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The critical behavior of a continuous spin system in a semi-infinite sample is studied for all values of the
extrapolation length X using mean-field theory. A new transition, which we have called the extraordinary
transition, is found for X g0 in which the bulk orders at a temperature below the surface ordering temperature.
In this paper we have calculated the magnetic susceptibilities g(z) and y(z, z) and the correlation function
I (x,x') at all the phase transitions. We have used these results to compute the various y and q exponents
and to study the scaling relations introduced by Binder and Hohenberg.

I. INTRODUCTION

In a previous paper' (hereafter referred to as I),
the Wilson-Fisher e expansion was used to calcu-
late the critical properties of semi-infinite clas-
sical spin systems. Paper I was restricted to the
case of positive extrapolation length X, that is, the
spin field S(x) in the ordered phase would vanish
if it were linearly extrapolated a distance ~ out-
side the surface of the system. While preparing
to apply the c expansion to systems with negative
or infinite extrapolation lengths, it became nec-
essary to make a detailed study of the mean-field
theory in semi-infinite systems. It quickly be-
came evident that the mean-field theory presented
a model in which almost all quantities (suscepti-
bilities, correlation functions, etc.) of interest
could be calculated analytically, and that these
were of sufficient interest to warrant a separate
publication. This paper, the second in a series
on critical phenomena in semi-infinite systems,
is devoted entirely to the mean-field theory. The
third paper' (hereafter referred to as III) deals
with X ' «0.

The mean-field theory for semi-infinite mag-
netic systems has already received considerable
attention. ' " Mills' presented the first detailed
analysis of the magnetic phase transition in semi-
infinite systems following an earlier experimental
and theoretical investigation by Wolfram et al.
Mills investigated the mean-field theory for
Heisenberg ferromagnetic and antiferromagnets
in three dimensions and obtained Landau-Ginzburg
continuum equations for the spatially dependent
magnetization. He obtained the correlation func-
tion in the disordered phase and an analytic ex-
pression for the magnetization profile in the or-
dered phase for ~&0. Concurrent and independent
work by Kaganov and Omelyanchouk' treated the

mean field in finite samples starting from a Lan-
dau-Qinzburg free energy. Random-phase-approx-
imation (RPA) treatements" of models for itin-
erant ferromagnetism in semi-infinite systems
followed. These were often directed toward the
possible role that spin fluctuations might play in
catalysis. ' ' Further work concentrated on the
prediction from mean-field theory that the surface
orders before the bulk for negative extrapolation
length. ' Important calculations of mean-field
critical properties also appear in the papers of
Binder and Hohenberg. "

Kumar' has pointed out that four qualitatively
different magnetization profiles in the ordered
phase are possible depending on the value of X and
the reduced temperature t -(T —T,)/T, where T,
is the mean-field transition temperature for the
bulk system. If & '&0, the mean field on the sur-
face layer is less than the mean field in the bulk,
and at t =0 there is a transition to a state in which
the average spin curves down at the surface, as
depicted in Fig. 1(a). This is the standard bulk
driven transition, which we will call the ordinary
transition. When X = ~, the mean field at the sur-
face equals the bulk field and at t=0, there is a
transition to a state with a flat spin profile [Fig.
l(b)]. We will call this the i.=~ transition If.
X&0, the surface mean field exceeds the bulk field,
and there is a transition at t = t, &0 to a state in
which the spin decays exponentially to zero in the
bulk [Fig. 1(c)]; the surface orders before the
bulk. We will call this the surface transition Dif-.
ferent mean-field critical exponents for the sus-
ceptibilities for these three transitions have been
defined. " Finally, for A. '&0, there is a transition
from a state of zero bulk magnetization to finite
bulk magnetization [Fig. 1(d)] when the bulk cor-
relation length diverges at t = 0& t, . This last
transition is in fact a phase transition with critical
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exponents that can be calculated with the mean
field. We call this the ext~ao~dina~y transition.
To distinguish the transitions, we will label all
exponents with superscripts o, ~, s, and e re-
ferring, respectively, to the ordinary, the X = ,
the surface, and the extraordinary transitions.

The starting point for this paper is the Landau-
Ginzburg continuum free energy in a semifinite
system expressed in terms of the spin S(x) at point
x. The coordinate perpendicular to the surface is
z. The differential equation for S(x) which results
from minimizing the free energy in the presence
of an external magnetic field is then solved to ob-
tain the spin S(z), y(z), the response of a spin in
plane z to a uniform field, and y(z, z'), the re-
sponse of a spin at z to a uniform field at the
plane z', for all values of ~ and t. In addition, the
full spin correlation function I'(x, x') is obtained in
the disordered phase and at the extraordinary tran-
sition &&0, t=0. In the ordered phases, we will
consider only the response of the system to fields
parallel to the direction of order. We will not
consider transverse response.

The new results of this paper are (i) the calcu-
lation of y(z) and y(z, z') in the ordered phases,
(ii) the calculation of I'(x, x') for A. =~, and (iii)
the calculation of y(z.lz') and I"(x, x') at the extra-
ordinary transition. From p(z, z) we calculate
y. .. the local susceptibility exponent introduced
by Binder and Hohenberg "Fro.m I"(x,%') we are
able to compute the g exponents defined in Sec. II
and check the Binder-Hohenberg scaling rela-
tions. "

The analysis presented here is expected to be
valid for any semi-infinite system which can be
described by the Landau-Ginzburg mean-field
theory. In particular, this analysis should be
applicable to superconductors where it may be
easier to detect the extraordinary transition.

The outline of the rest of the paper is as follows.
Section II presents the model and defines all of
the relevant exponents for convenient future ref-
erence. Section III presents general solutions to
the equations for S(z) and I'(x, x') derived in Sec.
II. This section is extremely mathematical and
may be treated as an appendix by those not inter-
ested in calculational details. Section IV treats
the disordered state including calculations of y(z),
y(z, z'), and I'(x, x'). Sections V, VI, and VII treat
the various ordered phases. Section V is con-
cerned with & ' ~ 0 and t & 0, Sec. VI with ~ & 0 and
0 & t & t„and Sec. VII with the properties of the
extraordinary transition both above and below t =0.
Section VIII is a summary of the results which are
capsulized in the phase diagram of Fig. 2 and in
Tables I and II.

II. PRELIMlNARIES

Model

Throughout this paper, we will use the con-
tinuum phenomenological free energy which gen-
erates the field equation originally derived by
Mills, 3

p t Sx+Q+VNSjx+QSx+zggSx5zBxSxBySx5z
fXg

(2.1)

where T is the temperature, t' =(T —T,)/T is the
reduced temperature with T, equal to the bulk
mean-field transition temperature, ~ is the ex-
trapolation length, B' and B', are, respectively,
uniform and surface external magnetic fields di-
vided by T, and E and u are phenomenological con-
stants. As in I, x=(p, z), where p is the coor-
dinate parallel to the surface and z is the coor-
dinate perpendicular to the surface. z =0 is the
surface plane. The integral is over the half 4-di-
mensional space z & 0. S is an n-component vec-
tor so that j runs from 1 to n and n from 1 to &.
F/T with suitably renormalized spin variables is
just the continuum limit of the reduced Hamiltonian
used in I and III. In Mills's derivation' of Eq.
(2.1), F was obtained from a Heisenberg Hamil-

tonian on a discrete lattice with nearest-neighbor
exchange J(1+4,) on the surface layer and J be-
tween all other spins. In this case, K=J/T and
A.

