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Crystal-field effects and high-temperature susceptibility of CoBr2 6H20
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The susceptibility of CoBr, 6820 has been measured between 1 and 120 K along all principal axes. The data
have been interpreted in terms of the two-dimensional XY model and its extension to an uniaxial model for
the exchange interactions. The influence of the excited doublet states has been accounted for by means of a
crystal-field calculation. It is shown that a consistent set of both crystal field and magnetic parameters

quantitatively explains the susceptibility for all three principal directions.

I. INTRODUCTION

The magnetic behavior of CoClz ~ 6H20 and
CoBr~ ~ 6H~O has been the subject of a considerable
number of both experimental and theoretical stud-
ies. The majority of these papers deal with
CoC12 ~ 6H~O, however, most of the qualitative re-
sults seem to apply to both substances. The stud-
ies include specific -heat measurements, ~' nuclear
magnetic resonance, ' antiferromagnetic reso-
nance, ' susceptibility measurements, and cal-
culations of the ground state of the Co ' ion. In
general the experimental evidence indicates that
these compounds can be fairly well approximated
as two-dimensional antiferromagnets in which the
dominant interactions are of the planar type (two-
dimensional XY model).

In foregoing papers ' we reported the magnetic
structure, the anomalous behavior of CoBr~ ~ 6H~O
upon deuteration, and an analysis of the specific
heat combined with antiferromagnetic-resonance
results. Recently, Metselaar et al. "reported a
comparison of the specific-heat and susceptibility
results with the two-dimensional YY model. A
nice agreement was obtained for the zero-field
susceptibilities X„and X „ in the temperature re-
gion 1.4 & IkT/J I & 6. However, it is clear that
this simple model does not account for the non-
zero g, and the influence of the excited doublet
states. Apart from the direct contribution to the
susceptibility at higher temperatures, these ex-
cited levels will also give rise to a substantial van
Vleck contribution. In this paper we will present
the susceptibility data up to 120 K and we will show
that a consistent set of both crystal-field and mag-
netic parameters quantitatively explains the sus-
ceptibility for all three principal directions.

In Sec. II we mill review the crystallographic
and magnetic properties of CoBr& ~ 6H20. Section
III will be devoted to the theoretical outline of the
procedure. The experimental results will be pre-
sented in Sec. IV, whereas we will discuss the re-
sults in Sec. V.

II. CRYSTALLOGRAPHIC STRUCTURE AND MAGNETIC
INTERACTIONS

CoBr~ ~ 6H~O is assumed to be isostructural with
CoCl& ~ 6H&O.

' - This assumption is recently cor-
roborated by high-resolution powder neutron dif-
fraction experiments. " The room-temperature
structure can be described as monoclinic with
space group C2/m. The unit cell with dimensions
a= 11.03 A, b=7. 18 A, c= 6.91 A, and P= 124.7'
contains two formula units. The spatial arrange-
ment of the [CoBr,04] clusters is shown in Fig.
1(a). All the clusters are equivalent and can be
described as distorted octahedra. The basal plane
contains the four HsO molecules (XY plane). The
Br-Co-Br axis is almost perpendicular to that
plane and is slightly elongated [Fig. 1(b)]. From
a configuration like this one may expect a crystal
field on the magnetic ion with rather strong tetrag-
onal components besides the main term of cubic
symmetry. The combined effect of such a crystal
field and the spin-orbit coupling results in a split-
ting of the free-ion F state in a number of levels
of which six Kramers doublets are the lowest, as
is sketched in Fig. 2. In general it is assumed
that, at low temperatures, only the lowest doublet
is populated. In that case a description in terms
of a fictitious spin S'= —,', with anisotropic exchange
parameters and g values, is sufficient to charac-
terize the magnetic behavior. With the exception
of Uryu et al. so far the data have been interpreted
in terms of this fictitious spin formalism. A de-
tailed survey of the results can be found else-
where. The major conclusion is that the magnet-
ic behavior of CoBrz ~ 6H&O at low temperatures
can be satisfactorily explained on the basis of a
S'=-,' system with an exchange interaction of the
XY type (O'„=Z, =Z, J,=O). This fact is most
clearly demonstrated by the values of g„=g,-—5. 0
and g, -—2. 2. If one neglects orbital contributions
this would yield J'„=J„and 8,/4„= 0. 25. The quan-
titative results, however, should be judged with
care because, in general, they are obtained from
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FIG. 1. Details of the crystal structure of CoBr&
~ 6820. Cobalt atoms are small and black, bromine
atoms are shaded, and oxygen atoms are drawn as open
circles. (a) The face-centered arrangement of the
[CoBr204] clusters in the ab plane. (b) Some distances
within the [CoBr&O4] cluster. (c) Sketch of the ac plane
also showing the principal axes x, y, and z of the sus-
ceptibility tensor (a,*J c, c*ia).

interpretations imposing a simple model behavior,
which will not completely be satisfied.

