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In a recent paper, Lai introduced a lattice-gas model. In this paper we generalize Lai s model, making
application to various systems such as dilute Heisenberg magnets, higher-spin systems, and a lattice of SU(3)
triplets. By a careful consideration of general thermodynamic stability, and by variational arguments, we

demonstrate Lai s solution to be incorrect, and in turn produce the correct solution in this case and in other
cases including higher-dimensional models. The remaining cases we treat in one dimension by Bethe s ansatz,
reducing the problem to coupled integral equations. We locate the singularities of the ground-state energy in
the phase plane; and we explicitly calculate the absolute-ground-state energy, excitations above the absolute
ground state, and the first correction to the absolute ground state for small concentrations of impurities.

I. INTRODUCTION

In a recent paper, Lai introduced a model for
a quantum lattice gas and presented a solution in
the case of one dimension. However, his solution
is incorrect for his most interesting example
6 = —1 (our example B F), and thus his conclusion
that two phases will coexist for some fixed con-
centration is invalid. This can be seen by noting
that upon expanding the ground-state energy E/L
as a function of M/L for fixed N/L, both of Lai's
equations (15) and (20) give a positive correction.
However, E/L for fixed N/L must be symmetric
in M/L about N/2L and by the requirement of
thermodynamic stability, must be concave upward.
Thus the first correction must be negative or zero.

The reason for Lai not obtaining the true ground
state appears to be that neither of his assumptions
for the distribution of quasimomentum in Bethe's
ansatz corresponds to the ground-state distribu-
tion. In fact, it is unclear in what sense Bethe's
ansatz is a solution in this case.

We have avoided this problem in the present
paper by instead using general arguments of
thermodynamic stability coupled with lower bounds
on the ground-state energy from the variational
principle. This method has a definite advantage
over an explicit solution for the wave function and,
in fact, gives results in higher dimension as well.

The other situation that Lai considered, his case
6 =+1, corresponds to our BIl, and in this in-
stance our equations agree.

Although our primary purpose is to discuss Lai's
solution, we have in addition considerably general-
ized and rephrased the original problem. For in-
stance, our Eq. (1) would be a natural choice for a
prototypical Hamiltonian to exhibit the phenomena
of mixing in a multicomponent system. In this
formulation, we no longer have the arbitrary re-
striction of a coupling constant to particular val-
ues, i.e. , 4=+1. Finally, numerous applications
are made to various branches of physics in which

multicomponent systems are of interest.
The final portion of our paper is devoted to ex-

plicit calculation of properties of interest and the
demonstration of their dependence on the number of
components.

II. STATEMENT OF THE PROBLEM

(2a)

QQ N~~ =N, (2b)

Consider a periodic one-dimensional lattice of
N sites. Place Nobjects, or particles, on this
lattice exactly one to a site. Let the operator P~,
permute whatever objects occupy sites j and k. We
then wish to compute the eigenvalues and eigenfunc-
tions of the Hamiltonian H,

H=+g P~, ,+, (N+1=1). (1)
J=1

The problem is obviously invariant under the permu-
tation group S& We shall also have occasion to
consider the corresponding problem on a square or
cubic lattice.

We must further specify the nature of the N ob-
jects. We assume P species, or components, de-
noted A, B, . .. , P. Objects of a given species A
are identical, but may either be bosons A. =+1, or
fermions A = —1. This specification of species
statistics we designate as type (P}=(A, B, . .. , P}.
Further, if x of the species are bosons and y are
fermions, x+ y = P, then we shall often write the
type (P}as B"F'.

Let us define N„as the number of objects of
species A. The N& are constants of motion, for
the permutation operators do not create or annihi-
late particles. If we further define N» as the num-
ber of nearest-neighbor pairs of species A and B,
then we have the following relationships:
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1
NA

——NAA + —~ NAB
2 B(AA)

We denote such a Jordan-Wigner transformation
on the species A by KA. Then the effect of KA is

NAA + NA (2c)
KAHKA =H+24AA,

=(-X, a, . . . , P$. (7)

Corresponding quantities normalized to the total
site number Nwe denote by lower case n, i.e. ,
nA ——NA/N, n= 1.