' =1 —~,/A„where L, =2(d-1) (6, =4 in three
dimensions) is the critical value of 6, for which
A

' changes sign.
It may be of interest to note that if the coupling

between the surface layer and its neighboring layer
is allowed to be Z(1+ 6~), then Eq. (2.1) is un-
changed but ~ is now given by

2S, +2(d-1) a,
1+h~

consequently, A changes sign when 6~+2(d-1)b,,
=1. This may be easily shown by following Mills's
argument' with the extra coupling term.
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The derivation of the continuum free energy
assumes the variations in S(x) are slow on the
scale of a lattice constant a. A priori, this does
not put any restrictions on ~; a postioxi, however,
we will see in Sec. IV that

~
&

~
must be much

larger than a lattice constant. We should note the
assumption that a j &S(x) (/( S(x) (

« I implies that
the surface region must in fact penetrate several
layers into the sample and not be sharply restrict-
ed to the plane z =0.

There are at least two methods for studying Eq.
(2.1}. One method is to diagonalize the quadratic
part of the free energy by finding its normal
modes. This technique is used in I and III and is
useful in proceeding to the & expansion. The other
is to study the equation for S(x) obta, ined by min-
imizing I'. With the latter technique it is easier
to obtain information about the system below any
ordering temperature, and is the one we will pur-
sue in this paper. To simplify the equations which
minimize I', we will rescale S', t', B', and B,' via
S = (4u/K)'~'S', t = t'/K, B = (1/K) (4u/K)' ~'B ', and B,
= (1/K) (4u/K)'~ B,'. Then, minimization of & with

respect to S(x) yields

tS(x) —V'S(x}+~S(x) ~'S(x) =B(x),

~8x

S(x) i, = S(~),

(2.2a)

(2.2b)

(2.2c)

d'S(z) —ts(z) —S'(z) = —B , (2.4a)

y-1 s

S(z)t. „=S( ) .

(2.4b)

(2.4c)

Solutions to the homogeneous part of Eqs. (2.4)
(B and B,= 0) will give S(z) in ordered states with
no external fields. These solutions for specific
cases will be discussed in Secs. IV-VI. Given the
solutions to the homogeneous equations, we can
find solutions for S(z) to first order in B and B,
from which we can obtain the susceptibilities

where S(~) is the value of the spin in an infinite
system. The system is translationally invariant
parallel to the surface so that states which min-
imize I' will depend only on the coordinate z. We
will thus seek solutions to Eqs. (2.2) of the form

S(x) = eS(z), (2.3)

where 0 is a unit vector along B and/or B, if either
is nonzero (for simplicity, we assume B and B,
are parallel. } Substituting Eq. (2.3) into Eq. (2.2)
and allowing B(x) = B to be uniform, we obtain

X(z) = 8S(z)
(2.5a)

X(z, o) =
SB

ss(z)
1

(2.5b)

These are the continuum generalizations of the
susceptibilities p„and p„, introduced by Binder
and Hohenberg. " (Our surface is at z =0 rather
than at the discrete variable n= 1.) In the disor-
dered phases, Eqs. (2.5) give the isotropic sus-
ceptibility. In ordered phases, Eqs. (2.5) only
give the susceptibility for fields parallel to S. In
this paper, we will not calculate perpendicular
susceptibilities or correlation functions in or-
dered phases.

In order to obtain the spin-spin correlation func-
tion I'(x, x'), we use

&S(x)I (xp x ) 6B( ()
(2.6)

(
—I'(x, x') —& ' I'(x, x') = 0 .

z=0
(2.Vb)

I'(x, x ), of course, contains the susceptibilities
y(z) and y(z, z') as special cases. In particular,

X(z) =fd'x' r(x, x'), (2.8a)

X(x, x')= fd' 'X r(x, x')' (2.8b)

Equation (2.8b) allows us to determine the sus-
ceptibility }t(z,z'), which is the response of the
spin on the plane z to a uniform external field ap-
plied at the plane z'.

In subsequent sections, we will calculate S(z),
y(z), and y(z, z ') for all values of A. and t. In addi-
tion, we will calculate I'(x, x') in the disordered
phase and at the extraordinary transition (A. &0,
t =0). Though our solutions will be valid for all
values of ~ and I;, our primary interest will be in
the behavior of these functions near the four phase
transitions discussed in the introduction. In par-
ticular, we will be interested in the critical ex-
ponents characterizing these transitions, which
we label in the manner described in Sec. I. Thus
each transition has a divergent correlation length

g' -(t —t;) ', i =(o, ~, s, e), (2.9)

where t; is the reduced transition temperature for
transition i. Within the mean field, t, = t„=I;, = 0
and t, =

~
X~ ', as we will see in Sec. II. Exponents

describing the temperature dependence of spin and

Then, varying Eq. (2.2), we find

V„ I'(x, x') —t I'(x, x') —3 S (x) I'(x, x') = —6(x -x'),
(2.'7a)
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susceptibilities are defined as follows:

S(z) =(t —t.) ',
(t —t ) "', t&t;

(2.10)

to I'„as s and s' go into the bulk. g~, p, ', gz, ~»d
q'„are undefined. g'„must equal q"„and both must
be equal to the bulk exponent q. q'„may, however,
differ from g.

X(z) =

(t; —t) ~$, t& t;
(2.11)

III. GENERAL SOLUTIONS

(t —t ) &BB, t& t,.

X(z, z) =

(t. t) BZ

(2.12)

These exponents are just the continuum analogs of
the exponents P„, y„, and y„„introduced by Binder
and Hohenberg. " (n is a discrete lattice variable
with the surface located at n= 1.) We have allowed
for the possibility of having different values for
the susceptibility exponents above and below the
transition. In addition, Eq. (2.10) is valid for
t, —t both positive and negative for the extraordi-
nary transition. As indicated, it is in principle
possible to have different exponents for each value
of ~. We will see, however, that there are only
two independent values of the exponents depending
on whether z» g or z «$ with crossover occuring
at ~ = j. We label these two exponents with the
subscript 1 for z «( (following Binder and Hohen-
berg") and ~ for z» $. For the ordinary and A. = ~
transitions, the exponents for z» ( must be the
bulk exponents. For the surface and extraordinary
transitions, the exponents for z»( may either be
undefined or different from normal exponents. We
therefore retain the ~ subscript even though it is
superfluous in some cases.

