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A method of generating equations for dynamical two-point spin correlation functions for systems interacting
via spin-spin interactions in the high-temperature limit is presented. The method is exact in the sense that all
moments of the correlation functions are exact to order 1/Z where Z is the efFective number of nearest spin
neighbors. Thus the equations are formally exact in the limit of large dimensionality with nearest-neighbor
interactions. As an example the method is applied to the isotropic Heisenberg paramagnet.

I. INTRODUCTION

In the past several years a number of papers con-
taining first-principles calculations of dynamical
spin correlation functions for paramagnetic systems
interacting via spin-spin interactions have been
published. ~~ Most of these calculations are valid
only in the high-temperature limit (where kT is
much greater than any spin interaction energy), al-
though some have been generalized to all tempera-
tures at which the system is paramagnetic. Many
of these calculations are based on a particular
lowest-order decomposition that is usually called
the Blume-Hubbard approximation or the bubble
approximation. In an earlier paper it was shown
that this approximation is the first in a well-de-
fined infinite sequence of self-consistent approxi-
mations. The resummation of the moment diagrams
used to obtain these approximations is based on the
ideas contained in the work of Wegner, Resibois
and De Leneer, 4 and especially Reiter' who first
suggested this particular resummation.

However, even in the high-temperature limit,
the bubble approximation is unsatisfactory in some
respects. It produces spectral functions whose
second moments are exact but whose higher moments
are substantially incorrect. By using higher-order
approximations, 2 one can generate spectral func-
tions whose higher moments are exact to order 1/c
where c is the effective number of spins in the
range of interaction. ~ However, the complexity of
the equations rapidly increases, and it does not
appear to be feasible to go beyond the second-order
approximation (which gives the fourth moment exact
to order 1/c}. The defects of the bubble approxi-
mation are apparent for the Heisenberg paramagnet
where the calculated line shape is quantitatively in-
correct for some values of wave vectors, especially
those near a zone edge. Recent calculations for the
dipolar paramagnet are even more disappointing.
The frequency-dependent spectral function for this
system obtained from the bubble approximation is
not a monotonic function of frequency and its peak

is not at zero frequency. ' This inconsistency
with experimental fact is partiaQy obscured by cal-
culating the time-dependent free-induction-decay
function because the zeroes of that calculated func-
tion are in reasonable good agreement with experi-
ment. The next approximation above the bubble
approximation in the sense of Ref. 2 has been tried
and found not to remedy this nonmonotonic be-
havior. ~ From this we conclude that it may not be
profitable to go to any further finite order in this
scheme. In any case, it is not clear what effect
approximations that reproduce a finite number of
higher moments will have on the spectral function
near zero frequency.

It is the purpose of this paper to exhibit a for-
malism which can be used to generate spectral
functions which include parts of all of the "ladder"
self-energy diagrams. The method is exact in the
sense that all of the moments of the spectral func-
tion are exact to order 1/& where Z is the effec-
tive number of nenes~ spin neighbors. More
precisely, the method becomes exact for a spin
system with only nearest-neighbor interactions as
the dimensionality of the lattice becomes infinite.
The quantity Z is not the same as the effective num-
ber of spins in the range of interaction, c, as de-
fined by Reiter. ~ In fact there are many moment
diagrams which contribute to lowest order in 1/c
but not to lowest order in 1/Z. On the other hand,
for a system with only nearest-neighbor interac-
tions, ~ and c are equal. Although the method is
valid only in the high-temperature limit, it may
possibly be generalized to finite temperatures in
a random-phase-approximation sense.

In the rest of this section we shall review certain
aspects of the diagrammatic treatment of spin cor-
relation functions and their moments needed for our
present work. Section lI contains the construction
of the equations for the correlation functions. Al-
though the method is applicable to all types of spin
correlation functions with any spin-spin interac-
tions, the details of the construction will refer to
the dipole spin correlation function with isotropic
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(a) (h) It is easier to work with Z than with G and our
discussion will usually center around this function.
The moments of l",

V. (q )-V.(q ) 8(q +q -it ) f(a, ,a,a, i,j)/JQ

L, gq, m)= I v" ~F,~(j, e),

are easily related to the moments of g,

M„a(t(, n} = J —aF((, gq, td)
aC

(5a)

FIG. 1. Basic vertices for a general spin-spin interac-
tion and the general form of their corresponding analyti-
cal expression. The quantities q; are wave vectors and
the quantities G.

