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The dynamic structure function &(k,co), as a function of wave vector k and frequency co, is calculated
rigorously for a simple Bose gas at T = 0. The dielectric formulation is used to satisfy general symmetry
requirements for a Bose system, and the calculation is carried out in the first approximation beyond
Bogoliubov taking into account the three-phonon process. An analytic solution in terms of elliptic integrals is
obtained for the width of &(k,eo) valid for arbitrary k and co. Qualitatively, (k, co) at finite but small k is

found to have a square-root behavior near the threshold frequency for two-phonon production, a peak at the
elementary excitation frequency, and a long power-law tail at high frequencies. Illustrative numerical results

are presented for the width of 3(k,co), the imaginary part of the phonon spectrum, and R(k, co) itself. Finally,
the impulse approximation and the extraction of the condensate density no from s(k, co) in the large-k limit are
discussed.

I. INTRODUCTION

Neutron scattering measurements" of super-
fluid 4He have provided direct observation of the
elementary excitations of the system, have dem-
onstrated the existence of a vast region of multi-
excitations at higher energies, and may provide
direct evidence for Bose-Einstein condensation at
still higher energies near the free-particle spec-
trum. Many theories have been constructed in or-
der to investigate the rich and largely unexplained
structure of the multiexcitations. Unfortunately,
these theories do not give unambiguous descrip-
tions of the experimental results. Furthermore,
no consistent microscopic analysis of the multiex-
citations in Bose systems exists to our knowledge
in the literature. Since the high-energy multiex-
citations may reflect more of the microscopic
structure of the system than the low-energy ele-
mentary excitations, it seems desirable that a
microscopic analysis be carried out. In this paper
we present a rigorous microscopic calculation of
the dynamic structure of a simple Bose gas at, zero
temperature. 3 Although the results of such a study
may not be directly applicable to superfluid He, it
may offer clues for improving existing phenomeno-
logical theories and aids for more ambitious micro-
scopic calculations.

The basic reason for the dearth of consistent
microscopic theories of the multiexcitation region
resides in the inability of previous approximation
schemes4 ~ to go beyond the quasiparticle (Bogo-
liubov) model without violating several general
symmetry requirements. One such requirement
follows from Bose condensation and rotation-trans-
lation invariance: The discrete single-particle
spectrum and the discrete density spectrum coin-
cide. A second and closely related requirement

can be derived ' by an application of global gauge
invariance onto the Bose condensed state: The
long-wavelength limit of the single-particle spec-
trum is gapless. A third requirement, which is
not restricted to Bose systems, arises from local
gauge invariance: Local particle number is con-
served; i.e. , the continuity equation and related
sum rules hold. ' Recently, these symmetry re-
quirements have been successfully incorporated
into a mic roscopic theory of Bose systems in I, '
where a dielectric formulation was used to build
in the exact requirements befoxe any approxima-
tion scheme was attempted.

To be more explicit, let us adopt throughout this
paper the notation used in I. Consider the density
response function p(k, ~), which is given by

F = F/(1 —uF) = F/c .
Here the irreducible density correlation function
F(k, &u) is defined as the contributions of all dia-
grams with no isolated interaction line, v(k) is the
interparticle potential, and e(k, &u) is the dielectric
function. The first general requirement is built
into the theory by using a diagrammatic analysis to
write the denominators of the single-particle, den-
sity, and longitudinal-current response functions
(the zero-helicity response functions in I) in terms
of the dielectric function e(k, v) multiplied by non-
singular factors. This is true for Bose systems
irrespective of the form of ~. Hence the various
discrete zero-helicity spectra coincide into the
elementary excitation spectrum, which can be found
by setting e(k, &u) =0. The chemical potential p, in
the single-particle response function g)„, is deter-
mined by the Hugenholtz-Pines relation; hence
the second requirement is fulfilled. To incorporate
local number conservation, we use the generalized
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Ward identities which are derived from the conti-
nuity equation, e.g. ,

o& F =@ (E"+n/m), (1.2)

Perturbation expansions for the response func-
tions, e.g. , p and g),„have been developed in I.

