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Elastic modulus, thermal expansion, and specific heat at a phase transition
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The interrelation of the elastic modulus, thermal-expansion coefficient, and specific heat of a transformed

phase relative to the untransformed phase is calculated assuming a particular but useful form of the
thermodynamic potential. For second-order phase transitions where this potential applies, measurements of
modulus, expansion, and specific heat can yield the general (longitudinal as well as shear) first- and second-
order stress (or strain) dependences of the transition temperature and of the order parameter at absolute zero.
An exemplary application to one type of phase transition is given.

I. INTRODUCTION

A number of calculations are available which de-
scribe the behavior of the elastic modulus, and/or
the thermal-expansion coefficient n relative to the
specific heat C at a phase transition. ' " General-
ly, these results are restricted to aparticular type
of phase transition (e.g. , X or Ehrenfest second
order), to a particular range in temperature (e. g. ,
close to the transition temperature T,), or to par-
ticular stress-type variables (e. g. , volume expan-
sion or compressibility). We derive below the in-
terrelation of the elastic moduli, n, and C for a
particular but useful form of the thermodynamic
potential which will, in fact, include the results of
previously calculated cases. The relationships
are given for all T & T, and for general type stress
(or strain) variables. We show how these formu-
las can, for certain cases of a second-order phase
transition, yield the complete first- and second-
order stress (or strain) dependences of T, and of
the order parameter at T= 0. A model application
is shown.

II. THEORY

superconductivity, ferromagnetism, ferroelectric-
ity, and some structural transformations). With

T,= T,(o) we obtain the operation

df sf dT. , T sf dT,
d(7 8T~ d(7 Tc ~T dg (3)

~e T~S AG

dq d lnT,=ha= — '
AC~dT do'

dinch; ~S,. dlnT, I
(+ AS,

da b,S do

dlnT, I~ 1 d2P,.
hs~= '

~

TnC~ —ATbS-Q — z' hG, ,do' j ~ Q( do'

Zs, ——
~ TaS g ~G], '7

With Eqs. (1)-(3) and standard thermodynamic def-
initions one obtains the final result

We assume that the difference in Gibbs free en-
ergy per mole, G, between the phases at T & T, can
be written in the form

&G=,-a; T T, g

with

2dlnT, g d In&f&, ES;
do do 4S

where T, and the @,. are general functions of stress
o. The f s are general functions of T/T, and nor-
malized so that f;(0) = 1 and f,(l) = 0. In Eq. (1) and
what follows we define for any property X

dlnT,
I

1 d T,
"

der ) T do

p,.s,
AS) ———

aT (g)

n, x(T) = x"(T) —x'(T ) (2)

as the difference between the (extrapolated) value
of X for the high-temperature phase (X") and the
observed value for the low temperature phase (X )
at any T& T,.

Equation (1) is a reasonably general form of b, G

and is the basis for useful approximations in many
cases of common phase transformations (e. g. ,

(10)

~c,. = mg=f~sav-, . ,.
Tc

Here S (or S, ) is the total (or ith term) entropy,
C~ is the specific heat at constant stress, z is
the strain, a is the linear thermal-expansion co-
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(i) If one assumes, in place of Eq. (1), that

hH=, - q,. T T (12)

where H is the Helmholtz free energy and & is the
strain, one reobtains Eqs. (4)—(11)with the following
replacements:

cr-M e in Eqs. (4) and (5),

&s-&M and o-e in Eqs. (6)-(8),

&C~-4C~ in Eqs. (5)-(7), (10),

(13)

where M is the adiabatic stiffness modulus and C~
is the specific heat at constant strain. Generally,
Eq. (12) yields results which are similar to those
from Eq. (1) though not identical because the ini-
tial assumptions differ. The calculated differences
in the modulus change, for example, are roughly
of order (I-s"/s~). For the relatively rare cases
where this is large it will be necessary to deter-
mine from other arguments which thermodynamic
potential (if either) is correct. '2

(ii) Although tensor notation has not been used in
the above formulas this may be introduced by the
replacements e - e „hn —An„and d/do -d/do
in Eqs. (4) and (5). For the moduli in Eqs. (6)-
(8) replace b,s with 4s ~, (dx/do)2 with (dx/dv, )
x(dx/do&), 2(dx/do) (dy/do) with (dx/do, ) (dy/do8)
+(dx/dgz) (dy/do ), and d2x/dg with d2x/do do„.
The subscripts n and P run from 1 to 6 and give
the components of the usual 1x6 strain and stress
matrices and the 6x6 compliance matrix. For hy-
drostatic pressure p, & is replaced by the fraction-
al volume change (V- Vo)/Vo a by —P, and bs by
&K, where K is the compressibility.

