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Recently an experiment has been performed for the first time to measure the contribution to the
hyperfine field in metallic iron from each electron shell separately. It view of this measurement, it has
become important to study the interrelationship between various theories for studying exchange core
polarization contributions to the hyperfine field with the aim of deciding on the appropriate theoretical
values that have to be compared with experimental data. Such a comparison is carried out here
between the Hartree-Fock perturbation theory, self-consistent-field perturbation theory, linked-cluster
many-body perturbation theory (LCMBPT), and the unrestricted Hartree-Fock (UHF) theory. It is
concluded that, in principle, the predictions of the self-consistent-field perturbation theory and UHF
theory for shell-by-shell contributions should be comparable, although the total hyperfine fields from all
the shells should be the same for all four theories. The quantitative accuracies of the various
procedures are studied by considering the resulis for Fe*? ion, ion atom, and manganese atom. It is
concluded that while the accuracies of results from the Hartree-Fock and self-consistent-field
perturbation theory and LCMBPT are comparable, there are some numerical problems in obtaining
comparable accuracy with the UHF procedure. Shell-by-shell core contributions and conduction-band
contributions to the hyperfine field are compared with the results from internal-conversion experiments.
A possible reason for differences between theory and experiment is discussed.

I. INTRODUCTION

Although the total hyperfine field at nuclear
positions has been measured by a variety of tech-
niques, the contributions from the individual elec-
tron shells have only recently become accessible
to direct observation.! Predictions have been
made of the individual shell contributions,? but in
the case of a recent measurement for metallic
iron,' there appears to be a large discrepancy
between the theory and the measurements, and
this seems to indicate far-reaching changes are
needed in our theoretical understanding of hyper-
fine fields. It is our purpose in this paper to
carefully scrutinize the approximations used in
the present theories, in search of a possible
origin of the discrepancy.

The quantity provided by the experiment is

Bas = [0} (0)2/194,(0) [2-1. 6))

On the other hand, the quantity most frequently
tabulated? in theoretical works is

Xns = (47/28)(9},(0) 2= [9},(0) [2) (2a)
= (47/25) [9,5(0)[2 8,5, . (2b)

In these equations ¢! (F), ¢}.(¥) are the nth orbi-

tals for majority (4#) and minority (¥) spin s states.

The spatial parts of these functions are not spin
independent, and we denote the average of the two
states by ¥,,(T).
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The factor which converts x to the hyperfine
field is 4.17X10%] Oe. In Table I we have listed
the experimental values for 6, (#=2,3) and the
consequent x,, and H, ; these values are taken
from Ref. 1. 8, is too small to be measured,
and there is theoretical agreement that it may be
neglected. We have also listed in Table I values
of x,s determined (as described below) from our
band wave functions for ferromagnetic iron;
these values are typical of those predicted by
current theories.

There is no substantial difference between various
authors for the factor [¢,,(0)[? in (2); so consid-
erations of x and 6 are equivalent, and we choose
to discuss x. We note that the experimental ,,
agree in sign with the theoretical ones but are a
factor of 2—-3 larger. Thus the core contribution
to the hyperfine field deduced from the results of
Ref. 1 is much larger than current theory predicts.
The total field from core and conduction states is
known® from many other experiments to be —339
kOe, sothatthe new experiments need, for consis-
tency with other work, a large compensating con-
tribution (~300-1500 kOe)from the conduction elec-
trons; such fields are at least an order of magni-
tude larger than current band theory predicts.
Theory is therefore presented with the double
problem of explaining both the large core contrib-
utions, and, by implication, the large band con-
tribution. We intend here to concentrate on the
core contribution.
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TABLE 1. Experimental and theoretical contributions
to the hyperfine field in metallic iron. 6, and X,s are
defined in the text in Eq. (1) and (2), respectively.