where E" is the irreducible longitudinal-current
correlation function, k is along the z axis, n is the
density, and m is the particle mass. Substituting
(1.2) into (l. 1), we express 6' in terms of the lon-
gitudinal-current correlation func tion

2 -1
1+—F ——k . (1.3)

nk tB zz nv p

Vl n RZ

Note that (1.3) follows directly from the definition
(1.1) and Eq. (l. 2), which is simply a consequence
of the continuity equation. Thus, (l. 3) is indepen-
dent of the particles' statistics. However, the
following application of (l. 3) is valid only for Bose
statistics. One desirable feature of (1.3) in this
case is that at small k the elementary excitation
spectrum & is seen to be linear in k for a short-
ranged &&(k) and is given by

(&oa/k)a =—ca =nv/m+ &&E"(k, ck) . (1.4)

It is well known' that the linear response of a sys-
tem to a density probe like neutron scattering can
be given in terms of the dynamic structure function
S(k, &d) defined as

S(k, o&) = —(I/»)Im5'(k, o&), o&~ 0 . (1.5)

Applying (1.5) to (1.3), we obtain the exact expres-
sion

~2$PS8g
g&k cu& =

~
&d (&ay/m)ka pk F'«~ a (l.6)

&&"(k, o&) = —(I/m)lmE"(k, &o), o&~ 0, (1.7)

which is valid for either Bose or Fermi systems.
In this paper we present a rigorous microscopic

analysis of S(k, o&) using (1,6) in a simple Bose gas
to the first approximation in which multiexcitations
appear. In Sec. II, we evaluate S(k, o&) in the
zeroth (Bogoliubov) approximation and develop a
perturbation expansion for S(k, o&). The first-or-
der calculation beyond Bogoliubov of S(k, o&) is car-
ried out in Sec. III. The behavior of S(k, o&) near
the threshold and in the long-wavelength limit is
examined. An analytic solution in terms of ellip-
tic integrals is obtained for the width of S(k, o&) for
arbitrary k and ~. Numerical results calculated
from the analytic solution are presented for the
width of S(k, o&), the imaginary part of the elemen-
tary excitation spectrum o&a, and S(k, o&) itself. The
large-k limit of S(k, o&) is examined with emphasis
on the condensate contribution. Finally we discuss
some of the qualitative features of S(k, o&) and con-
sider their applicability to superfluid He.

II. PERTURBATION EXPANSION FOR $(k,u)

E"= A' G A'+ E""
P V V (2. 1)

where A', is the longitudinal-current vertex and
E""is the regular longitudinal-current correla-
tion function. Here the irreducible Green's func-
tion Q~„satisfies the Dyson equation Q~'„=G~„' '
—M„„, where G,'„' is the noninteracting Green's
function and M, „ is the irreducible self-energy.
The zeroth order is defined by A; = n&o~a(k/2m)P,
E""=0, and M„—&&&

= M„=O, where P =sgnp, and

no is the condensate density. Using these relations
in (2. 1) and (l. 7), we obtain

F"(k, o&) = (n/m) caa(o&a —ca„+i@) '+ O(a&), (2. 2)

where g = O„and

S"(k, o&) = (n/m)ea5(o& —ea) y O(v), (2. 3)

where e„=k'/2m. Substituting (2. 2) and (2. 3) into
(1.6), we find

a a&o&)a —a ~

1 71

mv cu —co~ + q
(2.4)

where &I is O(a&) and o&a&o' is the Bogoliubov spectrum

o&„"'=l(n&&/m)k +~',]"a . (2. 5)

In the limit &}-0 in (2. 4), we obtain the well-known
result

S(k, o&) = n(k'/2mo&a&o&) 5(o& o&&o ) (2. 6)

Note that to zeroth order there is no depletion,
i.e. , n =no, and that the highly singular nature of
S"in (2. 3) produces no width and no continuum
multiexcitations in (2. 6). In higher-order approx-
imations, there exist depletion and a less singular
S"(k, &d), which is expected to lead to a width and
to multiexcitations.