It is useful to define a restricted Hamiltonian
H(/P)) which will be equivalent to H if we only con-
sider states of type (Pj,

a({~{)=+ Q ~~„+P.Z y .) .
A A&B

The operator Q„B permutes only nearest neighbors
of species A. and B, otherwise it gives zero. This
restricted Hamiltonian is invariant under S„8~ ~ ~

8 S~ , not S~.
If two operators are related by a unitary trans-

formation, they have the same spectrum. In prepa-
ration for later discussion, we catalogue here the
following unitary transformations, and their effect
on H and fP):

(a) Let us multiply all wave functions by the
wave function completely antisymmetric in all ob-
jects. This operation we denote by J, and

Z, Hr. =-H, L,&P&=&-P).

We see that the ~ sign in the original expression for
H is unnecessary, if we vary the type. We hence-
forth choose the minus sign.

(b) Consider the following operations, denoted by
JA: Proceed around the lattice (N even) and at
each even numbered site, multiply the wave func-
tion by +1 if no particle of species A is present,
—1 if there is a particle of species A present.
This operator then transforms H by

~AH~A H+ 2 Z 4 yAB+A(P j=(P) .
B (WA)

Thus JA on H changes the sign of JAB, all Bw A.
(c) The previous operations may be applied to

higher dimension, as well as to the one-dimensional
problem. However, there exists a transforma-
tion-the Jordan-Wigner transformation —applicable
only to one dimension. This transformation may be
used to change bosons into fermions and vice versa. ,

We first note the well-known lattice-gas analogy
between hard-core bosons on a lattice, and two-
component spins on a lattice: If S, = --,', there is
no boson; if S, =+&, there is one boson. Then, in
terms of the Pauli spin operators, the Jordan-
Wigner transformation to fermion creation and an-
nihilation operators C ~, C is

CJ —-0'j 0 k.
k=

That is, the transformation changes the sign of
On the other hand, if we vary the signs of

all the terms QAA in H, we need not vary the type
fPj at all.

The restricted Hamiltonian is invariant under
KA, but since the type of any wave function does
change, we conclude that the eigenvalues of the
restricted Hamiltonian are independent of the type.

(d) We define K= II„K„, and thus

KHK=P y„„-gP y„„K(P)=( P).
A A&B

(e) Finally, if we multiply K and I, to give a
transformation J—= KI, then

~H~=- Q &AA+ZZ&AB, ~IP) =fP).
A A&.B

(8)

(9)

III. GENERALITIES

In this paper we shall consider the ground-state
energy Eo, or e =ED/N, for the' Hamiltonian of
Eq. (1) with the minus sign. First, we shall de-
rive some general properties of e((P); n„, ~ ~ ~,
nB).

It is easy to verify the stability property that
e((PJ; n„) considered as a function of the concen-
trations nA is concave upwards: To derive an up-
per bound on g at a concentration

n„=a n„'+ (1 —a) n„(0 a 1), (10)

we divide the system into two fractions; aN and
(1 —a) ¹ In the first portion, we take as a trial
wave function the ground state at a concentration
nA', and in the second, the ground state at a con-
centration rP„. Then by the variational principle,

a(n„) & ae(n„)+ (1 —a) E(n„).

This is precisely the statement that s(nA) con-
caves upwards as a function of nA.

Suppose we have two species A. and Bwhich are
both bosons; i. e. , A = B=+ 1. I et us consider the
reduced Hamiltonian,

H((Pj) = —(NAA+ NBB + JAB)

(AAC +

ABC�)

Z + LCD ~ (12)
C(AA, B) C D

(&A B)
The minimum of the operator —JAB is equal to

Thus, if we let the label S represent either
AorB,

H((P)) o NBB Q NcB -QQ QB . (13)
C (&8) C~D

(&8)
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If we consider eigenstates of H((P') of type {P'j,
where

(P') =(S=l, C, D, . . . , P), (14)

then these states will serve as acceptable states
for H((P)}. We then choose the ground state
(0($P')) to minimize the right-hand side of Eq. (13)
with the ground-state energy z((P'); nB, n0, . . . ,
nB). We finally conclude

s(fl, 1, C, . . . , P); an, (1 —a) n, ~, . . . , ~&)

~ g(fl, C, . . . , P); n, ~, . . . , nB) (0~ a~ 1).
(1~)

But by the concavity property, the reverse must
also be true, and hence we have an equality,

s((1, 1, C, . . . , P); an, (1 —a) n, ~, . .. , nB)

=c(fl, C, . . . , P); n, ng, . .. , n)(0 a 1).
(16)

H NBB —NBB —@—BB

= NB —NB —QBB

Thus all eigenfunctions are given by the familiar
expression

e(X„.. . , X„,}=detrexp(fK, X,)], (18)

where

In words: If two components of a P-component
system are bosons, then the ground-state energy
is identical to a (P —1)-component system.