&
are multipole indices.

Heisenberg exchange. In Sec. III we apply the
formalism directly to the isotropic Heisenberg
paramagnet and discuss applications to other sys-
tems.

In an earlier paper we described a formalism
for generating integral equations for spin correla-
tion functions in the high-temperature limit based
on Reiter's diagrammatic analysis of the moments.
A two-point time-dependent spin correlation func-
tion is defined as

G (1 —1', f f') =(A„-(l, t)A~~(1', f ')) 8(t —t'),
(1)

where the angular brackets (x) denote the average
value of x in the canonical ensemble, 6(&) is the
step function, and & (1, f) is the irreducible spin
multipole operator ' in the Heisenbergy representa-
tion at the lattice site l. Since the system is trans-
lationally invariant in time and has the invariance
of the crystal lattice under translations through a
lattice vector, G can be transformed according to
the usual prescription

Reiter's' analysis for obtaining moments exact to
order I/c can be generalized in the following way.
For any spin-spin interaction one forms matrix
elements of the Liouville operator. This leads to
basic vertices which can be represented diagram-
matically as in Fig. 1 with a corresponding analyt-
ical expression. For example, for the dipole (I
= 1) multipole operators with isotropic exchange,
the only possible vertices opening to the right are
given in Fig. 2 along with their corresponding ana-
lytical expressions. The corresponding vertices
openimg to the left have the same analytical expres-
sion. In these equations,

1'(q) = (-'~(s+1))"'~(q)/~,

where ~ is the usual Heisenberg exchange energy.
The rules for L, ()(q, n) are (i) draw all distinct

irreducible diagrams with n vertices which can be
made from the basic vertices and which start with
an o.-type line and end with a p-type line. (ii)
Label the initial line and final lines by q. Label
all internal lines by q;, c(; (iii) .Associate the
appropriate expression from Fig. 1 with each ver-
tex. (iv) Sum over all internal indices q;, c(;.
The number of times a graph is counted is equal
to the number of ways its internal vertices can be

G(1, f)=—g G(q, ~)e*" '"', (2)
2 7T

where ~ is the number of lattice sites and the sum-
mation is over all wave vectors q in the first
Brillouin zone. It is further convenient to define
a mass operator or self-energy Z 8(q, ro) by the
equation

(uG q(q, &o) —Z „(q, (u)G„gq, (o) = i(')

where repeated Greek subscripts are summed over.
In addition, one has real spectral functions g(q, &u)

and I'(q, (d) corresponding to G(q, ~) and Z(q, &u),

d4) g~()(q, (() ):
(

CO —CO + SE

(a)

(c}

q&, t I

q&, O

q,Tt

+ V(q&)- V(q&}]

xQ(q&+q&-qj)/+N

d(d l~gq) (d )
7T (d —(d +&&

= Il~ z(q, (()) —il" ()(q, (d) . (4b)

FIG. 1. Basic vertices opening to the right-hand side
for the dipole (l =1) spin operators with isotropic Heisen-
berg exchange and the analytical expression associated
with them in panel (d). The quantities q;, m; refer to
wave vector and azimuthal multipole index (yyz =+1, 0, —1).
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time ordered .This scheme yields L gq, n}, which
is exact to lowest order in 1/c.

The rules for obtaining Z gq, t) are quite simi-
lar. In order to obtain the nth-order approxima-
tion for Z gq, t), draw all skeleton diagrams having
n vertices which can be made from the basic ver-
tices and which start with an a-type line and end
with a p-type line. In each skeleton diagram the

internal lines are labeled in the same way as for
the moment diagrams, but each vertex is also
labeled by a time t&, with t being the first vertex
and zero being the last. In addition, in order to
allow for nondiagonal correlation functions, each
internal line can have different multipole indices
n& on its ends. Each line labeled q& and going from
vertex t, to t~ starting with n, and ending with n,.
is replaced by G .(q, , tI, —t,). All i.nternal q,
and n& are summed over, all internal times ~& are
integrated over, and a given diagram is multiplied

by (-i}"~'&, when n„ is the number of internal ver-
tices. The inclusion of static fields is trivial2 and

will not be included here.

