
dent phonon self-energy, ~'

-iBM,(«,«z
~
qz) = d(t, —f,) e"'~ 'z' N '

into the squares of the static frequencies &u~ (q)
which, in turn, enter into the DWF at T, through
Eq. (4). Anomalous behavior of the DWF at T, in
our approach, therefore, must result from a crit-
ical behavior of some specific phonon branches
&o&(q). A derivation of meaningful expressions for
the temperature variation of such phonon branches
in accord with our microscopic formulation and
possible implications for the DWF exponent at T,
will be presented in Sec. III.

. III. LATTICE DYNAMICS AND EXPLICIT MODEL
CALCULATIONS

In order to estimate the temperature anomaly in
the DWF on the basis of the microscopic approach
outlined above one needs suitable analytical forms
of the dispersion surfaces of those renormalized
static phonon branches uP& (q) which become soft
near a particular wave vector qo. In practice this
may be achieved with the aid of a small q expan-
sion around qo. First, the regular part of the in-
verse of the static displacement susceptibility
(6d) —modified via multiplication by a factor
e "'~"'"' '" '', where r(«) denotes lattice-particle
positions in the unit cell —is expanded around qo
and combined with possible long-range-part con-
tributions to give

m„'X, ',.(q -qp 0) =M,,'(qo)+iqaM, ', '8(qp)

+ qsqa M' 'es (qo)+ '
~ (9)

We have used the abbreviations p for a pair of sub-
scripts (n, «) and p= 1, 2, 3.

In further developing the program we shall par-
ticularly be concerned with three specific types of
structural phase transitions~'. (a) phase transitions
occurring, e. g. , in the "antiferroelectric" SrTi03
which result from an instability of the crystal
against a threefold-degenerate optical R» mode at
the zone corner; (b) phase transitions occurring,
e. g. , in the A15 compound NbsSn which arise from
an instability of the crystal against a transverse-
acoustic mode with wave vector q along [110]and
polarization vector e along [110]; (c) phase transi-
tions occurring, e. g. , in uniaxial ferroelectrics,
such as triglycine sulfate (TGS) or RbHzPO4, where
long-range forces of dipolar nature give rise to
modifications.

In the examples of SrTi03 and Nb3Sn mentioned
above, three low-energy eigenstates of the 3s x3s
matrix g...(qo, 0) of interest in the vicinity of the
phase transition are threefold degenerate at T & T,.
In SrTi03 these three states describe rotations of
oxygen octahedra about the joth cubic axis, and the
common eigenvalue &u&0(qs)

-=or', (jo = 1, 2, 3}denotes
the threefold degenerate optical soft mode at the
R point. In Nb3Sn the three states describe uniform
displacements of the entire crystal with the long-
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wavelength (qo- 0) acoustic phonons ~~& (0) = ~2O -=0
(jo= 1, 2, 3). The corresponding eigenstates may
be designated in both cases as: e~(pqo), e2(pqo),
e'(pqo).

In order to obtain the required dispersion curves
&o& (q) we form a truncated 3 x3 matrix

ging

(q
—$0, 0), which by construction at q = qo has the ei-
genvalues uP& (qo) —= uP~ (jo= 1, 2, 3) described above.
One may obtain y~8~, from y,~, of (9) by the trans-
formation

x.sg (q-qo, o) = ~8'(pqo)x. '. (q -qo, 0)~, ( p'qo) (9a)

(notice the summation convention for repeated sub-
scripts p and p'), where the 3&3s matrix

f+'s(pqo)]™,'Ee'(s qo), e'(pqo) e (pqo)] . (9b)

For cubic symmetry we find the required result:

)(

8/a�(qy

0) [4)0 + Xmq + (Xf Xp )gg ]
X 6gga + Aegsgsi (1 5g8r) q

where the parameters ~0, X~, &» and X3 may be
expressed in terms of the microscopic expansion
coefficients M', M' ', M' ' of (9). Qn the other
hand, the parameters A.~, X~, and A.3 may be related
to the staggered isothermal elastic constants in the
case of SrTiQ3, where ~~0, and to the isothermal
elastic constants in the case of Nb3Sn, where
+0-= 0. One finds

~(- Cff y Xp C44y X3 C$g+ C44 ~

The derivation of Eq. (10) indicated above,
therefore, represents an extension of the method
of long waves of Born and Huang' in two respects:
First it does not rest upon the harmonic approxi-
mation and is related to the general compo essibility
sum rule' ',' second, it is not restricted to the

q, =0 center of the Brillouin zone. The confine-
ment to cubic symmetry of the final formula (10)
has been chosen for simplicity only.