Before restricting ourselves entirely to one di-
mension, we briefly summarize the few solutions
to Eq. (1) which are known exactly in three di-
mensions. First, the one-component systems are
obviously trivial. Second, by Sec. II, the ground-
state energy for B F' is equivalent to BE'. Thus
for 8", &= —1.

Third, let us consider BE. We use a representa-
tion where bosons are represented by vacancies on
the lattice and the fermions hop about. Then the
corresponding reduced Hamiltonian is

(+NAA + BNBB) CAB (22)

We consider each site as a spin &, with species A
given by spin-up, species 8 given by spin-down.
Then, in terms of the Pauli spin matrices o„, o.„
o„we have a representation of

~AB =2 2(&40'x+0~ 0I}~ (23a)

and

+ P —', (1+0, a', ), BB

AKAA+BNBB = —Q 2(l+0go'g), FF . (23b)

+go, , FB

The expression g„„represents a summation over
nearest-neighbor pairs.

Since $0, is a constant of the motion, equal to
N„-N~, which may be fixed at will, we find the
following cases:
(a) BB,

H= ——g (1+0 ~ 0').
nn

(24)

Thus this type corresponds to a Heisenberg fer-
romagnet.
(b) FF,

H=+ Q (1 + 080' —(T„0'„—0y(T y) .
nn

(26)

Let us transform this Hamiltonian by the operator
J'of Eq. (9), which changes the sign of &f&AB. Then
the transformed II is

the exact solution, we will first give a few ex-
amples of systems to which the Hamiltonian of Eq.
(1) would apply. For the case of two species P=2,
it is natural to use the language of spin-1/2 sys-
tems. The reduced Hamiltonian is

X,. =2vn; /N ~, n& are integers,
1

H = + — (1 + 0' 0') .
nn

(26)

j=l, ... , N~,' a=1, 2, 3.
Then the energies are

2
6 = sg —'ply —— cosK~

(19)

(20)

This type corresponds to the Heisenberg antiferro-
magnet.
(c) FB,

For the ground state in one dimension,
II ocr +oo w 0

nn
(27)

e, =2n„—1 —(2/m) sin(mnB) . (21)

Lastly, Eq. (20) or (21) also gives the ground-
state energy for B"E.

IV. EXAMPLES

In the remainder of this paper, we will consider
only the case of one dimension. Before presenting

This type corresponds to the X- F model.
Exact solutions have been found for all of these

cases, and we will make use of these results in our
later analysis of the three-component system. Lat-
tice-gas interpretations for the above systems are
also familiar in the literature.

We now consider the case of three components
P=3. There are four distinct choices for the par-
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&= —(0'oi+ Sos) —Noo —(N«+ &&i+ 0'ei) ~ (28)

ticle statistics. We discuss each in turn, again
using the language of spin &. Place M spins on a
lattice of N sites, one to a site —thus M—N. We
then call an empty site, or vacancy, species A;
spin-up species B; spin-down species C. In an
obvious notation, A = 0, B= 0, C = 4.
(a) BBB, A = B= C = l.

We write the Hamiltonian as

We find the Hamiltonian to be

If = T —(N —2M)

——g (1 —o, o','+ o„o„'+ o, o',) .
S@po

(35)

We now apply a unitary transformation JJ~ from
Eqs. (5}and (9) which has the effect of changing
the sign of P„. Thus the final form for the trans-
formed H is

The first-term "hops" spins to nearby vacancies
and thus represents the kinetic energy of the spins.
We denote it by T. The last term may be written
with Pauli matrices as

Z= T+ V- (N-2M),

with
1

pV= ——Z (1 —o o).
S@po

(36)

(37)

—(N„+N„+N„) = —g —,'(1+o ~ o') .
S@P@

(29)

The symbol g,., represents a summation over
nearest-neighbor spin pairs only.

Using the relationships between the various N's
given in Eq. (2), we may rewrite Noo as

Noo=No N, -N, +N„+N„+N„
H= T+ V+N-2M,

with

(38}

The system is now a dilute Heisenberg antiferro-
magnet, inclined to form bound pairs of spins.
(d) EEE, A = B= C = —l.