The dimensionality of the magnetic system has
been discussed by Haseda. i' There are two fea-
tures which are of importance, i. e. , the interac-
tions in the centered a-b plane and the interactions
between the planes. As is shown in Fig. 1(a), one
can distinguish a number of possible intralayer in-
teractions. Analyzing the nature of the exchange
paths, Haseda concluded that J3 and J3 probably
would be small. Koyinga et al. obtained the val-
ue 2(Jz+ J~) = 1.0 K compared with 4 Ji= 9.4 K.
The interlayer exchange interaction was estimated
by Haseda to range between 0. 01 and 0. 1 K. Ex-
perimentally, the lower dimensionality gives rise
to a rather high amount of short-range order ap-
parent above the antiferromagnetic ordering tem-
perature T~. The lower dimensionality is also
indicated by the rather independent behavior of the
magnetic moments in successive layers in the deu-
terated compound ' below T~. In view of this we
will assume in this paper that the magnetic behav-
ior in the paramagnetic region can be described
by one interaction J~ between nearest neighbors in
the a-b plane, which results in the so-called
square lattice for the magnetic ions.

III. THEORY

The ground state of the free Co" ion is a 'E state
(L=3, S=2). Using the method of operator equiv-
alents, the combined effect of a crystal field of
orthorhombic symmetry and spin-orbit coupling can
be written

R = 2 (Co+ C4) l isTo+ e (T4+ T 4)j+ ~ (Co —C4) [ &~To 8(T4+ T 4)—]+—', Co To+ &AC&(Tz+ T z) + 2 Cz(Tz+ T 2) + AL ~ S,

where

TO= 35L, —335L +360, T,4=L~, T,g= (7L, —17)I,+L, (7L, —17), T 03L
~12, T~q ——L2 .

In this Hamiltonian the first term represents the
cubic field, the next two terms represent the te-
tragonal field components, and the fourth and the
fifth terms the orthorhombic field components. In
the last term A. is the spin-orbit coupling constant.
The z axis is chosen along the tetragonal axis.

In a crystal field of cubic symmetry the free ion
E states splits into two orbital triplets 1", and Z'4,

and one orbital singlet 1 z, with I', lowest (Fig. 2).
The energy gap between this level and the first ex-
cited state I', is, according to Papallardo, about
11000 K. For the present we will restrict our at-
tention to the lowest state I"4. A suitable set of or-
bital basis functions for this ground state is given
by the following combinations of angular momentum
functions l Mi) with L=3:

—24.000K

I

I
I

I —11.000K

r4 —0

free-ion cubic tetragonal + k L S

FIG. 2. Splitting of the Co2' free ion ground state by
a crystal field with tetragonal deviations from cubic sym-
metry. The energy scale applies to CoBr2 6H20 (Ref.
16).
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These orbital states still have a fourfold spin de-
generacy. The action of the tetragonal field, the
orthorhombic field, and the spin-orbit coupling will
partially remove this degeneracy and leads to a
splitting into six Kramers doublets. A convenient
set of product basis functions I n, , Ms & can be
found in

I»= l~~ +-'&

l2&=I~i, -l& I2'&=I~i +2&

I
3) =

I

n„--', ),
I

3'& =
I
n„+-,'&,

I
4) =

I
n„+-,' &,

I

4'& =
I
Q„--,' &,

I
5& =

I
~3 +-'& I5'& =

I ~z, -2 &,

I6&= l~s -z&, 16'&=1~2 +2&.

(3)

On this basis the Hamiltonian Eq. (1) factorizes
into two identical blocks. The submatrix on the
basis 11&—16) (or on the basis 11'&—16')) is, apart
from a constant diagonal contribution 10C4+ 14CQ,

2C,„0
2C

o

~M6 o

0 AM6 C„

—C~„+A

C„
C„

—C„-A
0

C„

—C „+3A

(4)

The constants C, C„, and A stand for

C~ = 5CQ —5C4 —2CP ) C~~ = 15C2+ 6C2 ~

I

ko = 0 in Eq. (6). From thermodynamics it follows
that

A=-,' Z. (5) X— (8)

Diagonalization for given values of C, C„, and ~
yields the eigenvalues E&,, where i = 1, 2 denotes
the double degeneracy arising from the existence
of the two identical blocks mentioned before. It
should be noted that more elaborate calculations,
which involve for instance I'- F mixing under the
action of the cubic field, result in the same matrix
Eq. (4) accompanied by more complicated defini-
tions Eqs. (3) and (5). Because we will consider
C, C„, and A as adjustable parameters we do not
go into such details.