II. CALCULATION

(b)

q)

eludes sites which are nearest neighbors of both 1

and the origin. On the other hand, [V~(q)]2 or
V'(0) V'(q) is of order Z'V4O.

Using the fact that to lowest order in 1/Z, L(q,
2n) can only include factors like those in Eq. (7),
we shall first determine which skeleton diagrams
contain all such terms. We shall then consider the

nonskeleton irreducible diagrams and finally the

integral equation for g(u&) which generates them.
We start a general diagram with the vertex given
in Fig. 3(a) which yields a factor [V(q&) —V(q —q&)].
Notice that one leg of this vertex must end in a
vertex opening to the right and the other must end

in a vertex opening to the left, as in Fig. 3(c}, ex-
cept if we wish to close the diagram as in Fig. 3(b)
which forms a complete skeleton diagram which

cannot be added to. If both legs end in vertices
opening to the right as in Fig. 3(d), a factor

In this section we will first show how to extract
those parts of each moment diagram which con-
tributes to lowest order in 1/Z. We will then show

how to generate an integral equation for the spec-
tral function which is consistent with these moments
The Greek multipole indices n& will be suppressed
except where necessary for clarity.

First note that only the even moments of I' are
nonzero and that to lowest order 1/Z, L(q, 2&) con-
tains terms each with n factors consisting of V (q)
and/or V (0), where

(c)

~g(-g2

V'(q}=pZ V(q, )V(q-q&)=+[V(1}]'e"', ('I}

and V (0) is V (q= 0). That is, each internal q;
must enter twice and only twice and must enter
alone or with the external wave vector q. It cannot
enter in combination with another internal q,. with

j &i. For example, with nearest-neighbor Heisen-
berg exchange,

V (q) o-Z V30,

where Vo is the nearest-neighbor interaction
strength. Factors which have V(q, }more than

twice will contribute only to higher orders in 1/Z.
For example,

q2

iqg

~q-q~-)&

~~g [V(q&)]' V(q2) V(q& - q.)

=g [V(l)]'Vo') V(1 -I') (9)
l~ l~

is of order ZV~ because the 1' summation only in-

q-qt

FIG. 3. Basic starting vertex and possible choices
for the ends of each leg. Conservation of @rave vector
has been employed in labeling these diagrams.



PE TER A. FEDDERS

(b)
q&-q~

+qj

(c) qp
qj

~qj q3
~q-q&

FIG. 4. Continuation of possible diagrams starting
from the basic vertex.

[V(q, ) —V(q - q, )] [V(q )

—V(q, —q2)] [V(q, ) —V(q —q, —q, )] (10)

obtains. W'ith this factor there is no way to obtain
an expression of the form of Eq. (7) involving q, .
The same is true of both legs end in vertices
opening to the right as in Fig. 3(e), and in addition,
this diagram has too many lines to the left to be
completed. Thus we must start with the diagram
in Fig 3(c) wh. ich has the factor

[V(qg) —V(q —qg)] [V(q )

—V (q, —q )][V(q —q ) —V(q —q )] (11)

associated with it. This start is not obviously
eliminated because V(q —q~) from the last factor
can be combined with V(q ) of the second factor
and either term of the first factor to yield

-[V(qg) V(q -qg) —V(q-qg) V(q-qg)] V(qa) (»)
The q& part of this is of the right form and more
factors involving q~ wi11. occur from the rest of the
diagram.

Now note that Fig. 3(c) can be turned into Fig.
4(a) if q3=q . This yields an acceptable form of
diagram and, in fact, the arguments of the preceding
paragraph can be repeated to continue this diagram
where the last factor V(q2) replaces the factor of
the starting vertex factor V(q ) —V(q —q2). On the
other hand, any other construction will lead to
factors inconsistent with Eq. (7). For example,

M(k) =—QM(q, k) .

(a) q. (b) q;

4 ~q;

q-q; q-q.