Again we apply the transformation JJ„ to give a
Hamiltonian

=N-2M Q+1.
So po

(30) 1
V= —~ (3+o ~ o').

2 s po
(39)

The first two terms are constants of motion, which
may be fixed. The last term is the number of spin
pairs. If we combine this with Eq. (29), we obtain
an interaction V between nearest-neighbor spins of
the form

V= —g o(3+a'o')
S@p0

(31)

Thus, if energies are measured with respect to
separated spins, we find that spin pairs in a singlet
state have zero energy, while spin pairs in a trip-
let state have energy —2.

The final form for our Hamiltonian is

B= T+ V —(N —2M) . (32)

H= T+ V+N-2M, (33)

The obvious interpretation is as a dilute Heisenberg
ferromagnet which prefers to form bound pairs.

The discussion of the other three types proceeds
similarly, and we will present them with less de-
tail.
(b) FBB, —A=8= C=1.

We find the Hamiltonian to be

This is the case of a dilute Heisenberg antiferro-
magnet, now with no preference for bound spin
pairs.

Thus our original Hamiltonian of Eq. (1) contains
a wealth of particular models. For the examples
just given, that of dilute magnets, we may expect
both magnebc and electric behavior, with the pos-
sibility of singular behavior in the ground state.

Other interpretations are possible for three-
component systems. The first that comes to mind
might be a spin-1 system, with S, =+1, 0, —1. But
this is not the most natural, and we delay discus-
sion for the moment. Instead, we return to the two-
component system and note the Heisenberg mag-
nets,

H=kP o'o

We may consider the three Pauli spin matrices
o„(o.=1, 2, 3) as the generators of SU(2); If is
similar in form to the Casimir operator. From
this viewpoint, a natural generalization of Eq. 40
to the three-component case would be a Hamiltonian

V=+ —,'(1- o o') . (34)

where T is the kinetic energy as before, but now
the interaction energy V between spins is H=+2g P F„E',

nn a=1
(41)

Sopo

Again the interpretation is as a dilute Heisenberg
ferromagnet, but this time there is no preference
to form bound pairs over separated spins.
(c) BFE, A= —B=—C=l.

where F (o. =1, . . . , 8) are the generators of
SU(3).

The equivalence of Eq. (1) and (42) is most easily
seen by using instead of I" 's, the nine traceless
3x 3 matrices A,~:
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(A.')gr = ~~x4 —3 ~~. ~yx.

Then the Casimir operator is

2E =—QA "A

We note the relationships

Q (A„A'"+A "A„' ) = P „

(pw v; no sum over p, , v), and

A~ A~ —(j5~~ 3 2N~+19N.

Thus'

Q A„A~". =Q Q~„—', N. —

(42)

(43)

(44)

(46)

V. SOLUTION OF THE PROBLEM

We now present the exact solution of the one-
dimensional problem. First, we restrict our-
selves to types of either E or BF . If we have
these solutions, then by the arguments of Sec. VII,
we have the ground-state energy for all types. This
is not to say the other types are not interesting,
for we do not have the excited states. However,
until the excited states of the Heisenberg ferro-
magnet are understood, we can not expect to pro-
ceed with the multicomponent cases.

We now order the species so that the first P
species are fermions with N, &N~& ~ ~ ~ & NP. We
define the partial sums,

" (33(3)(3)(3) " , (47a)

In fact, due to the extensive symmetry of the
original problem, we may actually solve the more
general problem of either a chain

M) —— N) ——N- NJ .
ye)

(51)

We now consider the fermions of species 1 as a
background through which the other M, objects
move. We write the Hamiltonian as

or

~ "b)P)(3)Ã" (47b)

T~ ~ = 2S~ S~ = 4I.

Then we have the identity,

(48)

A„A,"=2+ (S,S,'+-,' T~„T~„)——', 16N. (49)

g ~ V

Q~„=Q (2S~8~+ T~„T„'„)—5N. (5o)

Considered as a model of a spin-1 magnet, we have
not simply dipole interactions but also tensor inter-
actions. Again, there are some nonequivalent
choices of sign for the various terms in Eq. (50).
The total spin components are individually con-
served.

(3) and (3 f are the two nonequivalent contragradient
triplet representations of SU(3), often called quark
and antiquark.

In the same way that Eq. (40) is invariant under
the total SU(2) group, Eq. (41) is invariant under
the totalSU(3) group. The conserved quantities—
total third component of isospin and total hyper-
charge —are linear combinations of the particle
numbers N„.

