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Analyticity of critical temperatures in the large-n region
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The coefficient of l/n in the expansion of the critical temperature for a classical n-component spin system is
shown to be an analytic function of the dimension d near d =4; this result holds both for the hypercubic-
lattice model and for the continuous-space model.

I. INTRODUCTION

Contradictory statements have recently been re-
ported" concerning the analyticity near d =4 of
the critical temperature T, (n, d) for a classical n-
component spin system in d-dimensional space.
This question is not so academic as it looks: The
determination of T, for physical values of d by ex-
pansion' in powers of 1/d relies on the possibility
of an analytic continuation through d =4.

Some arguments tend to support the existence of
a singularity. It is now well established4 that,
considered as functions of the continuous variable
d, the critical exponents are nona. nalytic at d =4.
It is thus tempting to speculate that the critical
temperature presents a similar singularity, since
its calculation involves essentially the same in-
gredients as the calculation of the critical expo-
nents. Moreover, ' a Pads analysis of the expansion
of T,(l, d) in powers of 1/d seems to indicate a
weak singularity near d =4.

On the other hand, however, the numerical con-
vergence of this expansion' is good with a small
number of terms for d = 3 and even for d = 2. Be-
sides, T, (n, d) has been proved to behave analyti-
cally a.round d=4, both in the limit n=-2 for the
continuous model' and in the limit n=+~ for the
lattice model, ''' although in the latter case most
critical exponents have a different analytic form
for d&4 and d&4.

This argument in favor of analyticity at d=4
of T,(n, d) is not quite convincing, since many
simplifications occur in the limit n- ~. In par-
ticular, the occurrence of two different analytic
forms of critical exponents for d &4 and d &4 is
not connected with a singularity, but is simply ex-
plained by a competition between two terms behav-
ing differently. For instance, the two dominant
contributions to the susceptibility X near d =4 and
T = T, have the form

trivial explanation does not hold for n finite, since
critical exponents probably have a true singularity
at d =4. This is indicated' by the poor convergence
of their expansion in powers of 4 —d for n finite,
and also by the occurrence of a larger and la, rger
number of singularities at positive rational values
of d —4 in the diagrams contributing to the succes-
sive terms of the 4 —d expansion. The I/n contri-
butions to critical exponents' are already nontri-
vial; in particular, the behavior of q Iq=0 for d
&4, g

- (4 —d)'/2n for d & 4] cannot be traced to the
occurrence of two competing analytic terms.

It is therefore of interest to ask whether the I/n
contribution to T,(n, d) is analytic at d=4 as
T,(~, d}, or not. We have investigated this point
both for the continuous model and for the lattice
model. The nonuniversal character of T, is re-
flected in the differences between both calcula-
tions, but the final expressions are formally simi-
lar, and the conclusions are the same: to order
I/n, T, remains analytic at d=4. This result is
not obvious, since T, is obtained by equating the
inverse susceptibility, y, to zero; the I/n cor-
rections to T, and to y come from the same expres-
sion, but behave quite differently around d = 4.

The result supports the hypothesis concerning
the analyticity of T,(n, d), but, of course, does not
rule out the possibility of a singularity disappear-
ing faster than I/n for n large. It is likely, how-
ever, that if a singularity exists it is weak enough
to allow a safe numerical evaluation of T,(n, 3)
through expansion in powers of 1jd.

II. CONTINUOUS MODEL

Consider a classical spin field S(x) with n com-
ponents in a d-dimensional space, with an effec-
tive Hamiltonian of %'ilson type,

~=- g Ip2/y(p)+~, ](s, s,)

T —T, 4 —d T —T, + -'.u, d"x{S'(x))' . (2)

where a, 5, T„and c=(4 —d)/(d —2) are analytic
functions of d; the resulting critical exponent y
switches from 1 for d&4, to 1+c for d&4. Such a

The cutoff function y(p}, behaving like 1+ O(p') for
p small and vanishing fast enough at infinity
been introduced in momentum space in the quadra-
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g(p) = q (p)/P',

and Eq. (5) becomes, to first order in 1/n,

r, +—' d'p g(p) +—' d'qt~ q t,
2 n I +tC)(q)