+(q q j
) ~(qj) V(qj) V(q-q )

FIG. 5. Allowable internal structure for diagrams
contributing to lowest order in 1/Z and their associated
analyti. cal expressions to order 1/Z.

the next simplest form, given by Fig. 4(b), has the
associated factor

-[V(q,) V(q-q&)- V(q-q&) V(q-q&)]

x[V(q, )][V(q, —q,) —V(qs-q )]f(q, q~), (13)

where f(qs, q~) represents the rest of the diagram
and the terms leading up to Eq. (12) have been
eliminated. Since the first factor in brackets al-
ready satisfies Eq. (7), the rest of the factors can-
not include q&. Thus we are left with

V(q ) V(qs - q )f(q~, qs) . (14)

Because of the V(q, —@), this can never lead to a
form consistent with Eq. (7). Of course, Fig. 4(c)
is acceptable but would close the diagram. Thus
the only acceptable skeleton diagrams are ones
which start and end with the basic vertices and
whose internal structure consists of segments like
those in Figs. 5(a) and 5(b) strung together. The
factors to be associated with these diagrams for the
isotropic Heisenberg paramagnet to lowest order
in 1/Z are also given in Fig. 5.

The irreducible but nonskeleton diagrams can
be formed by replacing internal lines labeled q&

in the skeleton diagrams ' with the moments
M(q„k). Thus the modification of the preceding
argument to include all irreducible diagrams is
straightforward. The internal lines are merely
replaced by other moments exact to lowest order in
1/&. However, in the ensuing summations over

it is still required to lowest order in 1/Z that
only pairs like those in Eq. (7) appear. Thus only
the part of M(q;, k) that is independent of q, need
be included in this replacement of internal lines by
other moments. For example, with the isotropic
Heisenberg paramagnet,

M(q, 3) =2[V'(o) —V'(q)]. (15)

Since the summation of V (q) over the Brillouin
zone is zero, the part of M(q;, k) that is independent
of q, can be denoted by M(k), where M(k) is the
moment M(q, k) averaged over the Brillouin zone,
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(a)
x(, I

(b)
x(,0

x, I X, I x, l x, I

x xl)0 X —XI) I

FIG. 6. Lowest-order diagrams for the dipole (l =1)
correlation function in the isotropic Heisenberg para-
magnet. The quantity z; denotes (q;, ~;) and m denotes
the azimuthal multipole index. —2i V2(0) ' G, ((d,) G, ((d —(d,) .2r (17)

First consider the equations for the local or q-
independent correlation function G, ((d) whose self-
energy is Z, ((d). The diagrams for Z, can be ex-
pressed as simply in ~ space as in t space and the
frequencies flow just as the wave vectors do. In
what follows we shall use the shorthand notation x,
where x;=(q;, (d;). The lowest-order diagram,
given by Fig. 6(a}, yields

The translation of these rules for the moments
into rules for an integral equation for Z(q, (d) are
similar to the ones used in Ref. 2. The rules for
Z„(q, t) are as follows: (i) Draw all distinct skele-
ton diagrams which start with a. basic vertex with
a q, n-type line, end with a basic vertex with a q,
P-type line, and whose internal structure is made
up of segments like those in Figs. 5(a) and 5(b)
strung together. (ii) Label the internal vertices
t, , n; and the internal momenta q;. (iii) Associate
the appropriate numerical factor with each vertex
and replace the internal lines between vertices n;,
t; and n, , t, with G . (f, —t, ), where G. (t) is the
local or q-independent solution defined by moments
as in Eq. (16). (iv) Multiply each diagram by
(- &}""'~where n„ is the number of internal vertices,
integrate over internal times, and sum over inter-
nal wave vectors.

The rules for Z gt), the self-energy associated
with the q-independent correlation function G ()(t),
are similar except we take only the q-independent
part. In practice, this reduces to modifying step
(i) of the preceding paragraph to use only diagrams
whose internal segments like those in Figs. 5(a)
and 5(b) alternate. That is, only extended seg-
ments like those in Fig. 8(a) contribute in such a
way ~:) as to be independent of q.