In order to obtain the zero-field susceptibility
we have to calculate the effect of a perturbation of
the form

where

G = —kT lnZ

and

(9)

Z eE~ ~/0 T (lo)

Inserting Eqs. (10) and (9) into Eq. (8) we obtain
for the susceptibility per spin

gA - Pa g2 s'II (11)-
Z', , kT ZQ

with

3Cz = p's(koL + 2S ) H (6) E~/0 T ~0
0

where p, ~ is the Bohr magneton, kp is a constant
called the orbital reduction factor, which we will
discuss later on, and the subscript n denotes x,
y ore.

The perturbed energy levels can be written
0

E~, i ——E)+f)H+s)H + ~ ~ ~,

E; z E& —f&H+sH + ~ ~ ——~,0 2

where f& and s& follow from perturbation theory.
The doublet g values are found from g&-—2f&/p, s and
they depend on the orientation of the magnetic field.
The spin-only g values, g~, are found by inserting

The first term in Eq. (11) can be considered as a
Curie-like susceptibility, whereas the second term
is known as the Van Vleck contribution X».

So far we have not considered the exchange in-
teraction between neighboring ions. In view of the
fact that the splitting between the ground-state dou-
blet and the first exited doublet is of the order of
100 K and the exchange energy is at least one or-
der of magnitude smaller, it seems reasonable to
assume that the introduction of this interaction and
thus the conversion of discrete levels into narrow
bands does not seriously modify the energy-level
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scheme. Moreover, the exchange contribution can
conveniently be ca.lculated within the ground-state
doublet adapting a fictitious S'= —,

' formalism and
using the anisotropic g values obtained from the
crystal-field calculations outlined before. Al-
though the fictitious spin formalism (which implies
that only the ground state is populated) does not
hold at temperatures comparable with the doublet-
doublet splitting, the contribution of the exchange
interaction at those temperatures is already neg-
ligible. One must bear in mind that we are refer-
ring to the contribution which depends on the inter-
action J and not to the paramagnetic term which is
already contained in Eq. (11).

The interaction between neighboring spins can
be written

R,'„„=—2 J„,Q'(S";Sq+S";S~)),
j&j

where J„,= J„=J„. For the susceptibility in the z
direction (y, ) we will use the HTE of a uniaxial
model, also on a square lattice, in which

K,'„',„=— Q [/IS,'S)+J„„(S1S1+S1S) )] .

For X„and X„de Jongh et gl. reported a formula
equivalent with

(14)

y, ~T/C~= 1+2K+ K+ 6 K + 30 K +— K

+ 1709K6 ~ 3799K7 13619 K6 330019K9+ 504 + 1120 + 5040 + 120960

(i5)
where C =Kg p3/4, K=J„,/I3T, and n denotes x
or y. Note that in Ref. 6, K is defined as IO'„, I/kT
which implies a sign reversal of the odd terms in
the series Eq. (15).

From the average of the Pade approximants of
Eq. (15) we obtained the following mathematical ex-
pression which is valid for negative K up to IXI
=0. 8 with an error & 2%%uo:

X~T/C, = (1-T0K) 3~ (1+0.6500K+0. 2704K

K,„,„=—2 Q (Z„S,"S", +J,S,' S1"+J,S,'. S)) .
j&j

In our case we assume that the principal axis x,
y, z of the exchange tensor J coincide with the
crystal-field axis, an assumption which is almost
exact if dipolar interactions are small and the ex-
change between real spins is isotropic. The con-
tribution of Eq. (12) to the susceptibility is not
known to a sufficient degree of accuracy, there-
fore we have to adopt simplifications which trans-
form Eq. (12) into a "model" Hamiltonian from
which the contribution is known in certain approxi-
mations. In this paper we will use for the suscep-
tibility along x or y directions (respectively, g„, y„)
the high-temperature series expansion (HTE) of
the pure XF model on a square lattice for which

+ 0. 21.97K + 0. 0082E —0. 0267K

+0. 0300K +0.0462K') . (i6)

We calculated y, for an exchange interaction ac-
cording to Eq. (14) by the finite cluster expansions
method. " The results agree completely with those
reported by Obakata et g). ,

f2n]1

y,r g 1

(
l. )"

j=0
(-1)'C„Z""Z" (i7)