To prepare for higher-order approximations, we
specialize these results to a simple model of a
Bose gas in which the short-range interparticle po-
tential a&(k) can be summarized by the s-wave scat-
tering length a. In zeroth order the natural units
for this simple Bose gas are (5 =1) ko=mso
=(4&&na) ~ for the momentum and To =msao=ko/m

The dynamic structure function S was obtained in
I from the expanded 5 by the use of (l. 5). In the
present work we reverse the order and take (l. 5)
first, resulting in the exact expression (1.6) for
3, and then develop a perturbation expansion for
the irreducible E" in (1.6). The limitations of the
perturbation expansion in I will, from this point of
view, become evident.

A. Zeroth (Bogoliubov) approximation

It is instructive to evaluate the general form
(l. 6) in the zeroth approximation of a Bose sys-
tem. A distinctive feature of a Bose system is that
the irreducible F" in (l.6) can be written [I (2. 25)]
in terms of regular functions
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=42&&a/I for the energy. The small dimensionless
coupling constant is g=4&)ako=(4&)a)». ' . lt is
convenient to measure momentum and energy in
units of ko and To; in these dimensionless natural
units g=4&a=~ and ko= TO=At =so=i. Our zeroth-
order results then become

g s (k 0&) (k2/20&2(0&) 5(0& &u(0&)

0&22(0' = k2(1+-'k2)

(2. 7a)

(2. 7b)

Hereafter we shall restrict the calculation to this
imodel.

1 g~-2~ zz(1 )I
(~2 ~2(0& g~ 2~hz(1))2 ( go&-2Stgz(1))2 y

(2. 9)

where X~ =-Be%", 97, 1' —=ImX",

B. First approximation beyond Bogoliubov

To go beyond Bogoliubov, we develop a perturba-
tion expansion for the basic quantity in the exact
expression (l. 6) for S, viz. , the irreducible lon-
gitudinal-current correlation F". Since Fzz sat-
isfies (2. 1), we expand formally the regular func-
tions (A~, G~„, E"")in (2.1) to first order in g,
collect the O(g) terms, and write the result in the
form

gEzz Ess(0) +gEzz(l &+ O(g2) (2. 8)

where E"'0' is given in (2.2). Substituting (2. 8)
and (2. 2) into (1.6), we obtain S(k, 0)) in the form

g S(k, 0&)

As is easily seen E(ls. (l. 5) and (2. 9) imply that
to O(g} the location of the physical pole of S(k, 0&),

i.e. , the elementary excitation spectrum w„, is
given by

~ 0) g((0(0&)-3cg (1&(k 0&(0&) (2 lla)

& g(0&
(0 ))-3St &g (1 ) (k 0&

(0 ) ) (2. 11b)

which can be shown to be consistent with (1.4). For
brevity's sake, we shall refer to (d2 as the phonon
spectrum and the elementary excitation as a phonon.
As we shall see, however, (2. 11) does not imply
that (2. 9) is in fact, a Lorentzian; (2. 11) merely
gives information abOut the peak in S(k, (0). Fur-
ther information on S(k, (0) must come from a de-
tailed analysis of (2. 9), in particular the width
g(d 2stP "&(k, 0&).

The O(g) diagrams that contribute to E""' in
(2. 8) (see I, Fig. 6) include the process in which
one phonon decays into two phonons and the inverse
process in which two phonons coalesce into one.
In other words, the first approximation beyond
Bogoliubov takes into account the three-phonon
process, but not the four-phonon process. The
basic effect of the three-phonon process is to in-
troduce a continuum contribution to S(k, 0&) and thus
new features that cannot be described at all within
the zeroth order. The four-phonon process will
modify these features but is not expected to intro-
duce qualitatively different features. Hence the
present first-order calculation can be considered
germane to the understanding of the qualitative
features of S(k, 0&) of a Bose system.

~zz(1 ) g 3 &8 i2F zz (1 ) 2y2&(1 )+ (&t) 8 (2. 10) III. FIRST-ORDER CALCULATION,

and (&"& is defined by the expression (&/g= I+g(&" &

+ O(g2). Loosely speaking, gati'"& may be referred
to as the width of S(k, 0&). In particular, when g-0
(2. 9) reduced to (2. 7). Since we have included in
(2.9) only the effects of the O(g) term E""', we
re":1 to (2. 9) as the O(g) expression for S(k, 0&),

even though infinite-order terms are included via
the denominator.