Experiment Theory
1026, -0.63+0.15 —0.24
Xas (-17.8+4.2)ag? -6.77ay?
Hos —1640+ 400 kOe -623 kOe
102 (633 o4 llofggg;r) 1.43+0.68

3s

1028, 1.16+0.6 1.43+0.68 0.57
X3s (4.5+2.3)a5% (5.5:2.6)ay° 2.22a3°
Hgs 400+200 kOe 510+ 240 kOe 243 kOe
Hye ~100 kOe 0 kOe 33 kOe
Hotal - (1140 £ 640) kOe -347 kOe

II. DESCRIPTION OF THEORETICAL METHODS

Several methods have been used to compute X, .
While these theories are usually in fair agreement
with one another for }, X,s, there are some
apparent differences in the individual x,, terms,
even to differences in sign. To resolve these
differences and to delineate the limitations of
each method, we will now briefly describe each
method.

A. UHF method

In the (spin) unrestricted Hartree-Fock (UHF)
method,? the wave functions for the electron orbi-
tals are obtained as self-consistent orthonormal
eigenfunctions of the Hartree-Fock equations,
without requiring the radial part of the wave func-
tion to be spin independent. The values of x,, are
computed directly from Eq. (2a); the reason for
nonzero values appearing is that majority and
minority spin s electrons have different exchange
interactions with the d electrons. It frequently
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occurs that x,s calculated in this manner is de-
rived from small differences between large
almost-equal numbers.

Ideally, the UHF method should employ a nu-
merical solution of the Hartree-Fock equations.
However, in the interests of computational econ-
omy, an analytic-basis set expansion is frequently
used, with coefficients determined variationally.
The X,s values compted in this manner have been
found?® to be sensitive to the size and quality of
the basis set used.

B. Hartree-Fock perturbation theory

The starting point of Hartree-Fock perturbation
theory (HFPT) is the set of orthonormal eigen-
functions obtained by solving the Hartree-Fock
equations subject to the requirement that the
radial parts of the orbitals be spin independent;
such functions are called restricted Hartree-Fock
functions. The difference between the exchange
interactions experienced by spin-up and spin-down
electrons is then employed as a perturbation to
find corrections 0y to the one-electron orbitals.

X is then calculated as

Xns = (4”/28) 2(pn.s(0) 6‘Pns(o)- (3)

It should be noted that in the perturbation
method, the difference 6y between spin-up and
spin-down orbitals is obtained directly, so that
problems in taking the difference of large, almost
equal, numbers, are avoided. It is also clear that
it does not matter whether the unperturbed ¢,,(T)
is obtained numerically or variationally. We
have obtained the dy,; by numerical solution of
the differential equations corresponding to the ap-
propriate perturbation equations, derived earlier
in the literature,* dealing with nonorthogonal
Hartree-Fock perturbation theory, namely,

(B —€;)0p, +h'y; = Z ((‘P}l 0 ) (€5 = €00, +C@ 11 |99 = 0]+ [0, 60, );

i

+<¢115‘Pi><4’il'l¢j>¢i - Z (¢ 189 )(0p ¢4l 19; Vi)V ) , (4)
= .

where %; and €; refer to the restricted Hartree-
Fock one-electron Hamiltonian and energy cor-
responding to the zth state.* The ¢;, ¢;, and ¢,
refer to the unperturbed core wave functions of

up spin in the restricted Hartree-Fock approxi-
mation, the state 7 referring to core ns states of
up spin. The states j and & also refer to up-spin
states and include the core #np states as well as #zs.
k' refers to the perturbation Hamiltonian corre-
sponding to the extra exchange interactions ex-

r

perienced by the up-spin electrons, as compared
to the down-spin electrons, due to the effect of the
surplus of valence electrons with up spin. Thus

R (D), (1) =Y (9,2)]€2/7,510,(2)) 1,(1), (5)

where the states v refer to the unpaired spin-
valence states involving the 3d states in the atom
or the band states in the metal. The matrix ele-
ments are noted in abbreviation, namely,
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10,) (1) =0, @€ /7 5105 (2))

X ga(1) = (4121 /ralua(2))5(1),
03+ 80,0 =(0, (V0@ e r w09, 1)y ©)
(U (D0(@) 12 g 08,2)0,(1)) .