(iii) Generally b, C~ is negative and bS[Eq. (, 10)]
is positive (as defined) for T just below T,. At
lower T, however, b, C~ may become positive (see
Sec. V). When this occurs a "quick" analysis of
o and s via Eqs. (4)-(11) can often be made by us-
ing only data at T=T„T=O, and Twhere AC~ =0.

(iv) This treatment does not require a critical
choice of T,. If the transition onset is broadened
by some mechanism and occurs at Tp, and if Eq.
(1) still applies, the results are still correct ex-
cept that the "base line" for extrapolating X
would be chosen so that hX =0 at T = Tp, This will
allow analyses of a transition which has been
broadened by intrinsic effects (e. g. , fluctuations)
and, to some extent, even sample inhomogeneity, '
provided always that Eq. (1) applies in that tem-
perature interval.

(v) Equation (1) will apply to many second-order
transf ormations. For Landau-type transf ormations
P is related to the order parameter at T=0 and f

efficient, and s~ (or s~) is an isothermal longitu-
dinal (or high-symmetry" shear) elastic compliance.

III. REMARKS

will give the temperature dependence of the order
parameter. However, it must be determined from
other theory to what extent (if any) it applies to all
or any part of a first-order transformation.

(vi) If, in Eq. (1), one chooses the functional
form f,(T, —T) instead of f, (T/T. ,) then Eqs. (3)-
(11)are reobtained with the replacements given in
Appendix A. These generally produce negligible
changes at T- T, for a second-order phase trans-
for mation.

(vii) No attempt has been made to include ex-
plicit anharmonic effects since it will be difficult,
in practice, to rely upon Eq. (1) to higher orders
in o. Furthermore, the complete anharmonic be-
havior necessary for these corrections is general-
ly not known. However, these corrections should
be estimated since they will determine the reli-
ability of the analyses. A very rough estimate of
volume anharmonic corrections for the modulus,
as an example, can be established from

dlns 4V
dlnV V

where b V/V=36m and d Ins/d lnV-twice the Gru-
neisen constant (typically-1 to 3). When (b,s)„„
is - As in Eq. (6), a reliable analysis can no lon-
ger be made.

(viii) This analysis will be useful if, from a
microscopic of phenomenological theory, a free
energy in the form of Eq. (1) can be written. This
will allow measurements of n and s to yield stress
dependences of the parameters of the theory.

IV. ANALYSIS

Equations (4)-(7) show that for a second-order
transformation at T, the thermal-expansion coef-
ficient undergoes a discontinuity —(din /Tdo)b, C~ ( T)
and the longitudinal compliance has a discon-
tinuity (d 1nT,/do) T,&C~(T,). [These results, of
course, have been obtained previously and can be
established through more general relations than
Eq. (1).' ] No discontinuity can occur for high-
symmetry shear compliances since d/do = 0 for all
structure related properties. Close to the transi-
tion only the terms proportional to &C~ yield a
significant contribution'' unless dlnT, /do is very
small or A in Eq. (6) is very large. Thus, the
thermal expansion and modulus anomalies at T,
should normally look like the specific-heat anomaly
and with magnitudes relative to b, C~ of -d 1nT,/do
and T,(d InT, /do)', respectively.

In addition to the change in magnitudes of n and s
at T, there will also be changes in dn/d T and ds/
d T which will be determined by the entropy'5 as
well as the specific-heat terms in Eqs. (5) and (6).
At lower temperatures the full Eqs. (4)-(8) will
apply.

If b, C~ has been measured [and 6S calculated
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TABLE I. Data analysis and base-line requirements. These results are for the simple potential given by Eq. (21).
For the more general case tEq. (1)j the substitutions in lines 2, 4, 5, 7, and 8 can be found by comparing Eqs. (5)-(8)
with Eqs. (B1-B3).