The dispersion surfaces of the soft renormalized
static phonon branches near a particular wave vec-
tor qo for sufficiently small q, finally, are eigen-
values of the 3x3 matrix y~~~ (q-qo, 0) of (10). The
coefficients (do Xg pp A3 entering into these ei-
genvalues, instead of being computed microscop-
ically from M' ', M ', and M'3', here are treated
as follows: (i) The temperature dependence of that
term in ur& (q) being responsible for the instability
in the limit q- 0 is taken from the static scaling
behavior of the inverse of the critical susceptibility
lim;, y, ',(q) ~

I 1 —T/T, l
". (ii) The temperature

dependence of all the other terms is much weaker.
It ean be estimated from static scaling relations~
for the wave-vector -dependent susceptibility,

x,',(q) =
l
1 T/T.

l
"f„(&a)—

=ll T/T, l [f&, +y-,"(g'q')+" ],

where g = $011 —7/T, l
"is the correlation length of

the fluctuations, which yields for the temperature
dependence of the second term I 1 —T/T, I

" 2"

=
I 1 —7/T, l

"". Note that the exponent q is very
small in three dimensions. '~

The analytical expressions of the &o& (q) to be ob-
tained from (10) are needed for the q integration
over the Brillouin zone in Eq. (4). They are par-
ticularly simple along the main symmetry direc-
tions of the crystal. Simple analytical expressions
for arbitrary directions may be obtained, however,
by adequate approximations for the three specific
systems:

(a) For the threefold degenerate R-corner opti-
cal mode in SrTio3, we obtain (jo = 1, 2, 3)

(u'„(q) = (ufo[
l
1 —r/T,

l

"+q2/z' —(1 —a)q', /

K'+ ~ ], q- 0 (1Oa)

in neglecting the off-diagonal elements of (10).
Hence the anisotropy parameter b, —= X~/X~, while
the critical amplitude and critical exponent of the
susceptibility are denoted by ~o and y, respective-
ly, whereas ur /0K=—Xz.

(b) For the acoustic mode in NbsSn which be-
comes soft provided it is polarized along [110]with
wave vector q I1 [110], we obtain

~'r, «) = ~oq'[l l —T/Tel "+(1 &)q'/e'+ -e'/

K'+" ], q-0 (1Ob)

if the two off-diagonal elements of (10), vanishing
rigorously for polarization and direction for which
softening occurs, are neglected; then q, is the
component of q perpendicular to the "soft" direc-
tion, and uol 1 —T/T, l

"= (X~+ X~ —X3)/2 denotes the
drastically softened shear modulus as T- T„ if the
abbreviation

u,'(1-b,)-=x, [1-4(x,—x2) /x, ]/2

is used. The additional term uoq'/K' in (10b) goes
beyond Eq. (10); however, terms of order q have
to be added in order to guarantee an increase of
&u'r (q) for increasing I q I along [110].

(c) For modifications of (a) due to long-range
forces of dipolar nature, if jo is the incipient fer-
roelectric axis, ~' 3

(u', ,(q) = ~~0 [l 1 —T/T,
l

"+q2/K' —(1 —&) q', ,/
K +Xq& /q + . ], q-0. (10c)

Equations (loa)-(10c) represent valid analytical
forms in the "hydrodynamic" regime, ~~ qf «1,
only. If we were disregarding this fact, we could
evaluate Eq. (4) using (l.oa)-(10c) to obtain the
critical contributions to (u') for cubic symmetry,
where it reduces to

((Q ~ u)') =-,'Q'. (u') .
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Therefore, in the case of the soft optical A&~ cor-
ner mode~

kgTc v K
(u & ~ = const — ', ,

( )„«m„w (d, ~

1+(1-~)"'
(I ~)1/2 I

I TITc
I

T Td

(1la)
while in the case of the soft transverse acoustic
mode,

&u &„=const — '4—"
3,1 &}~1 —T/T, ~"

(1lb)

and in the case of long-range forces in ferroelec-
trics, neglecting, for simplicity, the anisotropy
term 1 —&-0 in (10c) and using y= 1,

~p
(u &„=const-

&& [ I —T/T, /»(4&'I l - T/T.
l )

(11c)
Here, v —= V/N denotes the volume of the unit cell.
Equation (1la) compares with Ref. 9 except for the
fact that there anisotropy has not been accounted
for explicitly.