The exponents for I'(x, x') at t = t; are defined as
follows:

where

C=BS( ) — tS'( )--.'S'( ), (3.2)

since dS/dz tends to zero as z becomes infinite.
S(~) is the bulk (z =~) spin. We now solve Eq.
(3.1) perturbatively to first order in B,

S(z) = S,(z)+S,(z), (3.3)

where

1 dS z
2 dz

——,'tS', (z) - -,'S,'(z) = ,'tS', ( ), —

and

(3 4)

In this section, we will present general solutions
to Eqs. (2.4) and (2.7) which will be applied to
particular ranges of the values of the parameters
X a,nd t in subsequent sections. For t&t;, S(z) to
first order in B and B, can be obtained directly
from Eq. (2.4) by ignoring the S'(z) term. This
solution will be presented in Sec. IV. Vfhen t&t, ,
S(z) has a nonvanishing value S,(z) even when B
and B, are zero, and one solves for S(z) by re-
ducing Eq. (2.4) to quadratures. ' Multiplying Eq.
(2.4a} by dS/dz and integrating over z, we obtain

1 dS(z) ——,'tS'(z) ——,'S'(z) = —BS(z) + g, (3.1)

A;(6t)

A;(8) = (cos8)"

I (@$0} 4-2+q(d-2+'gi,

(2.13)

(2.14)

(2.15)

' —tS, (z)S,(z) —S', (z)S,(z)

= -B[So(z)—So(~)],
where to evaluate C we have used

S,(~) =0, S,(~) = B/t, t&0

So(~}=v' t, S,(~) = B/ 2-t, t&0. -

(3 6)

(3.6a)

(3.6b)

I (x, x') —I'„(x,x')—
(Z 4 Z 1)d-2+7()

z, z'»(x —x'i (2.16)

The boundary condition at z =0 (2.4b), is linear;
so we have

1
I „(x,x') -(,(, „„$, z, z»lx-x'(

(2.17)

0 y-lS 0 (3.7a)

(3.7b)

where I'„(x,x'} refers to the correlation function
when z, z' are much greater than ~x —x'~. We have
introduced two new exponents, p,

' and gr describ-
ing, respectively, the angular dependence of the
surface bulk correlation function and the approach

Equation (3.4) is solved implicitly for S(z}
S 0(z) dS

[S4 2tSB tSB(~)] &&»

where P is an integration constant determined by
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the boundary condition at the surface.
Equation (3.5) is linear and is also easily solved.

First observe that the coefficient of S,(z) is equal
to —d'So/dz'. Thus, Eq. (3.5) reduces to

So(z)S|'(z) —So'(z) S,(z) = -B[SQ(z) —SQ(")],
(3.9)

with a prime indicating differentiation with respect
to z. Next, note that

These equations can be solved by standard tech-
niques. " If W, (z, p) and W, (z, p) are two linearly
independent solutions to the equation

2

, W(z, p) —[t)'+ t+3S',(z)]W(z, p) = 0, (3.16)

where
X/2

W (z «p) e LP +t+3$(&(~)] &
a,s z1

then

d S, S,'So —So' S, So —S,(~)
(si)2 (sl)2

Integrating, we obtain

(3.10)

where

W, (z, p)U(z', p), z &z'

U(z, p)W, (z', p), z&z'
(3.17)

s, (o) 's, (z') —s,( )s, z =8,'(z) ,'(
)

—)) (,(,))',
—dz').

(3.11)
The boundary condition Eq. (3.7b) for S,(0) be-
comes

S(~)(0) 1
S (())

So(~) —S()(0)
(3 12)~ ~

S,'(0) X
' ' S'(0)

Using the boundary condition Eq. (3.7a) and Eq.
(2.4a) with B=o to eliminate So', we find

U(z, p) = C,W, (z, p) + C,W, (z, p),
with C, and C, chosen to satisfy

and

dW, (z, p) (, ) (, )
dU(z, p)

dz cfz z- zi

(3.18)

(3.19)

(3.20)
s, (0)=~ '[t-x '+s', (0}] '

S()(~)x )), +X '(0)
—() B (3.13)

These equations yield

C, = [W,'(z', p)W, (z', p) —W, (z, p)W, (z', p)]-',

(3.21)
Equations (3.11) and (3.13) give the general solu-
tion for S,(z) to first order in B and B,. We will
use them in subsequent sections to calculate y(z)
and y(z, o).

We now turn to the calculation of the correlation
function and y(z, z'). Equations (2.7a) and (2.7b)
are linear and can be solved generally. Since
the system has translational invariance parallel
to the surface, we may write

w,'(o, p) —~-'w, (0, p)
'w,'(o, p) —~-'w, (0, p)

' (3.22)

C, is the inverse of the Wronskian and is, there-
fore, independent of z'. We will use these equa-
tions to determine I'(x, x') in the disordered phase
and at t = 0 for i(. ' &0 and y(z, z') in all of the
ordered phases.

r(x, x') = e')' '~ -~'r(z, z' p) (3.14)
IV. DISORDERED PHASE

A. Susceptibilities

where
" ''dp,
-- -" 27r

'

j= 1

In the disordered phase, S,(z} is zero. We may,
therefore, linearize Eq. (2.4) to obtain y(z) and

y(z, o). We find

Note that it follows from Eq. (2.8b) that

I'(z, z '; p = 0) = y (z, z ') .
and

S(z)= —1—B 1 ~q , A. ~g g

t A. i+1 e + t+1 B~)

(4.1)

Equations (2.7a) and (2.7b) become

2

, r(z, z', p) —[p'+ t+3S',(z)]r(z, z'; p)
Bz

1 1
1+X/g

(4.2a)

= -5(z -z'),

—I'(z, z', p) —a 'I'(z, z ', p) = 0.
oz z=o

(3.15a)

(3.15b)

X( ) = I,~/(
(4.2b)

where me have introduced the bulk correlation
length )=t '" for t&0. These equations are valid
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W, (z, p) = e (~")

U(z, p) =Dsinh[(p'+ t)"'z+ 8(p) j,
where

(4.3a)

(4.3b)

,e(p) 1 —x(p'+ t)'"
1+x(p'+ t)'" ' (4.4)

and D=(P'+ t) '"e Using .the above and Eq.
(3.14), we find

F(z zI ~ p~) (e-(0 +t) ( -zz
t 2( p2+ t)I/2

regardless of the sign of A provided the system is
in the disordered phase.

We now investigate Eos. (4.2) in detail. First
note that when X &0 or infinite, X (z) diverges only
at t=0, and X(z, O) has no divergences. If X&0,
both X(z) and X(z, 0) diverge at g =

~ X~, i.e. , at
t =

~ p,
~

'. As we shall see in Secs. V and VI the
divergence at t =0 signals a transition in which
spins order throughout the sample, while the di-
vergence at t =

~
X~

' signals a transition in which
spin ordering is restricted to the surface. Thus,
t, = ~X~

' and t, =t„=0. Since t, is greater than
t„ if A &0 the surface will always order before
the bulk. ' ' Both surface and bulk fluctuations
contribute equally to X(z), whereas surface fluc-
tuations are dominant in X(z, 0). Thus, for X &0,
x(z) appears as the sum of two independent parts
which diverge at different temperatures.