In I, the expression (2.9) is effectively further
expanded in powers of g, resulting in a separation
into a discrete contribution, proportional to a 6

function at Re(d„and a continuum contribution that
forms the background. Such a separation was found
to be useful in investigating the structure functions
S (k) = f 0 d(0 (d" S(k, 0&) at small k and in giving an
interpretation to each contribution to S„(k). Cau-
tion must be exercised, however, in the use of such
a separation of s(k, 0&) for (d near (d(0&. For ex-
ample, in the continuum contribution one finds a
divergence proportional to (0& —0&2(0&) 2, which is
clearly a result of the expansion of (2. 9) in powers
of g. In this paper we avoid such divergences by us-
ing directly the expression (2. 9) to calculate S(k, 0&)

for arbitrary k and ~.

In this section we shall evaluate S(k, 0)) to O(g),
given by (2.9}. We first consider in Sec. III A the
behavior of S(k, 0&) near the threshold for two-pho-
non production. In Sec. III B we investigate the be-
havior of S(k, (t&) in the long-wavelength limit. The
analytic solution in terms of elliptic integrals is
outlined for Ot )"1'(k, (d) in Sec. III C, and numerical
results based on the analytic solution are also pre-
sented. The large-wave-vector limit of S(k, 0&) is
examined in Sec. IIID, and a discussion of the
(Iualitative features of S(k, (0) follows in See. III E.

A. Threshold behavior of S(k,w)

Since the phonon spectrum ~„' ' possesses posi-
tive curvature, the decay of a phonon into two or
more phonons is kinematically allowed. As decay
processes into three or more phonons are higher
than O(g), within the present approximation scheme,
it is obvious that gS(k, 0&) is equal to zero for u&

& &~", where the two-phonon production threshold
is given by

0&(h 20&(0~& k(] +Pk2)1/2
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gs(k, &u) = —(k2/t()(g/(()2)x/'1)(k, &u)

~ (~'- ~"")'+ O(g') (3.2)

[Note that (3.2) is precisely the continuum contri-
bution given in I (4. 40). ] Thus we must calculate
X/'"'(k, &u), whose integral definition is given in
Appendix A in the form

We now show that gS(k, &u) rises as (h) —&hh)'/2 as (d

is increased from ~~" at any fixed k.
Equation (2. 9) implies that for &u= &uh", S(k, (d) is

given by

confirmed by the explicit numerical calculations to
be presented later.

We remark that the above square-root behavior
can be obtained more generally, i.e. , outside the
limitations imposed by the simple model of a Bose
gas. If the zeroth-order phonon spectrum &~

' is
replaced by &~, an arbitrary phonon spectrum hav-
ing positive curvature at momentum —,'k, then a
simple expansion of Eq. (S.Gb) to O(x ) allows
evaluation of integrals of the type Eq. (3.3) in the
form

vv"''(z w)=f d~p f(p t a)
Sizz(1) f (& ~t h)1/2mk,&

I ~h/2 I (Uh/2)
(S.9)

( 18-2/21 l i+2/21) & (3

where f(p, k; h)) is a complicated but smooth func-
tion of p, k, and (d. If we carry out the trivial
angular integration and make a coordinate trans-
formation from (p, p ~ k) to (&, q) defined by

(~, n) =( fp --'kl, ll +-'kl)

(P', p k) = (-'(~'+)l'--'k'), -'()I' —~')),

then we have

ti dq X d h f (k, (d; q, &)

where &)t/2
—= (sh), /aq)z h/2 Th. us a system with a

well-defined phonon spectrum with positive curva-
ture is expected to exhibit in &(k, &u) a square-root
dependence on ~ near the two-phonon threshold at
any fixed k.