The susceptibility was'measured in the tempera-
ture range from 1 to 120 K along the x, y, and z
principal axes defined in Fig. 1(c). The majority
of the data points were obtained by a dynamical
mutual inductance method, which is described else-
where. The measuring device was constructed
in such a way that the crystal could be rotated and
also could be moved out of the coil system in order
to correct for an empty apparatus effect. Further-
more, the temperature of the sample could be
raised by approximately 15 K above the bath tem-
perature by means of a simple heatshield. Using
helium, hydrogen, and nitrogen the temperature
ranges 1—35 K and 50—95 K could be covered.
Temperature measurements were made with a cal-
ibrated germanium thermometer. In the tempera-
ture ranges 1-5 K, 14-20 K, 65-77 K, and at 116
K the data were supplemented with absolute static
values for X obtained with a Faraday balance. The
results are shown in. Figs. 3 and 4. After correc-
tion for diamagnetism (-5&&10 ' emu/g), the tem-
perature dependences of g„and y„(8.5& T &120 K)
and y., (5 & T & 120 K) were simultaneously fitted to
a combination of expressions (11) and (16), and Eq.
(17), respectively, with y, C, C„, Z, and Z, as
variables. It should be noted that the first term in

TABLE I. Numerical value of the coefficients C» oc-
curring in the high-temperature series for X» given in
Eq. (17).

2
6

26
138
902

6 876
60 566

2
18

132
1 110

10 194
105 630

350
4143

54 838
458

11396

with C, = ,' N g, p—.s and [—,
'

n] denoting —,
' n if n is even

and ,'(n ——1) if n is odd. The coefficients C„& are
given in Table I. From the calculated Pade ap-
proximants it showed that for Z,/J„„&0.25 the ex-
pression can be used up to I Kl = 0. 5 (error & 1%).

IV. EXPERIMENTAL RESULTS
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FIG. 3. Susceptibilities of CoBr2. 6H20 vs tempera-
ture. For the y axis only part of the data is shown. The
fully drawn curves are calculated with k0=0. 90, C~
= —815 K, CO~=26 K, A= —284 K, J„q = —2. 37 K, and

J,=-O. 7 K. The dashed curve represents the extension
of the fit for the x axis obtained by de Jongh et al. (Ref.
6).
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Eqs. (16) and (17) has to be omitted because it is
already contained in Eq. (11). This procedure was
performed with different values of the orbital re-
duction factor ko defined in Eg. (6). The influence
of this factor on the obtained best-fit magnetic pa-
rameters was very small and well within the esti-
mated uncertainty. The deviation between the data
points and the calculated points was in all cases
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FIG. 5. Various dependences on C~ calculated with
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the g values, the value of the Van Vleck contribution
Xvv for T-0 K, and the energies of the first and sec-
ond excited doublet state measured from the ground state.
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comparable with the estimated error in the data
points. The resulting magnetic parameters for the
ground state are tabulated in Table II.

In Table III the best-fit crystal-field parameters
are tabulated as a function of the orbital reduction
factor ko and in Fig. 5 several quantities are plot-
ted as a function of C . It can be seen that the
tetragonal distortion and the spin-orbit coupling
are rather sensitive to a change of ko. This leaves,
however, the lowest doublet-doublet splitting (E&)
almost unaffected. This, combined with the fact
that the splitting of the doublets reflects the strong
axial field such t.hat there is a large energy gap be-
tween the two lowest doublets and the center of the

TABLE III. Best-fit crystal-field parameters as a
function of the orbital reduction factor k0, Also given
are the resulting values of E&, E~ (see text), and the
overall width ~ of the four highest doublet energies.

T(K)

FIG. 4. Static susceptibilities of CoBr2 ~ 6H20 below
T =5 K. The drawn curve is used to extrapolate the
parallel susceptibility in the ordered state to T =0 K as
described in the text.

k()

1.00
0. 95
0. 90
0.85

—1140
—970
—815
—680

34
30
26
22

c (K) C., (K) ~ (K) E, (K)

—336 177
—312 177
—284 177
—256 173

Z, (K) ~ (K)

3790 1430
3290 1310
2810 1190
2390 1060
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TABLE II. Best-fit magnetic parameters and related quantities for the
ground state. For Xvv the temperature-independent value below 35 K is
given.

Quantity This work Literature Quantity This work

-2.37+0.05
—2. 5 xI b Xvv „~ (emu/g) (6 + 1) x 10

—0.7+0.1
—0.3~
—0.4+0. 1 &vvg ~emujg~ ~1 2+0 5~x1o

4. 70+0.05 ]
5. O+0. 1" 3.90 + 0. 05

4. 82 + 0. 05 5. 0"
5. 0~0.1" 3. 99+0.05

2. 02 + 0. 05 2. 2d 2. 01+0.05

~Reference 10.
"Reference 6.

cReference 11.
Reference 5.

four others (E,), explains why in the temperature
range we studied the magnetic parameters are only
slightly affected by the reduction factor ko.