W

It is, of course, desirable to find functions 6¢,,
which, when added to the zero-order functions ¢,,
produce normalized mutually-orthogonal orbitals.
There are infinitely many such sets of functions.
One particularly convenient set is found by requiring

(694lw;y =0 (7)

for all occupied zero-order orbitals ¢;. This set
of 8¢; we will call HFPT solutions. The perturbed
orbitals are

¥i=¢; +0y; (8)
and satisfy the Hartree-Fock equations
Hy; = Z Aiidis (9)
i

where A;; is given by*
Ay =iy (65— €) +(osl lyy)
+ 3 (ol lad) (vl lvhen). (10)
k

Another useful set of functions can be found by
performing a unitary transformation on the set
¥} to diagonalize the A matrix of Eq. (6). To first
order this transformation merely adds to each
0y; some linear combination of the occupied
zero-order orbitals; it has been shown in Ref. 4
that the new 0y; are still solutions of the pertur-
bation equations. We will call this set of d¢; self-

consistent-field perturbation-theory (SCFPT) so-
lutions.

Since the solutions of the HFPT equations are
not unique, it is important to clarify their physi-
cal meaning and realm of usefulness. In obtaining
the HFPT solutions, the orthogonalization pro-
cedure [Eq. (7)] is essentially imposing the Pauli
principle by requiring that the excitation involve
only the higher-energy virtual orbitals. Excita-
tion of, for example, a 3s electron to the 2s
level is thereby forbidden, but so is an excitation
of a 2s electron to the 3s level. In transforming
the HFPT solutions to the SCFPT solutions, we
are allowing compensating transitions in each
direction. Therefore, the total hyperfine field
calculated from the HFPT solutions will be the
same as that calculated from the SCFPT solutions;
a unitary transformation cannot alter* the expec-
tation value of any operator calculated from the
determinantal wave function.

Since the SCFPT solutions represent eigen-
functions, they should correspond to the UHF so-
lutions. Because the HFPT and SCFPT solutions
differ in shell-by-shell contributions to the hyper-
fine field, but agree in the total, HFPT and UHF
predictions will also differ in the shell-by-shell
contributions, but (except for computational
limitations as mentioned above) agree in the total,
as has occurred in published results. As exam-
ples, we list in the fourth and fifth columns of
Tables II and III the X,s values deduced from
HFPT solutions, the corresponding SCFPT solu-
tions, and UHF results for Fe™® (Ref. 2) and the
Fe atom (Ref. 5). The HFPT solutions were ob-
tained by solving Eq. (4) numerically to obtain
89,5 and to these adding multiples of y,,, ¢,,, and

TABLE II. Contributions to x in Fe*? due to both direct-exchange effects @ —s) and indir-
ect-polarization (d—np — s) effects, as calculated by the several methods ? described in Sec.

II.
d—=s d—2p —~s d—3p—s Total UHF
LCMBPT 0.01 0.06 -0.03 0.04
1s HFPT 0.03 0.17 —-0.09 0.10
SCFPT —-0.29 0.31 -0.16 -0.14 -0.25
LCMBPT —4.29 ~0.16 0.08 —-4.37
2s HFPT -4.31 -0.23 0.03 -4.50
SCFPT —8.39 -0.45 —-0.03 —-8.88 -8.51
LCMBPT 0.33 -0.13 0.32 0.52
3s HFPT 0.35 -0.02 0.47 0.79
SCFPT 4.75 0.06 0.60 5.41 5.77
Total LCMBPT —-3.95 -0.23 0.37 -3.81
HFPT or SCFPT —-3.94 -0.08 0.41 -3.61 -3.00