B. Long-wavelength behavior of $(k,u)

Another region in which it is comparatively sim-
ple to find an analytic solution for s (k, &u) is the
long-wavelength region (dh '« ~, where (2. 9) re-
duces to

gS(k, ~) = —(k /t((d5) gKf "1)(k, &u)+ O(g2), (3. 10)

x &(~ —~,(o) —~„(0)), (3. 5) and X/'"' can be determined from (3. 5) and (3.6).
In the k«&u region, Eq. (3.6c) becomes

ti, = fx+-,'kf (3.Ga)

where the limits of integration g, are given by
x4+4x —~2 =0

which has a solution

(S. 11)

and x&0 is a solution of

(0) (0)~= {"+a/2+ ~ -e2 ~ (3.Gb)

2(~th)3 1/2
=

k2 3+'-k'"-"'"'3+ 8k
(3. 7)

Then after carrying out the trivial integrations in
Eq. (3. 5), we obtain

sizz(t)»f(kd (dh z 2kd 2k) 2(h)h")'/„„th) '"
(1+3k )k2 3+—'k '

(S.8)
Substituting (3.8) into (3.2), we see that s(k, &u) is
proportional to (~ —h)h")1/2 at any fixed k, which is

Remarkably, (3.Gb) simplifies to a third-degree
equation in x:

Q2 ~2
x +x 4 1+—

8

y2 2 ~2 3y2 ~2
+4x 1+— —~ 1+ + ~((() —(())) ) =0.

8 k 8 k'

(3.Gc)
Thus far, the calculation for Xl'"' has been com-
pletely general; we now focus on ~= ~„'", in which
case the solution of Eq. (3.Gc) satisfies x« —,'k.
Thus we may neglect the first two terms of Eq.
(3.Gc), obtaining

x=[(~'+4)'" 2]'" or &v=2(d"' (3.12)

qk4 [(~2 ~ 4)1/2 2]5/2
8&4

120)(2 (d5((d2+ 4)'" (3.14)

In making the approximation A«{d, we have lost
all information about the threshold behavior of
s(k, cu). In fact, Eq. (3. 14) taken at face value for
all ~'s shows a finite maximum at ~=0. As ~ in-
creases, S(k, ~) decreases initially as &u2 and then
at high frequencies as (d '/2. Clearly, S(k, h)) does
not behave as a Lorentzian, and can be interpreted
as the continuum contribution due to multiphonons.

The (d moments of (3.14) are easily found, and,
together with the discrete ~-function contribution
in I, the f sum rule is found to be satisfied. In the
limit h)- ~ Eq. (3.14) reduces to

3(k &u) (V/1201/2)k4h)-7/2 (3. 15)

Performing the trivial integrations of (3.5) then
yields

&"' '(k (u) =[2)(&ux/(h) +4)' ]f(k, h) x, x).
(3.13)

Extracting the function f from the integrals of Ap-
pendix A and using (3.10), we obtain S(k, &u) in the
long-wavelength region, i.e. , k/&u«I, (dh(0)/&u«1,
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which agrees with that found in I. In this form, the
long tail of S(k, v) is conspicuous and the divergence
of 3„(k) for m~ 3 is easily seen. As mentioned in
I, this divergence arises from the constant poten-
tial v assumed in our model and a large ~ cutoff
of the order of the inverse time of collision would
arise in a more realistic model.

C. Analytic solution for Ql'~ ~(k,u) and numerical results

Here we sketch how Otf'")(k, ~) for arbitrary k

and & can be evaluated analytically in terms of el-
liptic integrals. The resulting expression is then
used in a numerical calculation of Otz*u&(k, ~),
Im&u&, , and S(k, cu).

In order to carry out the integration indicated in
Eq. (3.6), we transform variables from ()&, &}) to
(&, $) given by

10-2

1O'-

3 510

IO

10-7

lo S

slope =

(g g) (~(0 & ~(0&) (S.16)

where the integration limits are
~(0& (3.18)

with &}, given by Eq. (3.6). As f [which may be ex-
tracted from the integrands listed in Appendix A

and (S.3)] is a sufficiently simple function of $,
(1+ $ )'~~, and [1+($—u&)']'~~, Eq. (3. 17) may be
expressed exactly in terms of elliptic integrals. 8

This calculation outlined is straightforward but
tedious, and the resulting expressions are listed
in Appendix B.