V. DISCUSSION

In Table II some results for the magnetic param-
eters from previous sources are also given. The
main reason for the discrepancy, in particular for
the g values, can be found in the Van Vleck con-
tribution. According to our calculations this con-
tribution amounts to -

10%%uo of the total experimen-
tal susceptibility in the temperature regionbetween
3.5 and 15 K, studied by previous authors. ~~ As a
check on this number we extrapolated the y, = g„ in
the ordered state to T = 0 K, taking into account
that, according to spin-wave theory, the low-
temperature expansion of g does not contain a lin-
ear term in T. This extrapolation is shown in Fig.
4 and results in )(vv „=(8 v 1)x 10 ' emu/g, which
value may be compared with the calculated X«„,
= (6w I) x10 ' emu/g. To demonstrate the influence
of this and other crystal-field effects we have re-
produced the theoretical fit obtained by de Jongh
et al. from the temperature dependence of X„„
below T=15 K, in Fig. 3.

The comparison in Table II also shows that the
ratio J,/J„, is substantially higher than estimated
before. ' The reason for this is that former es-
timates were obtained from the anisotropy in the
g tensor, neglecting orbital contributions. The
orbital contribution to g, is rather small, but to
g„„it is substantial. This tends to change the ex-
change anisotropy drastically. In our case, we ob-
tain (g~,/g ~„) = 0. 2'7 w 0. 02 and, independently,
J,/J„, = 0.29+ 0.04, which is in rather fair agree-

ment.
It was our aim to interpret the susceptibility data

with a minimum of conditions imposed upon the
system. We could not obtain, however, direct in-
formation about J„and J, separately because in our
procedure we were limited by the available solu-
tions of model Hamiltonians, and had to assume
J„=J,. The quoted value for J„, should therefore
be considered as an average of J„and J„. If one
adapts the view that J„/8, = (g~„/g»)~ we arrive at
J„/J, = 0. 98, which confirms the conjecture J„=J„.

As we noted before the crystal-field parameters,
tabulated in Table III, reflect the strong axial sym-
metry. Comparison of these data with those ob-
tained by Uryu et al. in their calculation of the
Schottky anomaly in the specific heat, is hampered
by the fact that they have chosen the z axis of the
system along the b axis. In their treatment the
axial symmetry around the Br-Co-Br axis is purely
accidental and is caused by the combination of a
tetragonal term and an orthorhombic term which
are of roughly the same order of magnitude. The
energy levels were obtained with an assumed fixed
spin-orbit coupling of —140 cm ~ (-201 K) and are
quite different from our results. One should, how-
ever, bear in mind that their results were obtained
from a rather qualitative comparison with experi-
mental data which exhibit rather large uncertain-
ties.

In Eq. (6) we introduced the orbital reduction
factor ko. Formally this type of factor is defined
by

where l is the one-electron orbital angular momen-
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turn operator, the g's are the molecular orbitals of
the cluster, and the d's are the corresponding Sd
orbitals. Now the reduction depends on magnitude
and origin of the spin density transferred to the
ligand. In typical cases kp varies from -0.8 to
1.0 for transition-metal ions in complex salts.
This range has been chosen for Table III. Smaller
kp values give rise to a slightly worse fit to the
susceptibility data. As we noted before, the best-
fit tetragonal term and the spin-orbit coupling are
rather sensitive to kp. As there is no significant
change in the quality of the fit we have no way to
decide about these values. As far as the spin-or-
bit coupling is concerned, the values of X in Table
III are, on the average, in absolute value higher
than the free-ion value —260 K. Owing to the co-
valency in the bonding of the central ion with the
ligands and the spin-orbit coupling on the ligand a
modification of the free-ion value can be antici-
pated. Typically in the transition-metal complexes
studied so far, this amounts to a reduction of the
free-ion value. However, as pointed out by Owen
and Thornley, ' this strongly depends on the sym-
metry of the bond and the ligand ion. More specif-

ically they state that heavy ligands (with large spin-
orbit coupling), such as Br, might give an effec-
tive l Xl greater than the free-ion value. Though
the value of I Xl in this case is rather high on the
average it does not seem to be inconsistent with
theoretical predictions. Moreover, the experi-
mental values reported in Co" salts seem to be re-
stricted to cubic cases, while we are dealing with
a strong tetragonal distortion.
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