Finally, we remark that a similar correspon-
dence exists between the P-component system and
an SU(P)-invariant interaction.

We now return to consider a spin-1 representa-
tion for our system. This is most easily done by
writing the SU(3) generators in terms of the three
spin operators S, (p =1, 2, 3) and the six tensor
operators T~„=S~S„+S„S~. The six tensor opera-
tors are not independent, however, for

B

However, we may use the relation

N~~ N —2M'+ Q—— N~~
A~B

to write

H=N —2M'+ T —Q (Q~~ —N~~) .
A& B

(53)

(54)

We seek solutions to this Hamiltonian as a wave
function 0'(X„~,X„), where X„.. . , X„are
the locations of the M=M, objects, of the form
known as Bethe's ansatz,

g, =+A(q, P)exp iP X,.K,
P j'=1

(55)

&
~ ~ ~ ~ ~ ~ .=~,"& ~

where

(57)

Here P is one of the MI permutations of the K's
(not to be confused with the number of species of
fermions), Q is one of the M! permutations of the

objects, and the X's are ordered so that X, & X&
~ ~ & X„. We may easily determine the eigen-

values of H, provided that such a wave function
exists, by considering the particles to be separated.
Then the final term of Eq, (54) gives zero, and we
have

M

E=N 2M —2g cosK&—.
)=1

As is familiar in such verifications of Bethe's
ansatz, we arrange the M! coefficients A(Q, P), for
fixed P, as a column vector $z. Then we find that
the boundary conditions at X4=X5 —1 can be satis-
fied provided
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Fzzz ——(X,z+ P ())/(1 —X(;) .
Here P z interchanges Q and Q(), and

X„. (I+ e'rz) (I+e'~~)

We now make a change of variables,

n, (K,}=-,' tan(-,'K,),
so that

X(,. = i/(n, —n, ) .

(58)

(59)

(60)

(61)

are smoothly distributed with densities R,.(().) be-
tween limits +B, These densities are normalized
so that

„+B~
M.

R, (o()dc(=2m~ =2zzm,
-B ~

(64)

Then the Eqs. (63) become integral equations for the
densities R,.(n). If we arrange the densities R&(o.)
as the elements of a column vector R, then the in-
tegral equations may be put in the concise matrix
form

However, this is precisely the form treated by
Yang and more generally by Sutherland. 4 Thus
we immediately have that the Eqs. (57) are consis-
tent, and that requiring the problem to be periodic
imposes the following coupled algebraic equations
on the K's:

$ =R+KBR.

Here,

dK 4
~ d& 1+4m~ (66)

; (, ) 11(a—P+-,'() 11(a
—a' —

i)

).) (P —i)' —
i) II (P- u —iia)

'
((i) —i' ——,'-il

(62o,} R;(cz), I n I
& Bz

)

0, fn[ &8,.
(67)

and K is a matrix whose elements [K];, are integral
operators. Let us define K„as the integral opera-
tor

g (&g
—t' —i j-) (g —5 —~i

g —0'+z, g &+-, z

1 ~'" 2ndpK. 4(~) -=2, 1,„,( )z g(p) (68)

or (62K)
It has eigenvalues given by the Fourier transform
K„(k)

Equation (62$) presents the two alternate choices
for the final equation, the first corresponding to
E" and the second to BF . All intermediate equa-
tions have the form of Eq. (82P). In all, there are
I' —1 equations for M, variables n, Ma variables
P, . .. , Mz z variables t if F; or P equations for

.M& variables n, .. ., M~ variables f if BF .
We now take the logarithm of these equations,

K (k) =e

We note the relation

K„K =K„](„,)

We may now write out the matrix K for the two
cases: If E, R is of dimension I' —1, and

[Klz;=5;iKz —(~;,g+z+5z, g z)Kz.

If BE, R is of dimension I', and

(68)

(71)

)iK(n)= RwJ -g 8(a- G)++ 8(2a —2))), (63o.)

+8(p- p')=2zzJ&++8(2p-2o. )++8(2p 2y), -
gt Ot y

(63P)

[K];,.= (5;,. —5;~5,.~)K, —(5, ,.z+5;,. z) Kz . (72)

We may write the ground-state energy per par-
ticle E also in matrix form as

a= 1-—5 BR1
2g ——

+8(g —g') =2zzJ~+Q8(2f —25),
6

or

0 = 2zzJz+ Q 8(2$ —25), BF
(63&)

(58')
1 B& dK

Rz(n) —dc( .2F

Finally, let us rewrite Eqs. (64) as matrix equa-
tions.

