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The infinite-temperature space- and time-dependent spin-correlation functions g„"(t) are studied for the one-
dimensional XY model, Numerical calculations are performed to obtain the exact autocorrelation function
go(t) for chains containing 5, 7, and 9 spins (S = 1/2). This yields exact results for the first 16 moments of
the frequency autocorrelation function of the infinite chain, and estimates for a few of the higher moments as
well. The analysis suggests that go(t) for the infinite chain is identical to exp( —J't')/4. We show that g„"(t)
for &4 0 vanishes identically for all values of time, implying a wave-vector-independent. relaxation shape function.
Our result for go(t) is compared with that obtained by Huber for the classical (S = co) chain.

I. INTRODUCTION

The one-dimensional XY model has attracted
considerable attention as a nontrivial many-body
problem having interesting physical properties. '
The Hamiltonian is described by

1C„=2J'Q[(1 +y) S,"S",„+(1 —y) S";S',„], (1)

where J is the strength of the interaction, S,. is the
spin vector of the ith particle (S =-,'), and y is the
anisotropy parameter. Lieb, Schultz, and Mattis
showed that R„can be transformed into one describ-
ing a set of noninteracting fermions and made a de-
tailed study of its ground-state (T =0) properties.
Katsura' introduced a magnetic field in the z di-
rection and obtained exact results for the tempera-
ture and magnetic field dependence of the various
thermodynamic properties. McCoy and later Ba-
rouch and McCoy' made a detailed investigation of
the various space-dependent spin-correlation func-
tions at different temperatures. Suzuki studied
the effect of introducing a staggered magnetic field
along the s direction. He later introduced a gen-
eralized XY model and examined its relationship to
other exactly soluble magnetic models.

Recently, the dynamic behavior of this system
has also received a great deal of attention. Ba-
rouch, McCoy, and Dresden introduced a time-
dependent external magnetic field in the z direction
and solved the Liouville equation exactly. They
demonstrated that for ye 0 the magnetization shows
nonergodic behavior. This rather peculiar be-
havior was also observed by Mazur, Suzuki, ' and
Girardeau. " The space- and time-dependent spin
pair-correlation functions g„'(t), defined by

g,"(t)=(S,"(t)S„'),
are of considerable interest also. Niemeijer" and
also Katsura, Horiguchi, and Suzuki" obtained
exactly the longitudinal correlation functions g „(t).
Because of mathematical complexity, however, the

knowledge of transverse correlation functions
g"„(t) is rather limited. Barouch and McCoy"
examined the asymptotic behavior-of g"„(t) at T =0
as r-~ and t-~. They found it to be an oscillatory
factor times t ~, where p is a fraction depending
on the values of the parameters of the Hamiltonian.
Very recently, Capel, Van Dongen, and Siskens"
obtained analytically a few of the high-temperature
and short-time series expansion coefficients of
g"„(t) for r~ 6.

Here we focus our attention on the isotropic XP
model where the Hamiltonian 5Co is given by Eq.
(1) with y =0. We also confine ourselves to the in-
finite-temperature cor relation functions

g"(t) = Tr(e' o'S", e ' O'S„")/Tr(1)=g, (t) ~r=„. (3)

and also its frequency Fourier transform f„"(v),de-
fined by

(4)

The trace in Eq. (3) can be taken over any com-
plete set of states.

We present here a study of the autocorrelation
functions go(t) and go(t) for the short-time region
(Jt-3) for the infinite linear chain on the basis of
ab initio calculation for finite linear chains con-
taining N spins for N= 5, 7, and 9. Our result for
go(t) is in excellent agreement with the exact re-
sult and confirms the accuracy of our method. The
first 16 moments of fD(m) for the infinite chain are
found to be identical to those of a Gaussian. The
transverse crosscorrelation functions g"„(t) for
x~ 0 are shown to vanish identically for all values
of t. This, however, is not true for the general
anisotropic Heisenberg model.

The results are presented in Sec. II and some
concluding remarks are added in Sec. III.