2The abbreviations LCMBPT, HFPT, and SCFPT stand for linked-cluster many-body per-
turbation theory, Hartree-Fock perturbation theory, and self-consistent-field perturbation

theory, respectively.
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Yss through the Schmidt orthogonalization proce-
dure to satisfy the orthogonality conditions in Eq.
(7). These orthogonalized 6¢,, were then used to
obtain yis, ¥,, and ¢; defined by Eq. (8), which
were then used in Eq. (10) to get the matrix A;;.
This latter matrix was diagonalized, and from the
transformed basis, the SCFPT solutions 0¢ were
derived, as explained earlier.

We see the SCFPT results are in reasonable
(but not exact) agreement, shell by shell, with
the UHF results. It may be noted in passing that
the major shifts in contributions between HFPT
and SCFPT occur in the 2s and 3s shells, 1s and
4s being almost unaffected. The reason for this
is twofold: both 2s and 3s electrons have a large
density at the nuclear site, and the energy de-
nominators for a 2s-3s interaction are reason-
ably small.

The question arises as to which set of functions
is most appropriate for interpreting the experi-
ment reported in Ref. 1. It is important to note
that this experiment is not measuring a static
property or expectation value, but instead, a
transition ratio or the square of an off-diagonal
matrix element. In the sudden approximation,
the matrix element is calculated between states
in which one electron’s wave function changes
from that of an atomic orbital to a plane wave,
and all other orbitals are unaltered. Thus we
need the one-electron eigenfunctions, that is,
the SCFPT or UHF functions.

We should not minimize the significance of the

HFPT functions. Their usefulness is derived
from the fact that they very simply and directly
provide us with the importance of any given inter-
action. That is, they may be given a fairly simple
diagrammatic representation (in the Feynman
sense), whereas the SCFPT or UHF functions rep-
resent the sum of several diagrams among which
there is considerable mutual cancellation. Thus,
the HFPT functions provide a convenient link
between one-electron theory and the more com-
plex but more complete many-body theory.

C. LCMBPT method

The linked-cluster many-body perturbation-
theory method®~® (LCMBPT) uses the restricted
Hartree-Fock Hamiltonian to generate a complete
set of states and then uses the difference between
that Hamiltonian and the exact Hamiltonian as a
perturbation. The formalism is most convenient-
ly expressed in a diagrammatic expansion, and
this facilitates the identification of the importance
of specific interactions. The procedure has been
applied to a wide variety of problems in atoms,
ions, and small molecules, with excellent agree-
ment between predicted and measured quantities.
Because of the extensive success of this method
and because in principle the method can give a
complete theory, we adopt it as the standard by
which the UHF and perturbation theories are
judged.

The diagrams corresponding to the HFPT method

TABLE III. Contributions to x for the 3d84s? configuration of atomic iron due to both direct-
exchange (@— s) and indirect-polarization @ —np — s) effects, as calculated by the several

methods ? described in Sec. II.

d—s d—2p—s d—3p—+s Total UHF
LCMBPT 0.02
1s HFPT 0.02 0.14 -0.04 0.12
SCFPT ~0.25 0.27 -0.09 -0.06 ~0.15
LCMBPT —3.47
2s HFPT ~3.60 -0.19 0.02 -3.78
SCFPT —7.27 ~0.39 -0.02 ~7.69 ~7.99
LCMBPT ~0.69
3s HFPT ~0.64 -0.02 0.24 —0.42
SCFPT 3.33 0.05 0.42 3.80 4.48
LCMBPT 2.64
4s HFPT 2.64 ~0.00 ~0.03 2.61
SCFPT 2.61 0.00 ~0.13 2.49 2.89
Total LCMBPT ~1.49 ~0.08 0.11 ~1.46
ota HFPT or SCFPT ~1.58 -0.07 0.18 —-1.47 -0.77

2The abbreviations LCMBPT, HFPT, and SCFPT stand for linked-cluster many-body per-
turbation theory, Hartree-Fock perturbation theory, and self-consistent-field perturbation

theory, respectively.
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TABLE IV. Direct and indirect core contributions to x and the hyperfine field H calculated
for ferromagnetic iron using the HFPT functions and SCFPT functions described in Sec. II B.