We now calculate I'(z, z', p) from Eqs. (3.15a)
and (3.15b) in order to find the various y expo-
nents. Since S,(z) =0, Eq. (3.16) can readily be
solved

1
X(z, z) =

2 t
(4.8b)

(4.9a)

(iv) x&0, t-(X~

(4.9b)

y~ = 1; y'„= undefined (4.10a)

y", , = 1; y'„„=undef ined, (4.10b)

Note that when z» t, X(z) and X(z, z) are indepen-
dent of X for A

' ~ 0.
Crossovers between regions (i), (ii), and (iii)

occur when $ is of order )( or z. For example,
if $»X, then X (z) behaves as t ~& for z «$ and
as t /" for z» $. All of the above exponents are
in agreement with those calculated by Binder and
Hohenberg" for a discrete lattice.

We see that for X&0,
~

x~ is the penetration
depth for the surface effects. The assumption
upon which the use of the continuum model is based
therefore requires [X[»1. This is thea posteriori
requirement mentioned in Sec. II.

~ e( p ) -(p2+ t )» (z+ z ')
)—e e

and from x(z, z') =I'(z, z';0),
(4.5)

B. Correlation functions X ' ~~ 0

„( I)

-(z+ z')/ K

1+x/$
(4.6)

I'(x, x') is obtained by Fourier transforming
Eq. (4.5) with respect to p and is given by

I'(x, x') =G~(x —x', t) -H~(x —vX', I, t), (4.11)

X+8x(z)-
vt (4.7a)

The reader can check that Eq. (4.6) reduced to
Eq. (4.2b) when z' =0.

We now list the exponents which can be obtained
by evaluating the appropriate limiting forms of
Eqs. (4.2a) and (4.6):

(i) x&0, g»x, z,

where vx = (p, -z), and

1
H, (x, X, t) =, e" "e"~(z),

(4.12)

(4.13)

2A.
X(z, z )—,r', ,, = --. ,'1+Zv t

(ii) x&0, z»$,

(4.7b)
with q=(p, k), f-=(~ f"„(fk/2w, and tang=OX.
The equivalence of Eq. (4.11) and the Fourier
transform of Eq. (4.5) can easily be verified by
contour integration with the observation that

(4.8a) (4.14)
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is analytic in the upper-half-plane provided
x '&0.

When kX«1 or X =~, Eq. (4.14) may be written
so that the evaluation of K„(x,X, t) is very simple,

~;y(~) e ' +O(kA. ), kA &&1e"
-1,

Then, it is shown in Appendix A that

(4.15)

H, (x —vx', X, t) =,

3

G,(x —vx'+2Ae, t} I+O, , ~, if
~
x- vx'(»X,

I x-vx

-G, (x —vx', t) 1+0 if ~x- vx'~«X,
x- vx

(4.16)

where e~ is the unit vector perpendicular to the
surface,

(2.17), we obtain

g'„= g' =0,

Gu(x» t) =
4 uy2 u 2'�(j-xI ~&)
r(-.'d —1) (4.17) (4.21)

I'(x) is the I' function, and

g =pl"=g~=gii = p =0 (4.22)
gg(1() 1»(ld 1) 2 lf/2 1( ) (4.18)

(i) X '&0,

I(2d 1)I+ x~x =
4

where K„~2, is the Bessel function of imaginary
argument.

It should be noted that the corrections to the
leading terms in Eq. (4.16) are of higher order
than the leading terms obtained from Eq. (4.11)
in the various limits of interest. This is impor-
tant since Eq. (4.11) is the difference of two func-
tions. Using the fact that g~(u) =1 at u= 0, we can
obtain I'*(x,x') the correlation function at t=O:

It is interesting to note that y', and yy y for
i =0, ~ as calculated in Sec. IV A obey the Binder-
Hohenberg' scaling relations

y,
' = v(2 —7l(~),

yl, = v( I-, n'I)I~

(4.23a)

(4.23b)

where g~ and q'~, are given above. These equations
are expected to be valid beyond the mean-field
approximation and have already been used in I
to evaluate y', and yy y

to first order in e =4 —d.
They will be used in III to evaluate y", and yy

from g~ and g~~ calculated to first order in e.
and y„' „obey scaling relations similar to Eq.
(4.23),

1 1
I» —x'I' ' Ix —xx'+x»e I' *) '

y„' = v(2 —1t„'),

y.'.= v(1 —
,4) .

(4.24R)

(4.24b)

(ii) x=~,

r(-,'d —1)
477

(4.19) Equation (4.24a) is the standard bulk scaling rela-
tion. Equation (4.24b} follows directly from Eq.
(2.8b) and the scallllg f01111 fol' I'(x, x', t) implied
by Eqs. (4.11), (4.16), and (4.17).

1 1
x-x' "' X-vx' "'

(4.20)

Evaluating I'*(x,x ) in the limits of Eqs. (2.13)—

C. Correlation function) ' &0

If X &0, e"+"i in Eq. (4.14) has a pole in the
upper half k plane, and we have

J
" dk 1;A,z 2,.@(p) 1 (@2+A)l/2 )zI 2g(p) 2 1 -z/t ). 1

x p'+t —ixf-" (4.25)

Hence, from Eq. (4.11), we have
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I'(x, x') = I' (x, x')+I'z(x, x'),
where 1,(x, x') is given by Eq. (4.11) with )(&0 and

(4.26)

(x~ ~~r) e-(z+z')/lX} ip (p -p')
p'+t —

I zI ' (4.27)

The subscript v refers to the bulk field g used in I, and Z refers to a new surface field which appears
when X &0 and which will be discussed more fully in III. The evaluation of I'z(x, x ) follows directly from
Eq. (4.17),

I"I.(d- 3)/21 1 I p - p'I
z( }

I )tI {2)))(d-z)/2
I p

t
I

d-3gd-I (4.28)

where $, =(t —I)(I ') '" is the surface correlation
length. Thus, v, = —,'. Equations (4.26} and (4.28)
imply that when A &0 and t &

I
A I

', there are two
correlation lengths diverging at different tempera-
tures: the bulk correlation length $ diverging at
t = t, = 0 and the surface correlation. If t, and t,
are approximately equal, for t= t, + ,'(t, —t, ) =—,'t, —

the fluctuations in I' and I'z may be comparable.
At t = t„F can be neglected, and we can obtain

all of the surface exponents from Fz. The expo-
nents g~, g&, q'„, and ju.

' are undefined since I'~
decays exponentially rather than algebraically
into the bulk. ))'(( follows from Eq. (4.28),

(4.29)

y] y satisfies the Binder-Hohenberg relations Eqs.
(4.23b) with the above value of ))'(, . y,' obeys the
same sealing relation as y', „as can be seen from

interesting limits of Eq. (5.1) are easily evaluated.