II. RESULTS

The method of obtaining g;(t) (v =x or z) for a
finite chain coritaining N spins is identical to that
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of a recent study of linear Heisenberg chains. "
We first introduce the periodic boundary condition,

(5)

I.O

for each i. This enables one to diagonalize Xo nu-
merically in a representation in which the transla-
tion operator T and the z component of the total
spin S' are diagonal. The trace in Eg. (3) is then
evaluated over the eigenfunctions of Xo. The mo-
ments (p,*„)» of f"„(~), which are given by the Taylor
series expansion of g"„(t) around t =0, namely,

N 0
C3

0.0

t20
g",(t) = (u*„)p+ (-1)"(p"„)» (2&), ,

(&~)o = 45o, r ~

can also be evaluated in this representation. We
shall on occasion use the normalized correlation
functions Go(t), defined by

Gp (t) =g Q(t)/g()(0) =48 Q(t) . (7)

where J, is the Bessel function of order 0. As has
been observed previously, addition of spins to a
chain modifies G;(t) at successively longer times,
keeping the short-time behavior relatively un-
changed (see Fig. 1). We define 7„to be the time
domain up to which the N-spin result for Go(t) re-
produces that of the infinite chain accurately. Fig-
ure 1 indicates that J7.5-1, Jv, -2, and JT9 3. The
result for Go(t) for each value of N investigated is

To illustrate the accuracy of our method, we have
plotted in Fig. 1 our numerical results for Gf(t) for
N = 5, 7, and 9, and also the analytic result for the
infinite chain obtained by Niemeijer, "namely,

I 1 I I I I I

0 I 2 3

Jt
FIG. l. Exact normalized infinite-temperature longi-

tudinal autocorrelation function C8p(t) for the nearest-
neighbor one-dimensional XY model for different values
of ¹ The solid curve is the analytical result of Niemei-
jer (Ref. 12) for the infinite chain.

in excellent agreement (within the accuracy of our
computations' ) with the exact result for N= ~, if

The moments of fp(e) are shown in Table l. The
N-spin result is expected to reproduce the moments
of the infinite chain up through (p,o)p~, exactly. '

Empirically (see Table I), it also seems to provide
lower bounds for a few of the higher moments as
well. A comparison of our results for N=5 and
N=7 shows that the moments (po)p through (Iuo)p

are identical in these two cases. One also notes
that (po)go and (go), p for N=5 are within 1.2% and

5%, respectively, of those obtained for N=7. Simi-
larly, (iLp)y4 and (po)M for N = 7 are within 0.03/o
and 0. 2/o, respectively, of those obtained for N=9.
We believe that this trend continues for higher val-
ues of N as well and probably arises because of the

TABLE I. Moments of the infinite-temperature transverse autocorrelation function f (%(~) for the
nearest-neighbor one-dimensional XF model. Entries up through those marked (a) are identical to
those of the infinite chain for each finite value of N investigated. In the fifth column (N= m) entries
up through (pp)~6 are identical to those for N=9. The (pp)~8 marked (b) in the table, and the higher
entrie~. in the same column should be considered as lower bounds of the exact results only.

0
2
4
6
8

10
12
14
16
18
20
22
24

0.25
0.500000
3.00000
30.0000
420 000
7469. 00
0, 157878x 10
0. 378744 x 107
O. 998628 x 108
0.282815 x 10~p

O. 845415 x 1O"

0.25
0.500000
3.00000
30.0000
420. 000
7560. 00
0.166320x 10
0.432307 x 107
0.129498 x 108
O. 438355 x lO"
0.164966 x 10i2

p "2k/J
N=9

0, 25
0.500000
3.00000
30.0000
420. 000
7560, 00
0. 166320x 10
0.432432 x 10'
0. 129730x 10~

0.441079 10
0. 167605 x 10~2

0.703861x loi3
0.323669 x 10"

0.25
0.500000
3.00000
30.0000
420. 000
7560. 00
166320.0
0.432432 x 107
0.129730x10~
O. 441OS x 1O"b

0.1676x 10~2

0.704 x 10~3

0, 32x 10~~

1( J2t2)

0.25
0.50
3.00
30.00
420. 00
7560. 00
166320.00
4324320. 00
0. 12972960 x 109
0.44108064 x 10
O. 16761064x 10"
0.70396470 x loads

O. 32382376 x 10~&
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FIG. 2. Test for Gaussian hypothesis for the normal-

ized infinite-temperature transverse autocorrelation
function G~o(t) for the nearest-neighbor one-dimensional
XY model.