Base-line requirements

Mode

Thermal- expan-
sion coefficient

Thermal-expan-
sion coefficient

Shear compliance

Shear compliance

Shear compliance

Longitudinal com-
pliance

Longitudinal com-
pliance

Longitudinal com-
pliance

Temperature
interval

-OKtoT

5Tc
OK

OKtoTc

C

-OK

-OKtor,

Quantity obtained

d lnT~/do

d 1n~t)/do.

d'r, /der'

d'yldo'

f orgf

(dlnT /do)

d'(jl/do'

2d ln(t) d lnTc 1 d Tc e

&c

Thermal-
expansion
coefficient

Not stringent

Conditional

Modulus

Not stringent

Cond itionaP

Cond itional~

Not stringent

Conditional~

Conditional~

Specific heat

Not stringent

Stringent"

Not stringent

Not required

Stringent

Not stringent

Not required

Stringentb

~Depends on magnitude of anomaly.
~Less stringent if Debye behavior applies.
'Assumes f has been obtained from shear compliances (line 5). Also yields ding/da', d T, /do, and dT, /der alone

if thermal expansion is known.

from Eq. (9)], then the measurement of b, o. will
yield

d ln7.',
dg

and

gdlng, . AS,
do' 6$

d lnT, for longitudinal 0, (18)

If 4s and hC~ have been measured one obtains in a
similar way

about other strain dependences.
Equations (14), (16), and (17) provide useful in-

formation, Eq. (18) somewhat less, and Eqs. (15)
and (19) yield least of all since the b,S„which are
functions of temperature, cannot be evaluated
separately.

To proceed further one must establish, from
other theory, an analytical relationship among the

f, One such choice which has been used for some
transformations is f, = (1- T/T, )', where some or
all integers i are allowed. In this case it imme-
diately follows that

(20)

for shear o,

1 d'y, .&

Z — z' ~&f&, f, for any o,

d lnT, p d in@, AS,. 1 d T,
Gg

&
dg hS T~ do'

for longitudinal o.

(17)

(18)

(19)

with which Eq. (15) now yields P; dr]&, /do and Eq.
(19) is also simplified.

V. APPLICATION OF THE THEORY IN SIMPLIFIED FORM

'The simplest case which is still useful in many
descriptions is to assume (i) all P,. = &f& or (ii) all
first-order (and all second-order) fractional stress
dependences of P, are equal. In either case, this
is equivalent of the starting assumption

A method of analysis for these results (in sim-
plified form) is outlined in Table I. Note that the
sign of d lnT, /do is obtained from the expansion,
but not the modulus measurements. However, the
modulus measurements yield additional information

(21)

The thermal-expansion coefficient and modulus
for this case are given in Appendix B.

Equation (21) is a reasonably good description of
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the superconducting, ' ' some magnetic, ' and
other transitions. One may be able to further sim-
plify Eqs. (Bl)-(B3) if a law of corresponding
states (ndlng=dlnT, ) holds. For example, n--,'
for some superconductors).

I.O

.8—

VI. EXAMPLE

To illustrate the above we use Eq. (21) and take .6—

(22)

The results for AG, 4S, and AC~ are given in
Appendix C. Here we have rewritten b, G (= rf&f),

6S, and 4C~ in terms of AC~(T,), the specific-heat
discontinuity at 7", which is a convenient way to
scale the data.

A. Remarks

.2—

(i) The discontinuity in b, C~ at T, again leads to
discontinuities in 4a and b,s~ proportional to
4lnT, /dg and its square, respectively. Either
sign may occur for An but for s the transformation
must always lead to an increase on cooling.

—.2—
Th, S

c~Cp(~c)

I.O
c

.6 I.O

.8

FlG. 2. Temperature dependence of TDC&, Tb, S, and
Qf [normalized to T~&C&(T~) J obtained from Eq. (22).
These terms, modified by coefficients [see Eqs. (B2) and
(83)j, yield the change in elastic compliance resulting
from a phase transformation.

—.2—

.2

h, S
ACp(Tc)

4

7/ Tc

.8

FIG. 1. Temperature dependence of AC& and &$ (nor-
malized to the specific-heat discontinuity at T~) obtained
from Eqs. (22) and (Cl-C3). These terms, modified by
coefficient t,see Eq. (81)]yield the change in. thermal-
expansion coefficient resulting from a phase transforma-
tion. .

(ii) At T= T, discontinuities in temperature de-
rivatives of S, C~, n, and s are obtained. These
are given in Appendix D. The magnitude and tem-
perature slope of these discontinuities are a con-
venient way to analyze data.

(iii) Analysis at T= T, /v 3 is convenient since
~C~=0. The remaining terms in hn and hs are
proportional to ~S which has its minimum value
equal to —AC~(T, )/3v 3, TESwhich equals -+~ T,b, C~(T, )
and Pf which equals -+ T,6C~(T,).