Direct Indirect Total HFPT Total SCFPT
X H (kOe) ox 6H (kOe) X H (kOe) X H (kOe)
1s 0.02 2 0.11 10 0.13 12 -0.01 -1
2s -3.23 —-296 -0.16 -15 -3.39 -310 -6.78 —622
3s -1.49 -137 0.60 55 -0.89 —-82 2.65 243
Total —4.70 —-431 0.55 50 -4.15 -380 -4.15 -380
Core

are easily identified. Calculations for Fe™® (Ref.
7) and the Fe atom (Ref. 8) have been published,
and we list the appropriate terms in Tables II and
III. There is very good agreement, shell by shell,
between the HFPT results and the corresponding
terms in the LCMBPT expansion, even though the
mathematical techniques involved in the two
methods are quite dissimilar. We therefore will
adopt the HFPT (or SCFPT) results as a “second-
ary standard.” That this is a better choice than
the UHF results is illustrated by the case of the
Fe atom (Table III). Here the one-electron con-
tributions to x from both LCMBPT and HFPT or
SCFPT are -1.47, while the UHF result is =0.77
(Ref. 5). (A factor of 2 could be very important for the
problem discussed in Sec. I.) We have made a
similar comparison for the Mn atom, and we find
that here also, the LCMBPT one-electron contri-
butions (Ref. 9) are twice the UHF results (Ref. 2)
but in agreement with the HFPT or SCFPT pre-
dictions.

III. x FOR METALLIC IRON

Ideally, we would like to be able to use the
LCMBPT procedure to calculate x for metallic
iron, but this is a formidable problem with the
computational facilities available. However, the
LCMBPT calculations which have been made for
the iron atom and for Fe*? can guide us in choos-
ing the interactions which are probably the most
important for the core electrons in the metal; some
of these can be calculated by the HFPT procedure.

A. Polarization by the conduction electrons

The most important contribution to x comes
from the exchange interaction between the con-
duction electrons and the core s electrons. We
have previously calculated’ }, x,, due to this
mechanism using wave functions from a band-
structure calculation as the perturbing states. We
have now repeated that calculation for x,;. The

results (using HFPT functions) are given in Table
IV. The contribution listed for the 1s state is
small and is taken from a free-atom calculation.
The 3s contribution is determined by the differ-
ence of the total }, x,, calculated earlier'® and the
sum of the calculated x,; and x,, from the present
work.

B. Indirect polarization through p electrons

In Fig. 1, we show the diagram which has proved
to be the next most important contributor to the
hyperfine field in Fe*® and the Fe atom. This can
be given the following physical interpretation: the
d (conduction electrons) exchange-polarize the p
electrons, and the resulting p-spin density is then
able to exchange-polarize the s states. We have
not been able to calculate these contributions using
the band states; so instead, we have made the cor-
responding calculation for the free-atom configura-
tion 3d74s/24s'/2 which should approximate the
configuration of the metal quite well."* The results
are listed in Table V. The important terms are
(d=3p—~3s), (d-2p —~2s), and (d=2p ~15s). Cu-
riously, the indirect polarization of the 1s state
is more important than the direct polarization.

We have used these results to estimate the in-
direct-polarization terms for the metal, and the
changes to be made on going from the HFPT func-

FIG. 1. Diagrammatic representation of the indirect-
polarization process in which the 3d electrons exchange
polarize the p states and these subsequently exchange
polarize the core s states which then interact with the
contact interaction (wavy line ending with a C).
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TABLE V. Contributions to x for the 3d'4s'/24s!/2 configuration of atomic iron due to both
direct-exchange d—s) and indirect-polarization @ —np —s) effects, as calculated by the per-
turbation theory ® described inSec.IIB. Thelast column lists the hyperfine field which would

result from 2.2 unpaired d spins.