S,(z) - v'- t

(z +)()(- t), z, X «('1

S( )z- v' tz»$-' or )(.»$'.
(5.3)

(5.4)

Equation (5.4) says that the profile of S,(z) for i. = ~
is completely flat as shown in Fig. 1(b). This is
because at A =~, the surface exchanged is suffi-
ciently greater than the bulk exchange that. the sur-
face mean field equals the bulk mean field. The P
exponents follow directly from Eqs. (5.3) and (5.4),

(5.5)

(5.6)

Using Eq. (5.1) for S,(z) and Eq. (3.11) for S, (z),
we find

Hence,

1- 'g
)( (t t )

-zz ( y - g (()

y', = v, (1 —))'„) .

)((0) = d' 'p' dz'I'z(0, x')

(4.30)

(4.31)

S, z) = 1
cosh'u,

Qy

x cosh', S, 0 + J3 " e 'cosh'y dy

(5.7a)
This relation should also be true beyond the mean-
field approximation.

V 'A ' &~0 ]~&0

S,(0) =A(1+ 2sinh'(t), )
'

(5.7b)

tn this section, we consider spin and susceptibil-
ities for t&0 and x '&0. S,(z) follows from Eq.
(3.8)'

S,(z}= 0- t tanh(z/$'+ Q, ), (5.1)

where $' = (2/- t)' ' is the bulk correlation length,
and

sinh2$, = 2)(./$'. (5.2)

This function is plotted in Fig 1{a). ho.te that it
bends down a z =0 reflecting the reduced mean field
at the surface. Noting that Q, -)(/$ for )(/$ «1
and tanh is approximately one if z/$ or A./$» 1, the

where u„= z/$'+Q, . The integral in Eq. (5.7a) can
easily be evaluated, but for our purposes it is not
necessary. )((z, z') is calculated in Appendix B
following the procedure outlined in Sec. III and is
given by

1 1)(z, z') =
cosh'u, cosh'u, '

(5.8)
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with

and

z"i- (i+4+

V2(Qq) =8 Qi + a slnh2&i +3z slnh4Qi, (5.9} S,(z) = (2t)'tz 1/sinh(z/g + Q, ),

where

(6.1}

(6.2)

The relevant limits of x(z) and x(z, z) can be cal-
culated from Eqs. (5.7) and (5.8):

(i) x&0, (»x, z,
x/2

x(z}- (x+z} —, (5.10)

X( i )
1 lx2( t) t

(ii) x&0, z» ],
1

X(z} 2( t),

y/0 0,
1 gl (5.11)

(5.12)

x(z, z) - —.'(2/- t)"
(iii) &= ~

1
X(z) =

2( ), rl"=r'."=I

(5.13)

(5.14)

(5.15)

The solutions for A, = are exact and can be ob-
tained from the solutions in the disordered phase
with the replacement of t by —2t.

By comparing (4.7b) with (5.11), we see that for
the ordinary transition yy y

is not equal to yy

Thus although X(0, 0) approaches A. as t goes to
zero from both above and below, the rate of ap-
proach is different. dX(0, 0)/dt diverges as t-0'
and is finite as t-0 . Scaling, however, is not
violated. To see this, let

(c)

X,(0, 0) =xF, {x/$), (5.16)

where the "+"and "-"subscripts refer, respec-
tively, to t&0 and t&0. Both +, and + tend to 1
as t -0. F is even in X/$, whereas F, contains
both even and odd terms in &/$, as can be seen
from Eqs. (4.6) and (5.8). Thus around t =0, F
is an analytic function of (—t), whereas F+ is an

analytic function of v t .

VI. SURFACE TRANSION, t()X j
2

If & &0 and 0 & t & ~&(, there is an ordered phase
in which the spin is zero at z = ~. S,(z) can be ob-
tained from Eq. (3.8) with this boundary condition

FIG. 1. (a) Spin profile for A, & 0, t & 0. The transition
from the isotropic state to this state is the ordinary
transition. (b) Spin profile for A, ~ =0, t =0. The trans-
ition from the isotropic state to this state is the A, =~
transition. (c) Spin profile for A, &0, 0 &t &t, . The
transition from the isotropic state to this state is the
surface transition. (d) Spin profile for & & 0, t& 0. The
transition from profile 1(c) to this state is the extraor-
dinary transition.
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/2 t )
I / 2

S (0) s (2) /2(~X~ 2 t)1/2
sinhP,

ps

Using Eqs. (6.1) and (3.11), we have

(6.3)

and ( = (1/t)' 2 is the bulk correlation length for
t & 0. Equation (6.1) is plotted in Fig. 1(c). S,(z)
is zero at z = ~ for all t&0. Hence P'„ is unde-
fined; P; is determined by the behavior of So(0)
nea. r t= IA. L

'. S,(z, O) =W2/z+ ~X).

More generally, we expect

s,(, =0(il'*-s('
1 ),

(7.4)

(7.5)

where J is a function which ensures that S (z, t)
= (- t) "at z = ~ and that S,(z, t = 0) is finite

The spin profile at t =0 decays algebraically to
zero at A. = ~. The t =0 limit of both Eqs. (6.1) and
(7.1) is

sinh'u, cosh/,
1 as x-~J(x)-
x-""~"' as x-0. (7.6)

—B$', dy, (6.4)
osh g

(6.5)

where u, = z/$ +(t(, and

S, (0) = (1P)(ixi —t) '(B, —xB).

X(z, z') is calculated in Appendix B;

coshu, coshu,'
X(z, z' =

slllll ulslllll u2

Thus, we expect

s, (z, o) - (z + ]x()- '-'", (7.7)

even when the mean field is not valid.
A surface P exponent can be obtained from

S,(0, t) —S,(0, 0)- ~tI zl. Using Eqs. (6.1), (7.1),
and (7.4) we obtain

S,(0, t) —S,(0, 0) = —(~A.~/~2t,
x( JX~sinh4(t(, + ][V;(u, ) —V; ((t(,)J}, (6.6) pe Ie

1 1
(7.8)

where u,' = z '/f + Q„u, = z/$ + Q „and
V,'(u, ) = —2 u, + —,sinh2u, +tanhu, . (6.7)

Again, we obtain the y exponents by evaluating
the relevant limits of X(z) and X(z, z). Both X(z) and
X(z, z) are zero at z =~ for t-

~x~ '. y'„and y'„„
are therefore undefined. The surface exponents
follow from

From Eqs. (7.1) and (3.11), we have

S,(z) = . , sinh'(t(, s, (0)sznh'u,

+S(" e 'sins'Sdy), (0 0)

where u, =z/(' +Q, and

1
x

)x~
Y (6 8) S (0) =+ s ' —i ')s jnh~P

1 1
x fx] '-t ' (6.9)

VII. EXTRAORDINARY TRANSITION

These exponents agree with those derived for
t& ~X~

' in Sec. IVA; consequently, the scaling re-
lations discussed at the end of Sec. IVB are satis-
fied when the critical temperature is approached
from both above and below.

x [8, + A. (tanh(t(s —].)B]. (7.10)

x(",t=o')=1/t, r' =1;

X(, t = o ) = 1/-2t, l"=1 (7.11)

If z is fixed, x(z) approaches the same limit as t
tends to zero from above and below,

From Eqs. (6.4) and (7.9), we find X(~) as t approa-
ches zero from above and below,

If A. &0 and t &0, So(z) is enhanced near the sur-
face but has a finite value at z = ,

Px]4x(, 0&=
0 (I I

(' —
(Isl ), ) . (7.12)

S,(z) = v'- t coth(z/(' + (t,),

where g' =(2/—t)' ' and

sinh2(t(, = 2 (X(/('.