In deriving Eqs. (1la)-(llc), the integrals over
the Brillouin zone have been carried out using a
spherical cutoff. Therefore, the leading constant
term could not be obtained reliably. Yet, more
important, both the critical exponents and the pre-
factors are not reliable either, since Eqs. (10a)—
(10c) valid for qg «1 have also been used for
(f(&l, i. e. , outside their range of validity. In
Sec. V we shall point out that this fact may lead to
a weaker singularity of the DWF than the one pre-
dicted by Eqs. (lla)-(1 lc}.

IV. EPR LINEWIDTH OF SLOW-MOTION REGIME

Local time -dependent displacement fluctuations
(u(«lt)u(«10)& of systems undergoing structural
phase transitions may also be investigated by elec-
tr on-paramagnetic -resonance (EPR) linewidth
measurements. ' At certain paramagnetic impu-
rity centers (e. g. , Fe '-Vo pair centers in SrTi03)
such time-dependent displacement fluctuations con-
tribute to the EPR linewidth 4H due to an effective
magnetic field generated by local displacements.
Provided we have a linear relationship between the
resonance ma. gnetic field at time t and the local
displacements u(«lt), the contribution to the EPR
linewidth may be approximated ' by

+ Qjg +40

(dd)~ dw dt(u (&it)u, (& 0)) 8' ')1,
~OO

(12)
where the cutoff frequency ~~ is equivalent to the

linewidth AH. Using the fluctuation-dis sipation
theorem in the vicinity of T, as discussed in Sec,
II we may write

J~ dt(u («lt)M («10)&e'"'()( ' Qg" (««~ q, (o},

(13)

and therefore
+~ d tf (

4)g

In the "sloe -motion" regime, the fluctuations are
assumed to be concentrated at frequencies low in
comparison with the magnetic relaxation they pro-
duce. Thus the integration in (14) is extended to
infinity and using (3a) we obtain

(aa),'~ ks T, Q y, (««
~ q, 0), (15)

which according to Eq. (3) implies that (aH), is
proportional to the instantaneous local displace-
ment fluctuations (u ). The integration over the
Brillouin zone in (15) can then be carried out along
the lines discussed above.

In fact, using a phonon dispersion sr~& (q} equiva-
lent to (10a) the integral leading to Eq. (lla) has
been evaluated in Refs. 24 and 26. The result of
these authors is different from Eq. (11a), however,
since they approximated the Brillouin zone by an
ellipsoid with one axis proportional to 1/v 6, which
is inadequate for 6«1, giving rise to a spurious

singularity for 6- 0.
Of course, the discussion of the EPR linewidth

outlined in Eq. (12)-(15) is somewhat qualitative
and a more refined treatment seems necessary. ~

However, in the framework of the validity of Eq.
(15) the temperature dependence of the EPR line-
width in the slow-motion regime is the same as
that of the exponent of the DWF and can also be ob-
tained from the scaling analysis-of Sec. V.

V. PHENOMENOLOGICAL SCALING THEORY

The predictions on the temperature dependence
of the DWF exponent and of the EPR linewidth in
the vicinity of T, obtained in Secs. III and IV still
suffer from the fact that in the course of their der-
ivation approximate forms of soft-phonon disper-
sion curves have been used outside the range of
their "hydrodynamic" validity.

