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The coefficient of 1/ in the expansion of the critical temperature for a classical n-component spin system is
shown to be an analytic function of the dimension d near d = 4; this result holds both for the hypercubic-

lattice model and for the continuous-space model.

I. INTRODUCTION

Contradictory statements have recently been re-
ported!'? concerning the analyticity near d=4 of
the critical temperature T,(n, d) for a classical n-
component spin system in d-dimensional space.
This question is not so academic as it looks: The
determination of T, for physical values of d by ex-
pansion® in powers of 1/d relies on the possibility
of an analytic continuation through d =4.

Some arguments tend to support the existence of
a singularity. It is now well established4 that,
considered as functions of the continuous variable
d, the critical exponents are nonanalytic at d =4.
It is thus tempting to speculate that the critical
temperature presents a similar singularity, since
its calculation involves essentially the same in-
gredients as the calculation of the critical expo-
nents. Moreover,' a Padé analysis of the expansion
of T (1,d) in powers of 1/d seems to indicate a
weak singularity near d=4.

On the other hand, however, the numerical con-
vergence of this expansion® is good with a small
number of terms for d=3 and even for d=2. Be-
sides, T,(n,d) has been proved to behave analyti-
cally around d=4, both in the limit n=-2 for the
continuous model® and in the limit n =+ « for the
lattice model,?-® although in the latter case most
critical exponents have a different analytic form
for d<4 and d>4.

This argument in favor of analyticity at d=4
of T (n,d) is not quite convincing, since many
simplifications occur in the limit n—- «. In par-
ticular, the occurrence of two different analytic
forms of critical exponents for d<4 and d>4 is
not connected with a singularity, but is simply ex-
plained by a competition between two terms behav-
ing differently. For instance, the two dominant
contributions to the susceptibility x near d=4 and
T =T, have the form

XszTc4_1d [(T.I.)T)c—l}’ &

where a, b, T,, and c=(4 - d)/(d - 2) are analytic
functions of d; the resulting critical exponent y
switches from 1 for d>4, to 1+¢ for d<4. Such a
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trivial explanation does not hold for = finite, since
critical exponents probably have a true singularity
at d=4. This is indicated” by the poor convergence
of their expansion in powers of 4 —d for = finite,
and also by the occurrence of a larger and larger
number of singularities at positive rational values
of d - 4 in the diagrams contributing to the succes-
sive terms of the 4 — d expansion. The 1/% contri-
butions to critical exponents® are already nontri-
vial; in particular, the behavior of  [=0 for d
>4, n~(4 -dy/2n for d<4] cannot be traced to the
occurrence of two competing analytic terms.

It is therefore of interest to ask whether the 1/
contribution to T,(n, d) is analytic at d=4 as
T,(,d), or not. We have investigated this point
both for the continuous model and for the lattice
model. The nonuniversal character of T, is re-
flected in the differences between both calcula-
tions, but the final expressions are formally simi-
lar, and the conclusions are the same: to order
1/n, T, remains analytic at d=4. This result is
not obvious, since T, is obtained by equating the
inverse susceptibility, y ™, to zero; the 1/n cor-
rections to T, and to y come from the same expres-
sion, but behave quite differently around d=4.

The result supports the hypothesis concerning
the analyticity of T,(n,d), but, of course, does not
rule out the possibility of a singularity disappear-
ing faster than 1/n for n large. It is likely, how-_
ever, that if a singularity exists it is weak enough
to allow a safe numerical evaluation of T,(n, 3)
through expansion in powers of 1/d.