Having obtained an analytic expression for
Otz' ' (k, u&), we proceed to evaluate numerically
Otz'(k, &o), Imur„, and S(k, m}. In Fig. 1 Otf" &)(k, ur)

is plotted at k =1.0 as a function of ~ extending
from (oq" through co~ '. Two prominent features are

5.0

3

2.5
N

lO
O

0.0 '

0.0 0.5
I

I.O

(cu- u) q )
th

1.5 2.0

I IG. 1. Threshold behavior of Xz'~ '(k, ~) at k=1.0,
for u from the threshold w&" through &

After carrying out the (trivial) integration over f
(involving the 6 function), we are led to the follow-
ing expression for Otz'u&(k, ~):

Otzz(1&(k

10-9,

10 10 10

FIG. 2. Imaginary part of the spectrum -g ~ Im~„as
a function of k on a log-log scale.

1 -gu& 'Ot""'(k &u)

» [(u' —(Res),)']'+ [ g(u 'Ot,'*"&(k-, (u)]' '

(3.19)
where Rem» is given by (2. 11a). For small k,
Re+~ has been evaluated in I. Using the analytic
expressions for Ot f*"&(k, u&), we have evaluated
numerically s(k, &u} for g = 0. 1 and k = 0. 1 as a func-
tion of v, which is plotted in Fig. 3. The square-

the square-root behavior near the threshold fre-
quency and, in contrast to I, the absence of any
divergence at the zeroth-order spectrum v„' '.
This latter feature is an indication of the consis-
tency of the present perturbation expansion.

Evaluating Otz'u)(k, v) at u& = tu&IO& yields via (2.11b)
the imaginary part of the phonon spectrum, which
is plotted in Fig. 2. At long wavelengths, Imv~
displays the mell-known k' dependence '; at short
wavelengths, Imv& bends over to a linear k depen-
dence. 4 Quantitatively, the numerical result for
k &1 verifies the long-wavelength expansion for
Imv» found in I, Eq. (C. 6). More structure is of
course expected in the model-dependent intermedi-
ate-k region if a more complicated interparticle
potential is used in the calculation.

To calculate S(k, &u) from (2. 9), we need to know
the function Ots'"'(k, ~) as well as Otr'"'(k, ~).
Since X~'"' appears in the denominator, it contrib-
utes significantly only for v near the pole of S(k, v}
and gives O(g ) corrections at the threshold or in
the high-frequency region. Hence we can approxi-
mate &u Ot*„" '(k &u) in (2. 9) by ((u' ') Ot„""'(k (u' ')
and write
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3.
5

O
g(1) + k2 [~(1)+ (g(() (()) ]e(d

(3.22)

0
0 l0

I

20

lO (Q)- (aJ ) ~th
K

I

30 40

FIG. 3. Dynamic structure function. 5 (0, cu) at k = 0. 1,
g= 0.1 for cu from the threshold ~&" through the peak at
He~„ into the long-tail region.

It can be verified that for k»1 only the first term
—n'")cz in (3.22) is important, the other terms
being O(k). For example, the magnitude of A~('

[Eq. (A2e)] ean be estimated by transforming the
integration variable from p to q =p/k and letting
k- ~ within the integrand. We obtain in this man-
ner at e =&~

root behavior near the threshold v = co,'", the strong
peak at ~=Re&a&, and the long tail at high frequen-
cies are clearly seen. Note that the ~ dependence
is not Lorentzian nor even symmetrical about the
peak at Re+&, and that the multiphonon contribution
to S(k, e) gives rise to a continuum.

D. Large-wave-vector limit of g(k, u)

gS(kg (z)) = 4~((d —~z) y (3.20)

where

[ -2stzz(1)(k ~)]~(0) (3.21)

Using (Al) we can express the derivative in (3.21)
in terms of the integrals defined in Appendix A:

The large-k limit of S(k, (d) is of interest mainly
because of the possibility that the condensate densi =

ty no can be deduced from the measured S(k, (d) in
superfluid He. The usual impulse approximation
corresponds to letting k-~, in which limit the con-
densate density no shows up as the area under a
sharp peak in S(k, &u), broadened by final-state in-
teractions, on top of an even broader background
corresponding to the noncondensate particles.