(7.1)

(7.2)
(7.13)

Note that X(z, o) is finite for a.ll z &~. Applying a
scaling argument similar to the one used for S,(z)
[ Eq. (7.7)], we expect that, in general,

X(z) -z&'-/"'

s, ( ) =v-t, p'„=-,'. (7.3)

As required by the z = ~ boundary condition, we
have as z - ~. y', will be negative or zero since X(z) is

finite atz =0. From Eqs. (6.8), (7.10), and (7.12)
we have
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X(z t =0+) = —lxl —tlxl(, y', =0

X(., t =o-) = —Ixl'+ (- t/2)'"Ixl'

(7.14)

Both Eqs. (6.6) and (7.15) give

(- lxl'
5 (z+fxf)2(z + Pf)2

The response X of the total spin of a sample to a
uniform magnetic field is often experimentally
more accessible than either x(z) or x(z, 0). If x
is measured in a sample with ~ &0, two divergen-
ces should appear as the temperature is lowered.
The first will appear at t, with X

—(t —t,) '4A$,
where A is the surface area of the sample and t' is
the bulk correlation length which is finite at t, .
The second divergence appears at t =0, with Xe-t & "V, where V is the volume of the sample

X(z, z') for A. &0, t &0 is calculated using the re-
sults of Appendix B.

4 fxJ
'

(»» I»I&'(»'+ I»I)')
'

In general, we should have

x(z, z; t =O) -zy'-. -'"
as ~ - . The surface exponents follow from

x(o, o, t=o')=
1 t~x~, , y', , =o

x(o, o, t=o )=
~

~, , y, , -0.

(7.19)

(7.20)

where u,' = z'/$'+Q„u, = 2/$'+((t(„and

V2(») =I» ——,
' sinh2» ++, sinh4». (7.16)

1 1
X z, z') =

sinh'u, sinh'u, '

' »((('(», ) -('((,)I),
(7.15)

1(x 0)- ... , q~=3, ((j,, =3(cos 6)'
(7.21)

Finally, we have derived an analytic expression
for I'(z, z';p) for X &0 and t =0. From this we have
obtained the interesting asymptotic limits of
I'(x, x'). These calculations, which are quite com-
plicated, are discussed in Appendix C.

The asymptotic limits of I'(x, x') when compared
with Eqs. (2.13)-(2.17) yield

The infinite z limit of x(z, z) follows from Eqs.
(7.15) and (6.6),

x(","; t =0') --'(1/t)'"
r(5, 0)

~

„„z,-61
(7.22)

x(-, "; t=o )--'(2/-t)", y", = (7.17)
(7.23)

d & 4, q z
= min(0, 4 —d)

1

I'(x, x') —I'„(x,x')- (7.24)

At d=4, (7&=0 but the leading term Eq. (7.24) has
a logarithmic term, as shown in Eq. (C18).

The surface exponent y,
" satisfies the scaling

relation Eq. (4.23a), but P, and y» =y,",do not
satisfy the scaling relations.

VIII. SUMMARY

We may summarize our results by starting with the

phase diagram shown in Fig. 2 where we have plotted
the surface coupling enhancement 6, against the re-
duced temperature t. We recall that the extrapo-
lation length E is related to 6, by A.

' = 1 —A, /&„
where L,=2(d —1) is the critical surface enhance-
ment.

In Fig. 2 there are three lines which define the
boundaries of the four phase transition discussed
in this paper: (i) the line t=1/X', A. &0, which
meets the axis at t = 0 with an infinite slope at 4,
= b„ is the surface transition line; (ii) the line
t=0 for 4, &b, corresponds to the extraordinary
transition for which the bulk orders after the sur-
face; (iii) the line t=0 for 4, &b, corresponds to
the ordinary transition which is the transition
found in the infinite system. The surface effects
in this case simply change the shape of the mag-
netization near the surface.

When &, =~, the three lines meet and A. =~. This
point corresponds to t:he transition we have labeled
the A, =~ transition. In this case the coupling in the
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TABLE I. Critical exponents for the transitions dis-
cussed in the text.

~ ~ ~ a

1b

' Three dots means the exponent is undefined.

P& is defined for t =0+ and t =0 and has the same
value in both cases.

FIG. 2. Phase diagram as a function of A, and t. The
region t & max(0, t,) is the disordered phase. Region I
has the spin profile shown in Fig. 1(a), region II (the
line Q = 4,} that of Fig. 1(b}, region III that of Fig. 1(c},
and region IV that of Fig. 1(d). The ordinary transition
corresponds to crossing the line t =0 for A~ &, the
A, =~ transition to passing through t =0 at the point
P (6, = Q, t =0), the surface transition to crossing the
line t = t, for D, &D, , and the extraordinary transition
to crossing the line t=0 for A, &6, . The dotted line
represents the transition temperature of a (ci —1)-dimen-
sional system with exchange J, = J(1+4~). The curve
t~=0 approaches this line for large A, .

surface layer is sufficiently enhanced so that the
magnetization profile is flat. The nature of this
transition will be discussed in more detail in Ref.
2.

The values of the mean-field critical exponents
are given in Tables I and II. The scaling rela-
tions given in Eqs. (4.23a), (4.23b), and (4.31) are
satisfied for ordinary, A, =~, and surface transi-
tions with one exception; y,",does not satisfy Eq.
(4.23b). The scaling relations are not satisfied for
the extraordinary transition with one exception;
y", satisfies Eq. (4.23a). The cases in which the
scaling relations fail al1 correspond to exponents
which are not positive; consequently, scaling may
still hold,

We should note that in Ref. 2 we show that at the
surface transition a new order parameter appears
whose correlation function is denoted by I'r [see
Eq. (4.28)]. It is shown in Ref. 2 that the surface
and bulk order parameters decouple and that the
surface behaves like a (d —1)-dimensional bulk
system. This is already evident in Eq. (4.28),
where I'r is just a function of z and ~A~times a

TABLE II. y exponents for the transition discussed in
the text.

+a —a

1
2

. . . b

0 a
2

0 0

The plus and minus denote, respectively, the limit as
the transition temperature is approached from above and
below.