'I..e above procedure does not in itself give a
finite equation for G in that there are still an in-
finite number of diagrams for Z. However, it is
not hard to believe that the subset of diagrams now
needed to obtain exact results to lowest order in
1/Z can be summed. In Sec. III we will show how

they can be summed for the isotropic Heisenberg
paramagnet. Extensions to other systems are
straightforward but tedious.

III. DISCUSSION

In this section we shall explicitly sum all of the
diagrams to lowest order in 1/Z for the isotropic
Heisenberg paramagnet and discuss some applica-
tions to other spin systems. For the isotropic
Heisenberg paramagnet, all of the correlation func-
tions G, ~ are diagonal (c(=P) and, if we consider
only the dipole-dipole (I = 1) correlation functions,
all three (m =1, 0, —1) of them are identical.

The factor of two comes from the q-independent
part of

yZ [v(q, ) —v(q - q, )]' = 2[v'(o) —v'(q)] . (18)

n+f

[( (o)J[
'

I( ) i( )

X G, (IX~ + X„(—tX))

These terms can be formally summed to yield

(19)

2, (tx)= —2t )"(O)f ''G, (tx,)G, (~ —~,)2,(~, tx,),

(2Oa)

F
~ ((d, (d &)

= 1 —V (0) —- - G (((d &
+ (d2 (d)2'

X G(((d~) G~((d (d~) Q(((d (d~) (20b)

(20c)

These equations can be solved self-consistently to

(a) (b)

0

FIG. 7. Start of the higher-order diagrams for the
Heisenberg paramagnet with only the azimuthal multi-
pole index m indicated.

Figure 6(b) is not a distinct diagram because it can
be obtained from Fig. 6(a) by a simple rotation.
The higher-order diagrams start like those in Figs.
7. There is a factor of two because diagrams
Figs. 7(a) and V(b) are distinct. By the rules dis-
cussed in Sec. II, the middle portion of the higher-
order diagrams look like Fig. 8(a), and the contri-
bution to Z, ((d) from all terms with 2n vertices is
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(a)
xI

xI

x x)

X-Xp

Xp X-Xp

X —Xy

Xy

tion function in the bubble approximation.
The equations for Z(q, &o} are somewhat more

complex because the internal segments of the dia-
grams can consist of Figs. 5(a) and 5(b) in any se-
quence. The first term for Z(q, ~) is

(b)
xI

xI+xP-

X-X) -X

x-xI

X-Xp

Xp

Xp

p+Xp-X

-Xp-Xp

X-Xp

FIG. 8. Internal structure of diagrams contributing to
(a) Z, (co) and (b) Z(q, cu). The quantity g& denotes (q&, co&).

obtain the local solution G, (v). The quantity E,
&& (ur, &u,) is essentially a form factor and if E is set
equal to one, Eqs. (20) describe the local correla-

(-2 ) [ '(0) —V'(q)1 2,
' ( ) ( — )

(21)
A general internal segment can be represented
schematically by Fig. 8(b). The meaning of the
crossed lines is that either one of each pair of
crossed line enters a given diagram contributing
either G, (u&, +&@;,~ —v) or G, (&u —&u, —v„,). A

simple analysis shows that the factor Vm(0) occurs
when two successive cross lines run different ways
[one like the Fig. 5(a) and one like in Fig 5(b. )]
and the factor Vm(q) when two successive cross
lines run the same way [both like in Fig. 5(a) or
both like in Fig. 5(b)]. A more tedious but straight-
forward analysis yields the following set of equa-
tions for G(g, &u):

&(t( ~)=(-»)(("(o)—("(t(l)f 2
G (~g)G (~ ~s)+»((' (o) (' (c)) f 2 2

Gr(~s)G (~ t»)

x G, ((u, —(o2 —(o) G, ((um) G, ((o —(o~) E~,(u), (um; q), (22a)

cf(d3E,&(&u, v2; q) = E,&
— G,(u&~) G, (v —v3) Mg ((A)3 (03, &u; q) E &(e, &u~; q) (22b)

where the repeated Latin subscripts imply matrix multiplication and

1 1
~0

1 1 (22c)

V2(0) G(~2 + +3 —&u) V (q) G(v —&u2 —&u~)
M~&((()» (d» ((); q) =

V2(q) G, (&u~ + vs —&u) V2(0) G, (&u —urz —&u~)

(22d)

Equations (20) and (22) describe a solution for
G(q, &u} all of whose moments are exact to order
I/Z.