In this section we want to indicate how phenom-
enological scaling theory might be applied in order
to find that the cusp-shaped anomalies to be ob-
served actually should even be weaker than those
predicted above. This result is in accord with re-
normalization-group arguments implying that the
critical behavior of the local-order-parameter sus-
ceptibility (p, & should be that of the internal energy
or even weaker. ~9 These arguments can be ex-
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~ iP(I) = ~ sl a g &iP(q) eii (t(I) (lva)

with the required static part

(~ iP (I)) M ei v(P R( 1) (1Vb)

Hence, the critical behavior of the mean-square
displacements, being written as

(u'((il)) = ' ' Q ~

e'((iq)
~

fX'„,(q, 0)
mtc

-M'5„,5(q -q())], (1Vc)

arises from the contribution pi»(qp, 0) —M, and
implying the renormalization-group arguments
stated above, one immediately predicts

(u )„~C, —C, e' ' —Cz & for T ~ T„&-0,
where e = I 1 —T/T, l .

On the other hand, Eq. (lla) predicts a critical
behavior (u~) „(x:K e" p(: e"' '"' is static scaling is
used in order to estimate the critical temperature
dependence of K as indicated in Sec. ID. Using
scaling laws dv= 2 —o. = y+2p and y= v(2 —)V), for

ploited more explicitly for structural phase transi-
tions by specifying the local order parameter

M=(y, iP(qp))~ (1 —T/T ), T T,

with order-parameter exponent P. Since
M =(ti p(qp)) should denote that static displacement
of the particular normal mode of the high-tempera-
ture phase (branch jp and wave vector qp) which
represents the distortion of the low-temperature
phase, the wave-vector-dependent order-parameter
operator ti'p(q) is connected with the operators
u((il) of the displacements of the (ith lattice particle
in the 1th unit cell from lattice sites R(((1) accord-
ing to

p, 'P(q) = N ' ' Q (& m„) e'P ((i
~

-q) . u((il) e ""'""
(1V)

One then may introduce a local "space-dependent"
order-parameter operator of the 1th unit cell

dimensionality d=3, ~ we infer v(l+(V)=2p; i. e. ,
the critical behavior predicted by (lla) agrees with
that stated in (18) below T, only, whereas the sin-
gularity predicted by (18) above T, is &~ and
therefore weaker (usually P = 0. 30-0. 3V while the
specific -heat exponent' n = 0. 0-0. 1).

In the remainder of this section we shall now in-
dicate the calculation of g, (ii o(q)ii p (-q) ) by
means of static scaling similar to the approach of
Sec. Ill for calculating g, (p& (q). In contrast to the
integration over the inverse of the renormalized
static phonon frequencies (diP(q) before, the anisot-
ropy in the integration over (ti'p(q) V, 'p(- q)) now
does not play a crucial role and will be disregarded
therefore. The important feature is, however,
that the temperature derivative of ()((i (I))p -Mp
might be related to the critical part of the specific
heat which allows us to prevent the problems with
the cutoff dependence in determining (u )„, at
least as far as the critical exponents are con-
cerned.

We thus start from the scaling expression

X'„(q, 0) = M'6)i, t)(q)+ q
P~ Fp(e "/q)

+ q"~ E,'(e '/q) + ~ ~ ~ (19)

for I q I =
I q —q0 I

- 0, T- T„yet arbitrary values
of e"/q. The a signs refer to above and below T„
respectively. The second term on the right-hand
side of (19) is the usual scaling expression, while
the third and further terms are corrections to
scaling. Therefore, the exponents must satisfy

+g «~1 « ~ ~ ~

Consistent with our previous findings it follows
from (19) that

(t 'p(I)') -M'=p q-'"E', (O)+ ~ ~ ~

as T- T, and hence approaches a constant. Again
this constant cannot be obtained reliably, since the
main contribution comes from a cutoff q= q„
where Eq. (19) is no longer a valid expression. In
order to obtain the temperature dependence result-
ing from (19) we consider the following derivative:

—[(p,'p(I)') M']= ve" '2 Iq '-~E() (~"/q) +q" 'E("(e."/q)+ ]

q /6P t.ec/
vxx '

J
dxx" vp (x )vxxv"v" I gxx '"vX "(x )v .