" Three dots means the exponent is undefined.

(d —1)-dimensional bulk correlation function. The
critical exponents for the surface transition thus
may be calculated from those of a (d —1)-dimen-
sional bulk system.

It is clear from Tables I and II that the exponents
for all the transitions far from the surface, i.e.,
when z»$, are the same as the bulk exponents.
This result is not unexpected, and we conjecture
that it is true even when mean-field theory no
longer applies.

In Ref. 1, the exponent g was defined for the or-
dinary transition. It was possible to write g,I, g~,
and p.'to order ~=4-4 in terms of g. In this paper
we have defined p~ which turns out to equal 2q for
the ordinary transition. A similar result will be
shown to hold for the X =~ transition in Ref. 2.

Next, note that for the three transitions forwhich
the exponents p. and g are defined we have the re-
lation jLL+g~ =g~j. This relation remains true to or-
der ~ for both the ordinary' and ~ —transitions. '
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The origin of this result may be found in Eqs.
(2.13}and (2.14}, where we consider the case ~x~,

z»1, x'=0. If we subsequently fix z and let ~p~

become much larger than z, , we obtain a form like
that given in Eq. (2.15) with q(( = p, +q~. This does
not constitute a proof of this relation but is sug-
gestive of the fact that the form in Eq. (2.13) and

(2.14) for I'(x, 0) is a correct limiting form for all
80 ))'. In fact, if cos9 is defined by (z+ ~)).()/(x(
=cos8, rather than by z/g~=cos&, then Eqs. (2.13)
and (2.14) include Eq. (2.15) when z =0, provided

g[i = p, +g~.
Finally, we note that the exponents for the ordi-

nary and infinite transitions are expected to be
exact for d &4, while the exponents for the surface
transition are expected to be exact for d&5. These
results are implied by the renormalization group
calculations of Refs. 1 and 2 and may also be ob-
tained from a straightforward application of the
Ginzburg criterion. To obtain the limit of validity
of mean-field theory for the extraordinary transi-
tion is more difficult. If it is assumed that the
surface and bulk order parameters remain decou-

pled down to four dimensions; then applying the
Ginzburg criterion far from the surface would lead
one to conclude that the exponents which are de-
rived for z»( are correct for d&4. However, be-
low five dimensions a Ginzburg-like argument is
more difficult to make because the surface is no
longer described by mean-field theory. %e have
not investigated this case in detail.
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APPENDIX A

In this appendix we evaluate H~ (x, X, t) defmed
in Eq. (4.13). The P integration may be done by
first performing the angular integration and then

using Eq. (6.566.2) of Ref. 12,
" du . 1+ikey

where K is a Bessel function of imaginary argument.
Since we are always interested in p» 1, and since K decays exponentially, only small values of k are

important in the integrand. Thus if A. '& 0, we may set

= a*"[I+o(uw')];1-g8
then Eq. (Al} becomes

1 ("-')/' " duH (x )). t)= 1+O X'
88 2' „(2m)'

e&4(~+2)t) ()tm+f)(& 3)/4Z -[($2+ f)) /2p](4-3)/2

The integral is given by Eq. (6.726.4) of Ref. 12 and yields Eqs. (4.16) and (4.1"I) for ~x —vx'~
= [p'+ (z +z ')']'/' »A. .

We next evaluate the 1/)). correction to the )). =~ limit of H~:

" du
C =H(x, t, t) It (x, ,t)=:-,e"' . (tt*et)" 'tt'Xt, ,tt, (ttt tp))t2' (A2)

where H~(x, ~, f) is given by Eqs. (4.16)-(4.18}.
To evaluate the I/)). term in Eq. (A2), we use the identity

1
d~ ~-s(x-ia&)

1-z8

and perform the k integration using Eq. (6.726.4) in Ref. 12. After a change of variables, s)), +z =u, we
get

(4 2)/21
C= — — du e '/~~" ')u) ~~ ')/ K (u))

21T A, g
(4-2)/2 (A3)
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where u) = (t)'/'(p'+u')'/'. Since we are only interested in the I/X term in C, we may set the exponential
term in the integral equal to }. Next me estimate the integral by writing

u) K(4 )/ (u)) = ——
d
—u) K(4 )/ (w),

} d

and integrating Eq. (A3) by parts,
(&-~)/2 } [(t)l/2 (p2 +z 2)1/2]-(r(-4)/2K [(t)1/2 (p 2 + z2)1 /2]

2n zA, (4-4)/2

rrrr —,rrr-"-""Xr, ,rr, (rrr)I,
g Q

(A4)

Repeated integration by parts generates an asymptotic alternating series. Thus the first term of the series
is an upper bound on the series. Rewriting the first term in Eq. (A4) as

ix) J@ 2 g, , (~t x/)
z d —4g, (vV~x )

(A5)

where G, is defined in Eq. (4.17) and g, in Eq. (4.18), we obtain the correction quoted in Eq. (4.16).
If z =0 this result is no longer useful. We may evaluate Eq. (A3) to leading in I/A when z =0 by using

Eq. (6.596.3) of Ref. 12. We find

} (~-3)y.
C = — p'/(4 2)-()/t p)(4 ')/'K (pWt)

which again is of the form given in Eq. (4.16}.
Finally, we note that there is no singularity in

Eq. (A5) at d=4. The term 1/(d —4) is cancelled
by the I' functions in the g's.

(87)
Q

W2(z, 0) =g(u) du'g '(u').

u=z/)~P. Using these results in Eqs. (3.21) and

(3.22), we find

APPENDIX 8
and

C2=) (88)

In this appendix we will obtain the solutions for
)((z, z') quoted in the text in Secs. V-VII of the text.
We begin with Eq. (3.16).

C, = —([V,(y)+ h(y)],

where

(89)

W(z, p) —[P + t+3S (z)] W(z, p) =0. (81)

W(z, p) =g(u) V(u, p),
where g is a solution to

(82)

g" —(2[t + 3SO(u )]g = 0,
which tends to exp] —$[t+3S20(~)]'/2u) as u ~, we
have

S,(z) is a function of u; = z/$+ Q; for i =0, s, and e.
Therefore, suppressing the index i referring to
the transition and writing

I1(4) =[g(e)g'(4) —(I/~)g'(4)] ' (810)

(i) g, (u) =cosh 'u, A&0, t&0 (812)

Finally, from Eqs. (3.17), (3.18), and the above
Eqs. , we have for z & z',

)((z, z') =g(u)g(u')

x $[V2(u') —V2(Q) -h(Q)]. (811)

This is the general equation for X(z, z') for all the
ordered states.

The g's are easily determined for the three
forms of S2(z).

V" +2(g'/g) V' —CP'V = o.
When P =0, Eq. (84) is easily solved.

V" +2(g'/g) V' =0.

(84)

(85)

(ii) g, (u) =, , )1&0, 0&t &()1( 'cosh'
sinh'u'

(iii) g, (u) =sinh'u, )1&0, t &0.