II. CONTINUOUS MODEL

Consider a classical spin field §(x) with » com-
ponents in a d-dimensional space, with an effec-
tive Hamiltonian of Wilson type,

se=3 3 [57/00) +7,18,-5.,)

b4
whup [ ax @@y, @)

The cutoff function ¢(p), behaving like 1+ O(p?) for
p small and vanishing fast enough at infinity, has
been introduced in momentum space in the quadra-
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tic part of the Hamiltonian; such a cutoff is essen-
tial for the evaluation of T, and will remain fixed
throughout. The expansion for the susceptibility®

x= 1) &)=r"1, (3)
valid for T above T, and » large, results from a

diagrammatic expansion of the mass operator
Z(p), and from the expansion of the full propagator

G)=[p*/e () +7+Z(p)]™*, (4)

in powers of Z(p). The value of 7 is determined
self-consistently via the relation

>(0)=0. (5)

At the critical temperature T,, the inverse suscep-
tibility » vanishes. The unperturbed propagator
then reduces to

g)=9®)/p*, (6)
and Eq. (5) becomes, to first order in 1/x,

A [ glg)
Yoty fddpg(phn- fdd"1+tq>(q)

A P

1155 e -p) -g@]=0, (M)
where
t,= @) nu,T, , (8)

measures the critical temperature. The integral

-3 [ @pawgta-p), )

accounts for the screening of the interaction.
In the limit n— o, the critical temperature

=2 ( [ apa) (10)

obviously has no singularity for d>2, as in the
case of the lattice model.?

The correction of order 1/n to {, resulting from
(7) is then

Ot=t, —to==2n"+(=27n)"1
x [ a1+ 1.2 (), (1)

where

¥(q)= [ dpgip)

x[glg)glq -p) -gp)g@)].

(12)

-p)+glp)glq

The infrared behavior of ® (¢) is not the same for
d>4 [®(0) finite] as for d<4 [®(g)x<¢?™*]. More-
over, ®(g) is singular at ¢ =0, and the denominator
1+t.,®(q) in (11) might have singularities or zeros

near the origin, which would yield after integration
over ¢, singularities of 6¢ as a function of the vari-
able d -4. A careful analysis of the integral (11)
in the infrared region is thus needed.

Let us first evaluate ¥(g) for ¢ small near d=4.
The dominant contribution is obtained for 2<d<#6
by suppressing the cutoff function ¢ (p) in g(p)
which then reduces to p™2. The integral (12) then
yields

(d+3)/2(4 d)q -8
vg)~ 2973 gin[37(4 - d)[T(E(d - 1)) °

(13)
Higher-order corrections behave as ¢?™%, ¢%7%,. ..,
1,4, ..., and are cutoff dependent.

Consider now ®(g). It is an analytic function of
dnear d=4 for ¢ finite, but its dominant contribu-
tion for ¢ small has a different form for d >4 and
for d<4. If, however, we consider the first two
terms of the expansion of ®(g) near ¢=0, the same
phenomenon as in Eq. (1) takes place. Itis in-
deed easy to show from (9), that for 2<d<6, one
has

la+ 3)/2qd-4
2 sin[3m(4 - d)]r(%(d - 1)

d/z
T@-arid

®(q)=

p "‘dpd,,[ 710 ] EE TR

(14)

The relative sizes of the two terms interchange
when d crosses 4. Their coefficients diverge like
(4 - d)! and 7%(d — 4)7!, but the sum is continuous
and equal to the value of ®(g) for d=4. Subsequent
terms would behave like ¢*72, 4% .., ¢%, ¢*. .. .

Both the numerator and the denominator of the
integrand in (11) are analytic for ¢ >0, and singular
at ¢ =0, the integral being convergent for d>2. In
order to exhibit a singularity of 6f as a function of
d after integration over g, we should look for sin-
gularities of the integrand in the complex g plane
(besides the branch point ¢ =0), tending to the real
axis and in particular to the origin when d—~4. The
only possible singularities of this type might be
poles, i.e., zeros of 1+¢,®(g). From (14), this
quantity has for g small the form

[A/@-a)]la/q) ™ =1] +B+---. (15)

It is not analytic at the point ¢ =0, but obviously
has neither singularities nor zeros elsewhere in
the vicinity of ¢ =0. Zeros of (15) for ¢ small
would indeed occur for

a/q0~ [1 +(d - 4)(B/A)]M/@-9) |

a quantity which is not small, even for d- 4 where
it approaches ¢?/4. We can therefore conclude
that 8¢ is an analytic function of d>2, in particular
around d =4.
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IIl. LATTICE MODEL