Here 8(x) = —2tan z(x), and J, Je, . . . , Jz are in
tegers (half odd integers) which arise from the lo-
garithm of +1(-1) and serve as quantum numbers.

Finally, we consider the ground state where the
the ~'s are dense about the origin and the variables

1
m =—g'BR,

27T

where
+B~

LzltB R]& =— dn R&(n) .
-B ~

(64')

(73)
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To summarize, we collect in the very concise
matrix form our basic Eqs. (65), (56'), and (64'):

n&

$=R+KBR,
2pm = ~]~BR,

e =1 —(~BR/2v.

(65)

(56')

(64')

We are to solve for R in terms of B, calculate E,
m as functions of B, and then eliminate B to find
«(m}.

If all limits are finite, then Eq. (65) is a non-
singular matrix Fredholm equation, and the solu-
tion is an analytic function of the limits B, Thus,
in turn, the ground-state energy must be an analytic
function of the concentrations. Thus the region
0&B~&+~ we call the fundamental domain, and we
now determine the region of concentrations to
which it corresponds.

First, if B,. =O, then m,-=p, and we conclude

Bi=0~

fl)

B~ =0 nr, =P, k&j. (74}

Second, suppose B& =~; then we integrate the equa-
tion for R,. from —~ to +~ and find

5»-2m, . —m, „—m, „j&P
or

B,. =+ n~,i=n) i, j&P.

The P equation, however, gives

(75)

B2=0
BP=+~ nP &=0, (76)

In this case, the problem is reduced from E B to
E ~B

We finally conclude that the fundamental domain
corresponds to

FIG. 1. We show the lines of singularities in the phase
plane for the two three-component systems BF and F .
The shaded region is the fundamental domain, and the
ground-state energy is analytic within this region. The
limits of the integral equations are here correlated with
the boundaries of the fundamental domain.

ni &na &. . .&np, (77)

and singularities occur only at the boundaries. By
permuting the fermion concentrations, the funda-
mental domain is mapped onto the entire physical
region of concentrations, and the ground-state en-
ergy obeys this permutation symmetry SP. Figure
I illustrates the surfaces of singularities in the
phase plane for the two three-component systems
E and BE; the shaded region is the fundamental
domain.

We note also, that if we are constrained to a sur-
face of singularities, B,. =+~, then the corresponding
R& may be eliminated so that the resulting equations
are again a nonsingular matrix Friedholm equation.
We then conclude that restricted to a singular sur-
face, singularities occur only at the intersection
with another singular surface.

VI. ABSOLUTE GROUND STATE OF THE F~ PROBLEM

&„=2X cosh~ k —cos(wn/P) .
Then we have

(8O)

state of the E problem. The limits are all +~,
the concentrations are all equal, and thus if we
Fourier transform, we obtain a matrix equation.
The Fourier transform of K is a (P —1)&&(P —1)
matrix,

[I +K];~-5,.)(1+X~)—(5; „i+5, , i)X (78)

where X=e '~ 3. The Fourier transform of the
resolvent (I +Z) is the inverse of this matrix and

may be calculated by first finding the eigenvectors,

g„(j)=(2/P)ii2 sin(wnj/P) (n=1, . . . , P -1),
(79)

and eigenvalues

As an example, we may explicitly calculate the
energy per particle e(P) for the absolute ground

(81)
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2m ~ sin(mjn/P) sin(wn/P)
P „cosh(gk) —cos(ws/P) (82)

We then may use this expression to solve for the
Fourier transform of the densities,

$(l) = —C = —0. 5 VV 215. . . , (93)

where C is Euler's constant, which cancels out in
the explicit expressions

p(l) —p(2) = 2 ln2,

To sum this series, we Fourier transform back and
. obtain

4m 1R. n P sinh2mo.

P-f
x g sin(mjn/P) sinh[2mn(l —+/P)] (83)

n=g

$(l) —p(3) = m/2&3+ 3 in-,',
((l) —P(a) = w/2+ 3 ln2.