As one can see, the equations for the dipole spin
correlation function for the high-temperature iso-
tropic Heisenberg paramagnet are quite involved.
The equations for any other spin system will be
even worse. For example, we are presently ap-
plying the formalism to obtain equations for the
dipolar paramagnet. However, we estimate that
the solution to these equations will take more com-
puter time to solve than the corresponding equa-
tions for the isotropic Heisenberg paramagnet by
more than an order of magnitude. Thus we chose
to apply the formalism first to the Heisenberg pa-
ramagnet because the equations are the simplest
in this case and the feasibility of the method could
be studied with a limited computer budget.

We have computed the local spectral function

I

g(,(e) using the bubble approximation and the local
spectral function g&(&o) using the full approximation
given by Eqs. (20). The results of these computa-
tions are shown in Fig. 9. The Eeroth and second
moments of these functions are identical but the
higher moments of gz(v) are larger than the corre-
sponding moments of g(, (&u). It is interesting to
note that gz(u&) is greater than g, (~) at zero fre-
quency and also at asymptotically larger frequen-
cies. Thus, in this case, the function with larger
higher moments is also larger at co=0.

The local spectral function g(, (v) is not precisely
the autocorrelation function calculated by Blume
and Hubbard. ~ This is because we have neglected
terms of order 1/Z in solving the q-dependent
bubble approximation. In fact, g, (~) is the Fourier
transform of the solution of the equation derived by
Resibois and De Leneer. However, in our scheme
the local spectral function is an intermediate step
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l. 2

I.O

0.8

0.4

0.2

0.0
0.0 1.0

cu/V

2.0 3.0

FIG. 9. Comparison of the local or q-independent
spectral functions computed in the bubble approximation,
g&(~), and in the full approximation given by Eqs. (20),
g&(~), for the isotropic Heisenberg paramagnet. Fre-
quencies are in units of V=[V (0)]

in our calculation and not a final result to be com-
pared with experiment. The bubble approximation
to order 1/Z is recovered by using Eq. (20a) with
F,(a&, &u&) = 1 and then the first line of Eq. (22a).
The spectral function g, (q, u&) obtained in this way
is within a few percent of the spectral function ob-
tained by Blume and Hubbard. The same holds
true for the autocorrelation function obtained by
averaging g, (q, u&} over q.

Our comparison with experimental results is
limited to a calculation of the spin diffusion coef-
ficient. This quantity can be computed from G, (e)
without calculating F,&(td, &u~; q), since only the
first term of Eq. (22a} is significant for small q.
The spin diffusion coefficient obtained from the full
approximation is only 4%%uo lower than the experi-
mentally measured value for RbMnF3 compared
to the value obtained from the bubble approximation
which is 11.5' too low.

*Research supported in part by the National Science
Foundation.

M. Blume, and J. Hubbard, Phys. Rev. B 1, 3815 (1970).
Charles W. Myles and Peter A. Fedders, Phys. Rev.
B 9, 4872 (1974).
F. Wegner, Z. Phys. 216, 433 (1968); 218, 260.
(1969).

4P. Resibois and M. De Leneer, Phys. Rev. 152, 305
(1966); 152, 318 {1966);178, S06 (1969); 17S, 819
(1969).

5G. F. Reiter, Phys. Rev. B 5, 222 (1972).
6See also, H. S. Bennett and P. C. Martin, Phys. Rev.

138 A608 (1965); F. B. Mclean and M. Blume, Phys.
Rev. B 7, 1149 (1973); G. F. Rei/er, ibid 2, 3325
(1973); D. L. Huber, ibices. 6, 3180 (1972) and ref-
erences therein.

Peter A. Fedders, Charles W. Myles, and C. Ebner, in
Proceedings of the 20th Annual Magnetic Materials and
Magnetism Conference, 1974 (unpublished).

M. Blume (private communication).
Peter A. Fedders (unpublished).
C. G. Windsor, G. A. Briggs, and M. Kestigan, J.
Phys. C 1, 940 (1968).