It is therefore instructive to see whether we can
extract no from the large-k limit of our model
S(k, &u), which has a broad background as well as a
peak. The difficulty inherent in this undertaking
lies not only on the complexity of the expressions
defining S(k, u), but also in the ambiguity in the
choice of precisely how much of the function is con-
sidered to be part of the peak. Nevertheless, we
find that, at least within a specific limit, no can be
recovered from S(k, ~).

As we are interested in the area of the peak of
S(k, &u), it will be calculationally advantageous to
be able to approximate 8 by a 5 function. As k
becomes large, (dz '- e„—Im&@,-gk/47( and

gS(k, Re&oz) - 4/gk. Thus, in the limit k- ~, but
g-0 fast enough that gk-0, (2. 9) reduces cleanly
to a 5 function:

~(1) ~ d (f
k

1 1
R „2~3 1+@'+q k q'+ q k )

which is obviously O(k). Thus, from (3.21) and
(3.22) in the limit k» 1 we obtain to O(g)

f =g[n + O(1/k)] . (3.23)

Substituting (3.23) into (3.20), we obtain the re-
sult found in the impulse'approximation for k- ~.

E. Discussion

The present model calculation of S(k, &u) is, to
the best of our knowledge, the first consistent mi-
croscopic analysis of a Bose system that takes into
account not only all of the symmetry requirements
mentioned in the Introduction but also depletion and
multiexcitations. The major limitation of the pres-
ent model, and also one of its simplifying elements,
is that the interparticle potential is summarized by
only one parameter g, which is assumed to be
small. Bearing this in mind, we discuss several
general features of S(k, &u) found in O(g) and con-
sider applicability to liquid 4He.

The square-root behavior near the two-phonon
threshold was shown to be quite general [see (3.9)]
and is expected to be present in liquid He. Be-
cause of its proximity to the one-phonon peak, such
a behavior, however, would be quite difficult to ob-
serve directly by neutron scattering. Even if the
one-phonon peak were displaced away from the
threshold, we are not too optimistic that any thresh-
old behavior can be resolved with the present tech-
nology.

In the model calculation the long high-(d tail for
a fixed finite k [see (3. 15)] arises from the three-
phonon process, one phonon decaying into two or
two phonons coalescing into one. Such three-pho-
non processes are now believed to be present in
liquid 4He and it is reasonable to expect a high-co
tail to be a general feature of multiexcitations.
The existing neutron scattering data' displays a
high-co tail, but poor statistics and unknown coun-
ter efficiencies over the wide frequency range
covered by the tail hamper any quantitative com-
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For ease of reference we repeat here the explic-
it forms of the regular functions that contribute to

For further details, the reader should con-
sult I. X" ' is given by

stdd(t)(k 4)) g (&2 &2)[(S(1) M(l) ~(1&)

+ 2(dk-15 Az(1)+ kp Ad(1& e )ld(1)]

+ k2[Re ~ + 6 (S(1) —p(1 ) + &2v(1)]

+ ((d2 C2)2 Fddt'(1)
t (A 1)

where &~ =1, P~ =sgnp, , S=—,'(M„+M ), 4=2(M„
—M ), and M2 =M, . The regular functions (A~,

~M„F"")to O(g) are given in terms of one-loop
integrals:

parison. A more deliberate measurement of the
high-~ tail is needed.

The extraction of nd) in the large-k limit of 3(k, (d)

confirms the intuitive impulse approximation for
small g. In superfluid 4He, however, the coupling
parameter g is large and the broadening expressed
in%1'"' is expected to be significant. Thus at
finite A; a clean isolation' of condensate contribu-
tion may be difficult.

In view of the many qualitative features that have
been uncovered by the model calculation, and the
fact that the calculation is a consistent one, it may
be useful to extend the calculation to a somewhat
more reasonable form of the interparticle poten-
tial v(k). Such a calculation appears to be feasible
and would help sort out the effects that are depen-
dent on the explicit form of v(k) and those that are
perfectly general.