Finally, an expression useful for large P is

,(P) 1,2 P (-1)'0(k)
pk ~

Here 1'(k) is Riemann's zeta function,

(93a)

(94)

The summation now is simply four finite geomet-
ric series, and we have

2w sin(m j/P)
P cosh(2wo. /P) —cos(mj/P)

The Fourier transform of this expression is

(84)

m, =(1/»)&g(o) =(P -j)IP.
Thus all n, =1/P. .

Using the evaluation of Eg. (85), we may return
and evaluate the Fourier transform of the resol-
vent, a symmetric matrix,

(88)

(85)
sinh2 Pk

A simple check is to calculate the concentrations
m& by

1
g(k) =Q —

~ .
n=i

(95)

The behavior of e(P) is shown in Fig. 2.
As for any problem which is solved by Bethe's

ansatz, the low-lying excited states are obtained
from the original algebraic equations by making
alternate choices for the quantum numbers. Thus,
we select one quantum number from any of the P
—1 equations, and change it; the removal creates
a hole and the new choice creates a particle. The
necessary manipulations of the integral equations
are by now familiar and lead to the following expres-
sions for the energy 4c and momentum b, k:

[ g (
jf' [/p sinh2 &(P j) sinh2 K—/I +J ).) —e ~ 1 ~ 1sinh-, PK sinhy K

The energy is given as

1 '" 4dn
e(P) =1-—~,R,(n)

27t z „1+4''
inh p k(P 1)
sinh —,'kP

Let us define a new variable,

y
—e-PA'

We may rewrite c(P) as

y
I/'&-1

K(P) = 1 -— dyP o

(87)

(88)

(89)

(9O)

0 8--

0 6--

04--

0.2-.

-0.2.

-0 4-

0.2 0.4 0.6

Such an integral may be rewritten in terms of
Euler's digamma function,

-0.6-

g(x) —=—lnI'(x) .d

%e find

~(P) =1- (2/P) [4(1)—0(1/P) 1

=-1+(2/P) [4(1+1/P) -0(1)1 .
Typical values are

(91)
-0 8.

-I.O

FIG. 2. Absolute ground-state energy per particle for
the P-component system F+ is shown as a, function of the
number of components.
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R;8],

6k= P J
do. ;R;(n;) .

(96)

The variables B& are to be eliminated between the
two equations.

Let us consider the low-lying excited states about
the absolute ground state. Then R, (o.) are given by
Eq. (96). We decompose d» and b, k as a sum over
single excitation dispersion curves and calculate
each to be

g + g
' = (I +K) It,

where

[$']q - 5)~ q
5n 4/(], y 4 m~) .

Therefore our solution is given by

(100)

(101)

and thus a common velocity of sound. In Fig. 3
we show the cases of P=3 and P=4.

Suppose we have a system I' which is at the
absolute ground state and replace some of the par-
ticles with 6n«1 impurities. Then the equations
for the P —1 original densities become

2w sin(wj /P)
P cosh(2mB/P) —cos(wj/P) '

k, = 2tan '[cot(vj /2P) tanh(2nB/P) ]—(w —mj /P)

Eliminating B, we obtain

(97)

R=R +R', (102)

where R is the previous solution, and the Fourier
transform of R' is

sinh-,'Pk

&.(k}= . .
/ [cos(vj/P —

~
k~ ) —cos(mj /P)]

(98)
for I kl 2'�/P. The function is periodic with period
2'/P.

We see that, in general, there are P —1 distinct
branches. However, at 4=0, all branches have a
common slope, with

Then we verify that

m, =(P -q)/P. +6nq/P,

n, =(1—5n)/P (j=l, . . . , P).
We then calculate the energy as

e, (k) =—'
~ k~, (99)

5n "'"4do.Rf(o.)
1+4n

(105)

e K
a& = —5n du e-~'~"

sinh —'Pk' (106)

Again, we define a variable as in Eq. (89} and
write

2gn. 1 y-1/2 y-1/2 + 1
P 0 1-y (107)

This may be written in terms of the digamma func-
tion as

0l-+——tl- I .26n
- il

P (2 P gj
We have the special values

(108)

dg
dn

—2 ln2,

P=1
P=2 (109)

—4m+ p'ln2, P =4.

In Ffig. 4 we show the general curve. We note the
limiting form

-2m/5 2m/5
(110)

FIG. 3. P —1 dispersion curves for the low-lying ex-
citations above the absolute ground state of the & sys-
tem are shown for the cases P =4 and P = 3.