lower dimensionality of our system. In column 5
of Table I, we provide exact results for the first 16
moments and also estimate lower bounds for (p,o)„
through (po)24 for the infinite chain. Our results
for (p,",), and (g",)4 are in excellent agreement with
those obtained by McFadden and Tahir-Kheli. '
The (p,",)4 and higher moments have not been cal-
culated previously. The last column in Table I
containsthe momentsof aGaussian f(t), defined by

f (t) i e J4-'
A comparison of the last two columns in Table I
shows that ea.ch of the known moments for N=~ is
identical to that of f(t). This suggests that go(t)
for the infinite chain may be identical to f (t). We
know of no rigorous proof of this result.

To investigate how go(t) for finite chains ap-
proaches the Gaussian behavior, we have plotted
I4(t), defined by

(10)

malize his result. A comparison of the two cases
is illustrated ~n, Fig. S. The asymptotic behavior
for large values of t is quite different for the two
cases, in contrast to the Heisenberg chain, where
it was found to be rather insensitive to the S value. '

At infinite temperatures, the transverse off-site
(or crosscorrelation) functions g"„(t) for rx0 vanish
identically. This can be seen term by term in, say,
the diagram expansion discussed by Wortis, where
classes of diagrams vanish either because J g J =0
or because P =1/t4eT =0. The correlations for r an
odd integer can be seen to vanish by the usual sym-
metry arguments. These results are of course
reproduced explicitly in the calculations on the fi-
nite chains.

III. CONCLUDING REMARKS

Since g'„(t) vanishes for r 0 0, the wave-vector-
dependent transverse relaxation shape function
F",(t) for our model is given by

independent of q. In the theory of magnetic reso-
nance, the q =0 mode of F",(t) is referred to as the
free-induction decay function. 2' Its frequency
Fourier transform is identical to the NMR line
shape. 2 We therefore conclude that the NMR line
shape for the one-dimensional XF model is a Gauss-
ian, provided that the magnetic field is applied
along the z direction. The usual phenomenological
arguments which predict a Gaussian line shape,
however, cannot be valid for this system. A simple.
physical interpretation and a rigorous proof of our
result is still lacking.

against Jt for N=5, 7, and 9, as shown in Fig. 2, .

which indicates Jv, -1, and J~7-2. Assuming the
same trend to continue for N=9, one obtains J~9- S.
We note that for t within v„h(t) is identical to 1
(within the accuracy of our calculations). Our nu-
merical result on Go(t) for %=9 shows that it has
already decayed to 10"4 when Jt- S. We therefore
hypothesize that Go(t) for the infinite chain is givenby

Go(t) =e ' '2 2

x

I.O S=—
2

Recently, Huber' has obtained numerical re-
sults on go(t) for a classical (S =~) chain by Monte
Carlo methods. To compare our result with his,
we scale his result according to the transformation

Z=Z /~3

where J„is the exchange constant, as defined in
Ref. 19. This ensures that the two models have
the same second moment. We also properly nor-

0.0

Jt
FIG. 3. Comparison of normalized infinite-tempera-

ture transverse autocorrelation function for the nearest-
neighbor one-dimensional XF model for different values
of S. The solid curve is our present result for S=y.
The dashed curve is the numerical result obtained by
Huber (Ref. 19) for S=~.
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m4/(m2)' = (Po)4/4((P"o) j' = 5 —2/d, (14)

where d is the dimensionality of the lattice. Since
the ratio in Eq. (14) must be exactly three for a
Gaussian function, F",(t) cannot be Gaussian for all
times when d & 1.

Our arguments that the cross-correlation func-
tions vanish can be generalized to other loose-
packed lattices. In particular, this shows that
E,"(t) for the square and simple-cubic lattices26 are
also independent of q. Results for the second (m, )
and fourth (m4) moments of the frequency Fourier
transform of Go(t) for hypercubic lattices" show
that
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Note added in proof. The question as to what
happens when ycO in Eq. (1) has been raised (13.
M. McCoy, private communication). One can show
(see Ref. 15) that for this case m4/(ma)~ 3[1+y(y
——,')]. This shows that for a general nonzero value
of y, other than y=3, Go cannotbe a Gaussian. It
remains to be seen if the higher moments for y= —,

'
are also equal to those of a Gaussian.
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