APPENDIX A. INTEGRAL EXPRESSION OF ~zz(1)

1 d) 1—A.) f l)
)2 d (2v)2

1" d'P

(A2b)

(A2c)

(A2d)

~(1& P ) Q-
(2v)'

(A2e)

F '" = —t ' '
(p ~ k+ —'k) Q' (A2f)

(2(()' p' '

gn'"'—= (1-gn(&)"' =g/Sv

where

) ( =2P(1+ 'P') '",-

(A2g)

(A2h)

(AS)

Q =((d+ 2'g —(L&~ 2
—(d), ) T ((d+2 g+ (d '2 +(d(, )(0) -1 ~ (0) (0) -1

For calculating Stf'"'(k, (d) at (d &0 we have

ImQ = —v&((d —(d- - —(d~ ) .(0) (0)
p+k

(A4)

(A5)

From (Al)-(A5) we see that Stfd(1& has the form
quoted in (3.3).

Note that the integrals defined in (A2a) and (A2g)
have large P divergence. However, the infinities
cancel upon addition in (Al); so Ot"(1) is well de-
fined for all k and ~. This is easily proved as fol-
lows. The divergent terms of (Al) contribute D to

gg (1)

(d2~ [(S(1)~ M(1) il(1)) + 2V(1&]

S(1)+ M(1) (1)
~

P )( ) Qd
d3*

(2v)

g(1) M(1) (1)
2

(A2a) As p-~, the integrand of (S"'+M2"' —)1"') (A2a)
approaches Q'- 2/P', which cancels the integrand
of 2v"' (A2g).

APPENDIX B: Q "( )(k u) IN TERMS OF ELLIPTIC INTEGRALS

We here list the results of the integration out-
lined in Sec. IIIC:

1/2 44.

——(S"'+M,"' —p, "&),=, — = u+ &
—in([$+ (1+ g')'"]($ —(d+ [1+($ —(d)']'"])

1/2
——(S"' —p, "&),=, — = u+ 3( —in[(+ (1+ ]')"2]—2 ln($ —(d+ [1+(g —(d)']"2j

(( ' 4(2)()2k . n.

— (""")'"-(-')"'" '
—5 A-'«&=, (dP+2(l+ $2)'~2 —2[1+ ($ —(d)2]'+ —(din([$+ (1+ $ )'~']{)—(d+[1+ (g —(d)']' })

I

(B2)

(B3)

~2)l/2
2 1/2 y

2 1/2—-p A'I =
( )2, 21n

(~ ) [ (~ ) ]„, +2)+(d( + $ ) +(d[ +($ —(d) ]
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1/2 (1 + (] ~)2 1/2 ~ 1/2

+(2+ (u ) = u —2)i 2
—2 —' E(u)

Q+ 1+( Q

1 &» 1 21/2 ~ (1+ $ )' +[1+($—&()) ]'
(3~)'). ' ' () + &*)'"-I(+(&—~)'I"')

(&2 4)1/2(& /& )2/2 & 1/2

[1—(c& /o&„)2] sn(a) dn(a) cn(a) '
o&,

1/2
—E/""&1'=, , 2(&d2+ 4)$+ (8+ 6&d') =

2&

m 82v 2a2 Q+

1 + (( ~)2 1/2
&2

1/2

+ 2(&() —4) $ 2 + 2((u —4) —' E(u)1+ $2 Q

(B4)

(B5)

(B6)

where

o., =-,'[+ &d+(&d2+4)'"] . (B7)

IIere u is the elliptic integral of the first kind giv-
en by

u=cs '[($v'n —v' o&, )/($v'n, +4 &2 )], (B8)

and E(u) and II(u, a) are the Zacobi elliptic inte-
grals of the second and third kind, respectively,
where a is defined by

[1 —(o& /c&, ) ] sn (&2) = 1+ c& /c&, ,

and where the modulus tI of the elliptic functions
employed here is given by

0 = [1 - (~ /~. )']'" . (B10)

We caution that the integration limits $, [given by
E&I. (8. 17)] are such that II(u, &2) is the Cauchy
principal value of the integral.
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