Hyperfine field for

d—s d—~2p—s d—3p—+s Total 2.2 spins
1s HFPT 0.02 0.13 -0.01 0.13 12 kOe
SCFPT -0.22 0.24 -0.03 -0.01 -1 kOe
28 HFPT -3.23 -0.17 0.01 ~3.39 -311 kOe
SCFPT -6.45 -0.35 -0.01 -6.81 —625 kOe
3s HFPT -1.02 -0.01 0.14 -0.89 -82 kOe
SCFPT 2.40 0.05 0.20 2.64 243 kOe
4s HFPT 0.80 ~0.00 -0.01 0.79 72 kOe
SCFPT 0.84 -0.00 -0.03 0.80 74 kOe

Total -3.43 —0.06 0.13 -3.37

#The abbreviations HFPT and SCFPT stand for Hartree-Fock perturbation theory and self-
consistent-field perturbation theory, respectively.

tions to the SCFPT functions, as given in Table
Iv.

Tables II, III, and V illustrate the importance
of careful consideration of each term separately.

n QOj
(e)

FIG. 2. Diagrammatic representation of the many-body
interactions which have been found to make significant
contributions to the hyperfine field in Fe*? and Fe atom.
Solid lines represent electron states; dashed lines, the
Coulomb interaction; and wavy line ending with a C, the
contact hyperfine interaction.

For Fe"? the d-3p —3s contribution is 130% of
the direct d polarization. I we had not carried
out the corresponding calculation for the pseudo-
metal configuration 3d"4s'/24s'/2, but had simply
assumed that the direct and indirect 3s contribu-
tions were always in this ratio for iron, we would
have erroneously concluded that the indirect
d-3p -~ 3s contribution to x in the metal was
-1.96a5° (-180kG). This would give a total core
hyperfine field of about —-610 kG, which, as shown
by Table I, is sufficient to produce agreement
with the experiment of Ref. 1. Thus, the appeal to
the 3d"4s/24s/2 calculation is insufficient in it-
self to give us the metal result—it is also neces-
sary to look at the contributions from individual
diagrams for other nearby configurations to dis-
cern a trend for x,,. In the present case, in the
sequence of configurations 3d°, 3d%4s?, 3d74s'/24s1/2,
the following trends are evident: rather rapid
change of the direct d polarization of the 3s elec-
trons, and much slower change in the indirect
terms. The magnitudes are such that no reasonable
adjustment of an assumed configuration for the
metal would produce the desired large fields.

The indirect mechanisms also allow an induced-
spin polarization in an s state to further polarize
other s states. An examination of the LCMBPT
contributions for Fe*® and Fe atom indicate that
these contributions are much smaller than the in-
direct polarization through the p states; so we
have not calculated these terms for the metal.

C. Correlation contributions

Figure 2 depicts some diagrams which have
proved to make sizable contributions to the hy-
perfine fields in the atomic systems, for certain
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combinations of electron states.

Figure 2(b) is the exchange version of Fig. 2(a),
Fig. 2(d) of Fig. 2(c), and Fig. 2(f) of Fig. 2(e).
From Refs. 7 and 8 it appears, that in addition to
cancellations for each of the diagrams from vari-
ous choices of one-electron occupied and excited
states, there are also cancellations between di-
rect and exchange terms. For example, for Fig.
2(a), the choice ¢=3p, m =n=3s' gives for the
Fe*® jon a contribution to x of 0.252 a;% while
the same choice for Fig. 2(b) produces a contri-
bution of —0.173 a3, Again, with ¢=3p, m =3s',
n=2s', the contributions are —0.108 a;® and 0.067
a;3, respectively. For the iron atom, the cor-
responding contributions are of the same order of
magnitude with similar cancellations occurring.
The total contributions from these and additional
diagrams involving core s states is found to lead
to less than 10% 7eduction of the core polarization
discussed in Sec IIIA. There is no reason to ex-
pect the percentage to be any bigger in the metal,
or that the sign of these contributions would re-
verse to produce reinforcement of the core polari-
zation. We conclude, therefore, that correlation
effects are insufficient to explain the large core
fields found in Ref. 1.