(6)

d'P d'q [g(q —P) -g(q) l = o, (7)
t'. . . g'(P)
2n 1+ tP (q)

where

t, —= (2v) "nuoT, ,

measures the critical temperature. The integral

4'(q) =
2

d'P g(p) g(q P), -1

accounts for the screening of the interaction.
In the limit n- , the critical temperature

-1
4=(-2~,)( &'P),"(o) (10)

obviously has no singularity for d &2, as in the
ease of the lattice model. '

The correction of order 1/n to t, resulting from
(I) is then

5t=t, —t„=-2n-'t„+( 2r,n) 't'„--
x d"q 1+t„4 q '4 q

tic pa, rt of the Hamiltonian; such a. cutoff is essen-
tia) for the evaluation of T„and will remain fixed
throughout. The expansion for the susceptibility'

}i=—(nT) '(S')—= r ' (8)

valid for Z' above Z', and n large, results from a
diagrammatic expansion of the mass operator
Z(p}, and from the expansion of the full propagator

G(P) = [P'/q (P)+r+Z(P)]

in powers of Z(P). The value of r is determined
self-consistently via the relation

Z(0) =0.
At the critical temperature T„ the inverse suscep-
tibility r vanishes. The unperturbed propagator
then reduces to

tf/2

(4 —d) I'(-,'d)
P' ' dP —

[q (P)]' + " .
dt's

(14)

The relative sizes of the two terms interchange
when d crosses 4. Their coefficients diverge like
m'(4 —d) ' and n'(d —4) ', but the sum is continuous
and equal to the value of 4(q) for d=4. Subsequent
terms would behave like q", q". . . , q', q. . . .

Both the numerator and the denominator of the
integrand in (11) are analytic for q&0, and singular
at q = 0, the integral being convergent for d & 2. In
order to exhibit a singularity of 5t as a function of
d after integration over q, we should look for sin-
gularities of the integrand in the complex q plane
(besides the branch point q =0), tending to the real
axis and in particular to the origin when d-4. The
only possible singularities of this type might be
poles, i.e., zeros of 1+t„C'(q). From (14}, this
quantity ha.s for q small the form

near the origin, which would yield after integration
over q, singularities of 5t as a function of the vari-
able d —4. A careful analysis of the integral (11)
in the infrared region is thus needed.

Let us first evaluate 4'(q) for q small near d = 4.
The dominant contribution is obtained for 2 & d& 6
by suppressing the cutoff function q)(P) in g(p}
which then reduces to p '. The integral (12) then
yields

id+8)/2(4 d) d 8

2~ ' sin[ —', v(4 —d)]1(—', (d —1))

Higher-order corrections beha, ve as q" ', q" ', . . . ,
1, q', . . . , and are cutoff dependent.

Consider now 4)(q}. It is an analytic function of
d near d=4 for q finite, but its dominant contribu-
tion for q small has a different form for d&4 and
for d&4. If, however, we consider the first two
terms of the expansion of 4 (q) near q =0, the same
phenomenon as in Eq. (1) takes place. It is in-
deed easy to show from (9), that for 2&d&6, one
has

~( d+ 3)/2 tf -4

2 ' sin[ —,'v(4 - d)]F(—,'(d —1))

[&/(4- d)] [(q/q. )' '-I] +II+ ~ ~ ~ . (15)
where

+(q) -=d'P g(P)

x [g(q)g(q —P) + g(P)g(q —P) —g(P)g(q) ] ~

(12)

It is not analytic at the point q =0, but obviously
has neither singularities nor zeros elsewhere in
the vicinity of q =0. Zeros of (15}for q small
would indeed occur for

q/q, = [1 + (d —4)(B/A) ]
'

The infrared behavior of C)(q) is not the same for
d&4 [4 (0) finite] as for d&4 [4 (q)()(-q~ 4]. More-
over, 4)(q) is singular at q =0, and the denominator
1+ t„4(q) in (11) might have singularities or zeros

a quantity which is not small, even for d- 4 where
it approaches e /". We can therefore conclude
that 5t is an analytic function of d &2, in particular
around d =4.
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III. LATTICE MODEL