)0 0
(2o)

where F (y) = sF(y)/sy. If the main contribution to
the integral f dxx" ~Ep"(1/x) came from x= 1, we
could replace the upper limit by infinity and would
obtain a temperature dependence e"' ~' for the crit-

ical contribution. of (.u'), provided this contribu-
tion were not canceled by one of the corrections.
Such a cancellation may indeed occur, however,
since in Eq. (20) we are considering a correction
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to the leading scaling contribution only, giving a
constant. If the main contribution to this integral
came from x» 1, or if such a cancellation took
place, a weaker singularity of &u &„would be ob-
tained. In order to estimate the exponent of the
singularity, we relate the critical part of &ua & to
the critical part of the interaction energy, follow-
ing a method of Griffiths. Qne may start from a
model Hamiltonian which contains bilinear interac-
tion of the local order parameter p~o(l) in different
cells, only:

&~Z v(11')~"(1)u"(1')+gf(u"(1)) (21)

Since a structural transition then can be induced by
an indefinite matrix y(l, l') with the over-all stabil-
ity being ensured by a positive quartic anharmon-
icity (b &0) in the "single-ion terms" f(p~o(1))
= ap~o(l) + bp, ~o(1), such and similar models have
widely been used for ferroelectrics 3 and other
structural phase transitions. Starting from the
general Hamiltonian of lattice dynamics in the adi-
abatic approximation,

&&&.,= Z e"'(q) &v"(q)v"(e)&, (22)

where y"'(q) is the Fourier transform of the ef-
fective order-parameter interaction, nonsingular
at T,. The critical part of the specific heat then
is obtained from C„~ 8&X& /Be by expanding

'(q) in powers of q:

II=-,'u (X)m,u (X)
/

1
+ —, V,...,„(X, ~ ~ ~ „)u,(X,) ~ ~ ~ u,„(X„),

fl-Q 81

one may attempt to justify such models by first in-
troducing local order parameters as defined in
(17a), and second, invoking renormalization-group
arguments in order to infer that higher-order
correlated terms [p~o(1)p~o(1')p~o(1"), etc. ] should
yield irrelevant corrections to the critical behav-
ior, only, apart from multicritical points. Re-
normalization-group arguments may further be
used in order to anticipate a critical part of the in-
ternal energy of the form

q'/e" p

c q"' +a"""' ' chal" 'E "(x ') +a""""' ' dxx'"E"(x'))0
0

0
0

Pt eel, V

+-,'[&,q"'(q)]'~;, e"'""' ' dxx'" r,"(x ') ~ ~

0
(22a)

where q', is a cutoff whose order of magnitude is
given by the inverse range of the interaction.
Above T, we have BM /Be = 0 and since C ~ e, it
then follows that no contributions proportional to

may occur. Since the coefficient of yz
is equivalent to 8&u (1)&/Be in Eq. (20), it follows
that the singularity of 8&p (1)&/8& is at most c
It may even be weaker, since there may be further
contributions proportional to e in Eqs. (22a)
which are absent in Eq. (20), consistent with the
behavior of the Ising mode. In the general case
Eq. (18) will hold, but the amplitudes C~ cannot be
related to the amplitude factor of the singular part
of the internal energy.

VI. CONCLUSIONS

Qur concern in this paper was to consider the
Debye-Wailer factor at structural phase transi-
tions. From a lattice-dynamical point of view it
has been pointed out that &u & remains finite at all
these transitions and that &u & is unaffected by the
existence of a central peak. Thus, it has been
found that the DWF has a cusp at T„ the leading
singularity being described by &"'~'"' = & below T,

and by e~ above T„respectively (note that loga-
rithmic factors, as occurring in ferroelectrics,
may be represented by choosing n =0). The rele-
vance of these results for EPR linewidth measure-
ments has been pointed out. A prediction for the
associated prefactors is hard to obtain: it can only
be said that the ratio of the critical amplitude of
the DWF and its regular part should have the same
order of magnitude as the ratio of the critical am-
plitude of the internal energy and its regular part.
Therefore, the observability of this cusp in neutron
scattering, x-ray scattering, or Mossbauer-frac-
tion experiments may be questionable in unfavor-
able cases, where the amplitudes of the specific-
heat singularity are small, e. g. , SrTi03. In ad-
dition, owing to experimental reasons the singularity
in the DWF may be obscured by other critical ef-
fects like critical scattering etc.
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