(iv) TbS has a minimum value of —
8 Tb, C( T)

at T= T, /&2.
A method of data analysis to obtain all quantities

is outlined in Table I. Figures 1 and 2 show the
temperature dependences of Pf, 6S, TES, hC&,
and ThC~ (all normalized) obtained from Eq. (22)
which determine the separate contributions to hn
and hs. Figure 3 shows the resulting behavior of
Ae and As assuming, for illustrative purposes
only,

dlnT, 1 ding 1 d~T, 1 dag dlnT,
do 2 da T, do 2/do do

for longitudinal compliances. For shear compli-
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FIG. 3. Illustration of thermal expansion and com-
pliance behavior predicted from Kqs. (B1)-(B3)and

(Cl)-(C3). The parameters assumed for these plots are
given at the end of Sec. V. For convenience we have put

H H H

ances we also take (1/T, ) (d'T, /do') = (I/2Q) (d 0/
do~) which we further set equal to —(ss /sz) (d lnT, /
do~) for the longitudinal case.

VII. SOME LIMITATIONS

(i) Successful analysis requires that the proper
base lines for C~, n, and s of the high-temperature
phase be extrapolated to 0 K. If T, is low, Debye
(for C~) and Gruneisen (for o.) behavior may be
used to approximate the behavior. The compliance
can be extrapolated using similar models. At high
T the extrapolations are more difficult. For C~
above T, one may calculate the Debye contribution
(Cv) and assume the remaining portion (electronic,
and volume and shear anharmonic contributions) to
be proportional to T. This will allow a reasonable
though not accurate extrapolation to low T. Sim-
ilar methods, including the use of the Gruneisen
relation, can be used for n and s. Uncertainty in
this extrapolation may restrict the amount of data
obtained from the analysis. Table I indicates how

critically the various parameters depend upon the
base-line accuracy.

(ii) In all relations above the static isothermal
values of C, e, and s are implied. If the modulus
is measured by ac techniques then dispersion from
various relaxation phenomena may contribute er-
ror. In addition to those discussed elsewhere the
experimenter must determine if there are relaxa-
tions resulting from critical behavior (when &ur-1)
close to T,. Fortunately, it is often possible to
bypass this small temperature region and still ob-
tain useful data.

(iii) If the transformation involves a change in
microscopic (x-ray structure) or macroscopic
(domainformation) symmetry some effect on n or
s measurements may occur. For the latter, domain
wall motion, especially at low frequencies, may
contribute in a manner similar to the "hE" effect
in ferromagnetism. If the effect is large it may be
best to remove the domains with an appropriate .

force (magnetic, electric, or stress) field whose
direct effect on the modulus is small or can be de-

terminedd

separately.
We have attempted to outline some of the experi-

mental problems in applying the thermodynamic
derivation given above without giving detailed so-
lutions to them. The most effective methods will
depend upon the experimental conditions and the
material being studied.

An application of these results to a ferromag-
netic transition will be given in a forthcoming pa-
per '
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APPENDIX A

For f, in Eq. (1) of the form f;(T, —T) instead of

f&(T/T, ), Eqs. (3)-(11)are reobtained with the
replacements

T/T, -l in Eq. (3), T- T, in Eq. (4),

LC~-~b, C~ in Eq. (5), 'b.S-O in Eq. (5),
T d InT,

T4C~- (TJT) aC~ in Eq. (6), TAS- T,AS

in Eqs. (6) and (7),

(d lnT,—2i ' -0 in Eq. (8).do.

APPENDIX B

The thermal expansion and modulus obtained
from Eq. (21) a,re

dlnT.
b,C,+

din dlnT. ~S
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Qf= hG. (B4)

d ln T, s d in/ d ln T,
dg ~ dg dg

(S2)
1 d'T 1 d'P

,' T~S- —,Pf,
Tc dg

d~S ~C,(T,)
GT T

dTAS = aC~(T,),

d~C, 4~C,(T,)
8T T~

dTb, C~'= u, c,(T,).

(D2)

(D4)

APPENDIX C

From Eq. (22} one obtains
From these and Eqs. (Bl)-(BS) one obtains, at T„
the discontinuities in temperature derivative

bG =- s T,ACq(T, ) (1-T /T, ),
nS =-(T/2T, ) ~C,(T,) (1- T'/T', ),

&C~ = —(T/2T, )&C~(T,) (1-3T'/T', ),
b, C~(T,) = —8&f&/ T,.

APPENDIX D

(Cl)

(C2)

(C3)

(C4)

dAn d in/ 5dlnT, nC, (T,)
ifT dg dg

d&sJ. d lnT, d in/ d lnT,
4T gg gg gg

hC~(T, ),
1 cPT

Tc do' (D6)

From Eqs. (22) and (Cl)-(CS) one obtains at

C

1dT"„'*=— —'"„;)~c,(7.)
C
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