The conduction-electron contribution can be
influenced by conduction-conduction correlation
effects, which have been only partially included
through their influence on the diagonal elements
of the Hamiltonian. The incorporation of correla-
tion in the nondiagonal elements is more difficult.
Its quantitative influence on the hyperfine field
can however, be significant, but at best, of the
order of magnitude of the conduction-electron
contribution only. Since this latter quantity is
small compared with the net hyperfine field, con-
duction-conduction correlation contributions are
not expected to be of significance relative to
the net hyperfine field.

IV. CONCLUSION

The work of Ref. 1 represents a very important
experimental advance in the understanding of
hyperfine fields, and the challenge of the large
core fields found therein should not be lightly
brushed aside on the grounds that previous UHF
calculations have not found such fields. Instead,
it is important to assess the accuracy of the theo-
retical procedures for calculating hyperfine fields
to establish whether or not the experimental re-
sults are in real disagreement with theory. This
is the stance adopted here, and our reasons for
adopting it are as follows. (a) There are many
contributions to x,s, and there are cancellations
between them. The differing contributions do not
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have a common scaling factor in going from one
atom/ion to another. It is possible, for example,
for a particular contribution to change rapidly,
even changing sign, as the configuration changes,
while other contributions change much more slow-
ly. Thus some near cancellations could be con-
verted into reinforcement, and perhaps, under
some suitable conditions, produce the required
large field. (b) We believe there are some numeri-
cal problems in implementing the UHF procedure
(basis set problems and problems in taking the
difference of large almost-equal numbers). The
evidence supporting this contention consists of

the known sensitivity of the theoretical predictions
of UHF calculations to the size of the basis set
and the difference by a factor of 2 between the
UHF results and the LCMBPT one-electron terms
for the hyperfine field in transition-metal atoms.
These difficulties could mask the changes we are
seeking. (c) Some estimate was needed of cor-
relation contributions.

We have attempted to give the best theoretical
prediction available by current methods for the
core fields. We have enumerated the one-electron
effects and examined the contributions from cor-
relation interactions. We have not succeeded in
locating a possible source for the large core fields.
However, the total hyperfine field which we cal-
culate is in excellent agreement with other ex-
periments.

We therefore feel that experimental confirmation
of the results of Ref. 1 is urgently needed. It would
be particularly useful to reduce the experimental
uncertainties in the measured values of 6. If the
present experimental results are reaffirmed, then
further theoretical work is required. The present
work rules out one-electron effects and correla-
tion interactions in the atomic state prior to the
emission of the conversion electron. It may be
necessary to reexamine the basis of the relation-
ship of the internal-conversion coefficients for
different spin states of the electrons to the elec-
tronic density at the nucleus for these states.

This relationship depends on the assumptions, in
the calculation of the transition probability as-
sociated with the internal-conversion process,

of plane-wave character for the final state of the
internal-conversion electron and the neglect of
relaxation effects and changes in correlation ef-
fects associated with the other core electrons
following the emission of the internal-conversion
electron. The influence of the latter effects has
been shown? to be of importance in the explana-
tion of exchange -splitting of core energies as
probed by x-ray emission spectra. If the relaxa-
tion and correlation effects and/or the departure
of the emitted electron from plane-wave character
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in the calculation of the transition probability for
internal conversion are found to be important for
the explanation of the results given in Ref. 1, this
would be tantamount to a statement that experi-
ment is not, in fact, measuring 0,; as given by

Eq. (1), and there would be no conflict with the
measured total hyperfine field.
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