We remark that this is the correct form no matter
what the nature of the impurities —fermions, bo-
sons, or mixed.
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P=t
of n, =1/P-then we may approximate the inhomo-
geneous term R2 of Eq. (111), as given in Eq. (84),
by expanding

&3% 0

R2&((3() = 4l/ sin(l/j/P) e ~' ' /P .
We see that to this order,

R,.(n) =RP, (n) ..

(115)

(116)

0.2 0.4 0.6 0.8 l.O i y p

Further, we see by looking at the explicit formula
for the resolvent I +8 given in Eq. (87) that

[I+a]/, = [I+J]P, P, . . (117)

Thus to the lowest order in An&,

e(1/P+/2n„ I/P+/2~, ... , I/p+/2n, )

(e1/P —/2n, . . . , 1/P —/2n„ 1/P —b.n, ).
(118)

But since the energy is symmetric in permutations
of the I' particles, we have

2(l/P+hnl, 1/P+b, n2, . .. , 1/P+/2nP)

FIG. 4. We show the first correction to the absolute
ground-state energy of the F system as a small number
of particles are replaced by impurities. The correction
is shown by the first derivative of the ground-state en-
ergy with respect to impurity concentration at zero-im-
purity concentration, as a function of the number of com-
ponents P.

In the previous discussion, we have assumed
that the point B, = ~ or n, =1/P is the absolute ground
state of the I'~ system. This is certainly reason-
able, and we may indeed verify the claim by ex-
amining the correction to the ground-state energy
in the vicinity of B,=~. We firs.t transform the in-
tegral equations over the domain B to equations
over the domain (I -B) by multiplying our basic
Eq. (65) by the resolvent of Eq. (87) to give

Ro=(I+V)

= e(1/p —n,2(„1/p —/2.n„... , 1/P /2nP—)
(119)

Thus we conclude that the ground-state energy is,
to the lowest order in n,-, symmetric about the point
n,. = I/P.

However, by the basic concavity property of Eq.
(11), we conclude then that /2n& =0 is alocalminimum
of the ground-state energy, and hence, the absolute
ground state (with no restriction on the concentra-
tions).

We note that this symmetry requires that for low-
lying states, conjugate representations of SU(p)
must be degenerate.

We have been unable to calculate explicitly the
first-order correction to the absolute ground-state
energy for general variations of concentration n&.

However, in two instances we may make a calcula-
tion:

(a) If all B,'s are equal,

=R+J(I B)R. '—
Ro 2(l/2p/)l 2/%((B/ P e&)((r/P

p (j) (120)
We may then write Eqs. (74) and (73) as

ae =-e —(1-PR'/2)T)

= (1/2l/) RBl (I —B)R, (112)

We have defined a new variable o by n =B+a. If
we also define

(2/p)1/2 &-2mB/P

—[(I +X)](0)hm = —[(I +g)&())](t—lltRB/2l/)'

= rP(I —B)R/2l/. (113)

We note that the components on the left-hand side
are

then we approximate Eq. (111)by

2vg e 2((()/Py-
=S(a}+f daJ(a —a)S(a) (122)

Let us make an eigenvector decomposition of S,
22(n& —n&, l) = [lit(I —B)R],

= (n.n,. —~n...) 2~ 0. (114)
S =QS„(o)g„ (123)

If all B's are large —that is, we are in the vicinity We then find S„=0, n 4 1, and
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Sq(o) +

with

dz J~(o —z) S~(~) =2nr„e~ (124) Again, it is a Wiener-Hopf equation, and we find

~e l~ I

2[cosh
—,k —cos))'n/P] ' (126)

where

Sn, =an„„
(182)

This is a Wiener-Hopf equation, and as in Ref. 2,
we have

h, n~ —4n, ~
—=4n.

4e = [(27)/P) b.q]' (1 —coeur/P),

with

7rjl'

hq = — sin—4m . .PJf=

We have the restriction on 4m,. of

Arj 2aq
m = —sin

(126)

(128)

We finally remark that all of these examples are
consistent with

(188)

and conjecture that this is in fact the exact form.
And thus, as a consequence, we conjecture that all
second derivatives of the ground-state energy with
respect to the concentrations are continuous within
the whole phase space.

r, = (2/P) sin(mj/P) e "s~

The equation we are to solve is

(129)

2w(e+"~
=,. S,.(v)+ f dad, , (v —v)S,.(v) (120)

0

(1) In the second case, suppose that all B,= ~, ex-
cept B,- =B. In this case we define
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