(18)

where the sum runs over the lattice bonds. The
susceptibility

y
—= (nT) ' Q (S(x,) S(x,)}, (17)

for T & T„ is known' to expand to first order in

1/n, a.s

Let us now turn to the lattice model. At each
site x, of a hypercubic d-dimensional lattice with
unit spacing, lies a classical n-component spin
S(x,) of length n'~'. The Hamiltonian is

exponent y„ for n =+ ~ {namely y„
= max[1, 2/(d - 2)]).

The determination of the 1/n correction, 5t
=t, —t„, to the critical temperature requires, how-
ever, more care than for the continuous model.
The expansion (18) of the inverse susceptibility,
established by the steepest descents method, is
valid for s (or t) fixed, and n- ~; it does not hold
when s- 0 at the same time as n- ~. Since the
value s„of s at t„as given by (23), is small like
a power of 1jn, we cannot calculate it to lowest
order simply by requiring that the first two terms
of the expansion of X

' vanish.
In order to determine 5t without letting t ap-

proach too close to t, in (18), we should rather
expand' the form

u g'(P)
(Jy) '=s —

2 (0)
d'pd'q

( )

x [g(q —P) —g(q) ],
where

(18)

y '-A(t —t,)&, (24)

in powers of 1/n, and identify the resulting first
terms with (18). For s small, but finite as n- ~,
this yields

[g(p)] '—= s+ Q (2 sin-,'p~)';
0= 1

(19) t —t„2nC (0) 4 (q)

&& [g(q —P) —g(q)],

(»)'~~ '=-t '= d'tg(P) (20)

the integrals here are to be carried over the Bril-
louin zone

~ P, ~
&~; the quantity 4 (q) is again given

by (9), and the parameter s is defined as a func-
tion of the temperature by

where the various factors should be evaluated to
lowest order. In particular, y =y has a, singulari-
ty for d = 4, which at first sight might be expected
to reflect on 5t. Vfe note, however, by differen-
tiating (20) and by using (23), that the factor

For n=+~, the results of the spherical model"
are recovered. The value t„of the critical tem-
perature, where y

' =Ps+0(n ') goes to zero, is
associated with s=0 and is given by

t„' = d'(t) g

@(0)= —,—1 dt
ds

combines with y s/(t —t„), so that (25) yields

5t=n 't'„d"'P q 4 q 'g' P

x [g(q —0) —g(q)] ~

(28)

(27)

1
dx[2ve "I,(x)]' .

0
(21)

in which the integral is to be calculated with s=0.
We may finally rewrite (27) as

Its expression, analytically continued in d, is ana-
lytic for d&2. The relation bebveen s a,nd t, valid
for arbitrary n, namely,

2n-~t +n-~t2 d~q Ci q ~+ q (28)

dx 1 —e "' 2me "I0 x
0

(22)

reduces for s small to

t —t„-est'„xdx 2ne "I0 x
0

for d&4, and to

t t„-2s"-"~'t2v"'(d-2) '1 [ '(4-d-)], -(23-t)

for d&4, in agreement with the value of the critical

where 4(q) and 4(q) are defined by the same equa-
tions (9) and (12) as for the continuous model, the
only difference being that g(p) is now given by (19)
with s =0.

Although the critical temperature is model-de-
pendent, we have exhibited a formal analogy be-
tween its expression (10) and (11) for the continu-
ous model, and its expression (21) and (28) for the
lattice model. The lack of isotropy would make it
difficult to perform an explicit analytic continua-
tion of (28) over d. Since, however, we are in-
terested only in possible infrared singularities,
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we may expand g(p) around its dominant isotropic
part, p ', and analytically continue each resulting
term. Once angular integrations are performed,
the argument of Sec. II applies to the radial in-
tegration of (28) over q, since the denominator
4(q) again has the behavior (15). The critical tern

perature of the lattice model is therefore also an
analytic function of d &2.
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