Let us now turn to the lattice model. At each
site x; of a hypercubic d-dimensional lattice with
unit spacing, lies a classical n-component spin
§(x,) of length n'/2. The Hamiltonian is

se=-J > 8(x) -S8(x,) (16)

where the sum runs over the lattice bonds. The
susceptibility

" ¥ 6

for T>T,, is known® to expand to first order in
1/n, as

S(x0 1"

. £
x)7=s - 2n<1>(0 f o deGy
x[glg-p)-g(q)], (18)
where
d
[e®)] ™ =s+ 3" (2singp,); (19)
k=1

the integrals here are to be carried over the Bril-
louin zone | p,| <7; the quantity &(q) is again given
by (9), and the parameter s is defined as a func-
tion of the temperature by

enr==1= [ dpatp). (20)

For n=+=, the results of the spherical model?’®
are recovered. The value ¢, of the critical tem-
perature, where x "' =Js+O(n"!) goes to zero, is
associated with s=0 and is given by

2= [ g o

% fomdx[zne-xzo(x)]d. 21)

Its expression, analytically continued in d, is ana-
lytic for d>2. The relation between s and £, valid
for arbitrary n, namely,

t—t,=3tt, f ax(1 - e™™/2)2me™ I, (x)]*, (22)
0

reduces for s small to
t—t,~5st f xdx[2me ~*I,(x)]?, (23a)
0
for d>4, and to

t—to~2s'72 2209/ 2(g_2) ' [3(4 - d)] , (23D)

for d<4, in agreement with the value of the critical

exponent vy, for n=+x {namely Yeo
=max(1,2/(d - 2)]}.

The determination of the 1/# correction, &¢
=t, - l,, to the critical temperature requires, how-
ever, more care than for the continuous model.
The expansion (18) of the inverse susceptibility,
established by the steepest descents method, is
valid for s (or ¢) fixed, and n— «; it does not hold
when s— 0 at the same time as n— «. Since the
value s,, of sat t,, as given by (23), is small like
a power of 1/n, we cannot calculate it to lowest
order simply by requiring that the first two terms
of the expansion of y ~! vanish.

In order to determine 6¢ without letting ¢ ap-
proach too close to ¢, in (18), we should rather
expand® the form

XAl -1)Y, (24)

in powers of 1/n, and identify the resulting first
terms with (18). For s small, but finite as n— =,
this yields

ysdt _ f d
i- L. 2n<I> d'pd'y

x[glg - p) - q)] (25)

where the various factors should be evaluated to
lowest order. In particular, y =y, has a singulari-
ty for d=4, which at first sight might be expected
to reflect on 6¢. We note, however, by differen-
tiating (20) and by using (23), that the factor

2(0)-5 9 (26)
combines with y,s/(t - ¢,), so that (25) yields
ot=nt% [ dpdale (@) g*p)
x[gla-p) -2@], (27)

in which the integral is to be calculated with s=0.
We may finally rewrite (27) as

st=—an i an e [ alfe@MeG),  (@8)

where ®(g) and ¥(g) are defined by the same equa-
tions (9) and (12) as for the continuous model, the

only difference being that g(p) is now given by (19)
with s=0.

Although the critical temperature is model-de-
pendent, we have exhibited a formal analogy be-
tween its expression (10) and (11) for the continu-
ous model, and its expression (21) and (28) for the
lattice model. The lack of isotropy would make it
difficult to perform an explicit analytic continua-
tion of (28) over d. Since, however, we are in-
terested only in possible infrared singularities,



we may expand g(p) around its dominant isotropic
part, p~%, and analytically continue each resulting
term. Once angular integrations are performed,
the argument of Sec. II applies to the radial in-
tegration of (28) over g, since the denominator
®(g) again has the behavior (15). The critical tem-
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perature of the lattice model is therefore also an
analytic function of d>2.
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