(813)

(814)

(86}

and

One solution is V, =1. A second solution is V, (u)
= j"g '(u') du'. Thus we have

W, (z, 0) =g(u),

Equation (812)-(814) when inserted into Eq. (811)
with the appropriate V, and h as calculated from
Eqs. (87) and (810), give Eqs. (5.8), (6.6), and
(7.19) in the text.
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w "(~,p) - (P'+6/y') w(~, p) =0, (cl)
where y =a+()(. ~

and Eq. (7.4) has been used for
S,(z, 0). This is a form of Bessel's equation [Ref.
12, Eq. (8.491.8}] with independent solutions

K(~, p) = (2py/(() "&,/. (Py),

W, (&, p) =(&py/2)'/'I, /, (py).

(C2)

(C3)

W, satisfies the boundary condition following Eq.
(3.16). Using Eq. (3.21}, we calculate

APPENDIX C

In this appendix we present the calculation of
I'(z, z';p) defined in Eqs. (3.15)-(3.22) and I'(x, x')
for A. &0 and t=0.

At ( =0 Eq. (3.16) becomes

m UI, /, (U}—I,/, (U)
2p vz„,(v) -Ic„,(v) '

where U =P~ A. (. In the long-wavelength limit U «1,

(C5)

c, =,—', (1/p) v'[I + o(v'}] . (G6)

Finally, I'(z, z';p) is given by Eqs. (3.17), (3.18),
and (C2)-(C5).

We now turn to the calculation of I'(x, x') de-
fined by

.(*)-f,-.-(. ; .(,. -'
P

where x = (z, p) and x' = (z', 0 ). Since I'(z, z'; p) is
a function of ~p ~

only, the (d —1)-dimensional angu-
lar integral is easily evaluated. It will be con-
venient to break 1 (x, x') into two pieces.

C2=1 P,
and from Eq. (3.22),

(c4) I'(x, x') = I'„(x,x')+ I'„(x, x'),

where

(C7)

$$( 1 (2 %(((+J)/p ((( 3)/Q 45 (yy ) I & I dpP' ' [K,/, (Py) K,/, (py '}~«3}/Q (pp)]
277) p

(c8)

,.(, '}=
(2

.(~ n/~ (~ 3)/. (yy')"'j/ PP'" "y'(&5/~(py) 5/~(py') (~ s)/a(PP)1,2p) p
(C9)

y =@+[)() and y' =g'+[)(). We have written Eq. (C9) under the condition z & z'; since I'(x, x') is symmetric

in x and x', there is no loss of generality. Finally, in Eq. (C8) we have used the long-wavelength limit of

C, given in Eq. (C6).
The integral in Eq. (C9) is given by Fq. (6.578.11) of Ref. 12 in terms of a Legendre function of the sec-

ond kind. We find

1 1 ((„~)/~) f(( (~ g}/g1
F12( &

x }
(2 i((/2 / tw(((-2)/2 IV2 1)(4-2)/4 @2

71')

(C10)

where U =(1/2yy')(y'+y" +p'). For d x4, Eq. (C10) may be rewritten using Eq. [3.32(15)] of Ref. 13 as

I'(~ d —1)I'„(x,x') =
lx-x'I ' yy' ix —vx'+2))(. ie i

' yy'

where
3 3

d —4 (d —4)(d —6)
(C12)

The evaluation of I'» is more complicated and tedious. We start with Eq. (6.623.2) of Ref. (12).

OO

I(p, u)= dpp' ' &(g,)/, (Pp)e -2' ' I'(ad) ~ p' '
(

~ g)u/a
0

(C13)

The integral in Eq. (C8} is rewritten by using Eq. (8.468) of Ref. (12) to express

m 1 '~' 9 9 8 3 8' 3 9 3 &' 8
P'&./. (Py)& /, (Py'} =

2 H' O'X gS ~ X3'2 I2 2 I2 p 2 I2 8 2 ~~I 82 ~ p p~3 8 4
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where w is set equal to y+y after the differentiation is carried out. Eq. (C8) may now be evaluated by
first interchanging the order of the differentiation with respect to gg and the integration with respect to P
and then using Eq. (C13). After some algebraic manipulation, we find

I'(-,' d+4) 16I)(. ID w
11( 5 ) d/2 45 1 2 2)(d+4)/2jr t'P +

3M)' & Ro' w I) 'wx, „—,+6(d+4) . . . +15 —16(d+4), , ~ (d+4)(d+6). ..)XS yy p+w p +zv p +w
(C14)

where w=y+y'=z+z'+2I)). l, and p'+w' =lx —vx'+2IA. le~i'.
Equations (Cll), (C12), and (C14) complete the evaluation of I'(x, x') for d o4. For d=4, I'» may be

evaluated from Eq. (C14) by simply setting d=4. However, to evaluate I'», we must carefully take the
limit d-4 of Eqs. (Cll) and (C12), or we may use Eq. (C10) and evaluate Q', (u) directly. Either way, we
find

1 3 1 1 3 y'+y" +p' Ix —vx'+2I)) le I'

4~' yy'
I
x —x'I' lx —»'+ 21 )( I e, I 4 y'y" (C15)

and

(y+y ) 15 80 (y+y

(y+y')' 3(y+y')'
5 8

(y+y')', 3(y+y')'
lx —ux'+2I&le, l' yy' lx- »'+2I)) le, l' y'y"

We are now in a position to compute the various asymptotic limits of interest.
(i) z, z'-~, Ix-x'I fixed: This limit is easily evaluated; we find for d 654

I'(2 d —1) 1 1 1 12
4x d Ix —x'I ' (x+x')' (% —%'(' * d —4 ) '

r(-,' d -1) 1 1 d(d+ 2)
dx'~' (% —x'I'-' (x+x')'-' (d —4)(d —6) ) '

(C16)

(C17)

and I'„(x,x')-0(1/(z+z')'+'). The first term in Eq.
(C17) is I'„(x,x'), which equals the bulk correla-
tion function. The second term leads to the re-
sults quoted in Eq. (7.24). When d=4,

ing term of I"»(x, 0) equals I'»(x, 0) and

I'(x, 0)-
4 „/, I

1 „„,(C19)
1 8+4 32 l)). ID(cosg)'

I »(x, x ) —I (x, x ) —
4 %,

)%4p (z+z

(z+ z')'
-x'I% ' (C18)

which holds for all d. This result leads to the ex-
ponents given in Eq. (7.21).

(iii) lp l-~, z =z'=0: In this limit we find that
the leading terms in I'» and I"» satisfy I'» =8I"»,
and

(ii) Ix I ~, x' =0 and z/Ix I
= cose fixed and non-

zero: The calculation of this limit is tedious and
we quote the result only. We find that the lead-

I'(-' d + 4) 48 I )). I'
P) 4 d/2 5 I

l(5+4

which is the result quoted in Eq. ('7.22).

(C20)
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