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Sensitivity of Curie temperature to single-ion anisotropy
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Existing numerical estimates of the sensitivity of Heisenberg Curie temperature Tc to crystal-field anisotropy
have been obtained (primarily by Green s-function techniques) only for simple easy-axis anisotropy and low
values of spin quantum number. In this paper we demonstrate the usefulness of the correlated-efFective-field

(CEF) theory in this context, showing that with modest computational efFort numerical results for both easy-
axis and easy-plane anisotropies can be obtained for any spin quantum number of physical relevance.
Moreover, for cases where a comparison can be made with the existing literature, we show that the CEF
results are more accurate than those obtainable from first-order equation-of-motion Green's-function
techniques. Numerical calculations in the correlated-efFective-field approximation are given for all three cubic
lattices subject to the Hamiltonian = 'Z; DS,',—p,,- &,.JS,'S,. where J is a nearest-neighbor exchange
parameter. Results are given for the complete range —ao (D/ J& ao (where negative values refer to an easy-
axis situation and positive values to a preferred easy plane) and for spin quantum numbers S = 1 to 7/2
inclusive. For integer spin values and an easy-plane anisotropy we encounter the problem of singlet-ground-
state ferromagnetism for which T~O at a finite value of D/J.

I. INTRODUCTION

The influence of single-ion (i. e. , crystal-field)
anisotropy on the phase-transition temperatures
in Heisenberg ferromagnets and antiferromagnets
is an important theoretical problem for many mag-
netic materials. It has been studied extensively in
recent years for the case where the single-ion
anisotropy takes on perhaps its simplest form,
viz. , that of an easy-axis quadratic term DS;,
with parameter D negative. ' In spite of this con-
siderable volume of literature there remain large
gaps in our knowledge even for this simplest case.
The problem centers around the fact that the exist-
ing approaches, which are almost all Green's-func-
tion schemes of one form or another, require such
a computational effort that even at the simple ran™
dom-phase level there are almost no numerical
estimates valid for all D beyond the simplest non-
trivial case with spin S = 1, and absolutely none,
as far as I can find, with S& —,'.

There are, however, other objections to the use
of the Green's-function equation-of-motion methods
in the present context. As first pointed out by
Murao and Matsubara, with this approach a physi-
cal quantity can usually be obtained from more than
one set of Green's functions, which, in general, do
not yield consistent results. This "redundancy"
necessitates preference being given to one set over
another on some subjective physical grounds, a
most unsatisfactory situation. That used most
frequently ' amounts to choosing the set which,
in the limit D-O, yieMs the familiar random-phase
approximation (RPA) result for the isotropic Hei-
senberg Hamiltonian, ' for which no such redun-
dancy problem arises. Even this set of Green's
functions, however, yields results which are not
quantitatively very accurate in certain limits. For

example, the method goes over to a simple mo-
lecular-field form in the limit of infinite (negative)
D For .spin 8= l and a simple cubic (sc) lattice
this represents an overestimate of Curie tempera-
ture by about 33%. Since the HPA Green's-func-
tion method as used in Refs. 3-7 is accurate to
within a few percent in the opposite D- 0 isotropic
limit, the implication is that as a measure of the
sensitivity of Curie temperature to easy-axis
crystal-field anisotropy it may be suspect (yield-
ing overestimates).

That this is indeed the case can be deduced from
the very recent work of Yang and Wang. ' Their
use of a fully self-consistent Green's-function
diagrammatic technique has shed much light on the
redundancy pl oblem of the equation-of -motion
method and is accurate to within a few percent
(as a measure of Curie temperature) in both lim-
its D-0 and D- —~, for which accurate series-
expansion results are known. Here again, how-
ever, the complexity of the method appears to in-
crease rapidly with increasing spin quantum -num-
ber (and correspondingly with an increasing com-
plexity of the crystal-field anisotropy), and the
formalism has thus far been given only for S=l
and the easy-axis quadratic anisotropy form. High-
temperature-series expansion techniques, which
would doubtless give the most reliable estimates
for the Curie temperature Tc, also require a great
deal of computational labor and have thus far been
attempted only for the corresponding Ising exchange
problem, "' for which counting procedures are
much s1,mpler.

In this paper we wish to suggest the correlated-
effective-field (CEF) approximation~~ as an alterna-
tive to Green's-function methods for the study of
the sensitivity of Tc to single-ion anisotropy. The
CEF theory is constructed in such a manner that
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computations for any crystal-field form and any
value of spin quantum number are readily per-
formed with modest computer facilities. Most im-
portantly, at least for the three cubic lattices, the
method proves to be more accurate than the RPA
Green's-function approach, particularly at, high
values of anisotropy, and compares quite well with
the findings of Yang and Wang as a measure of the
sensitivity of Tc to D for that single case (D nega-
tive, S= 1) which has been computed by those au-
thors. In this paper we shall consider a crystal-field
anisotropy of the form DS~„but allow for both
negative and positive D (the easy-axis and easy-
plane situations, respectively, and give numerical
results for all values of D, and for spin quantum
number S from 1 to /inclusive.

We do not wish to imply that the CEF method can
compete with series-expansion techniques in ac-
curacy or that the method is necessarily superior
to equation-of -motion Green's -function techniques
at lower temperatures (it is basically a high-tem-
perature approximation, although its low-tempera-
ture limitations have not yet been explored). We
do wish to suggest that the method will provide
estimates of Tc usually accurate to within a few
percent for three-dimensional lattices (the largest
discrepancy which we have found with known series-
expansion results occurs for the simple cubic lat-
tice with S=1 and D- —~, for which the CEF value
of Tc is low by about 12%) without ambiguity and
with modest computational effort even for relative-
ly complicated local anisotropy forms and higher
spin quantum numbers. %e shall also discuss in
passing the case of the corresponding Ising problem
as discussed in Refs. 11 and 12, and establish that
the sensitivities of Ising and Heisenberg Curie tem-
peratures to easy-axis crystal-field anisotropy are
not the same, the Heisenberg system being more
sensitive.

II. CEF FORMALISM

The static form of the correlated-effective-field
approximation for T ~ Tc;, which is all that will be
required in the present paper, has been given in
an earlier publication. ~3 The approximation is es-
sentially an extension of the local field concept to
include that measure of static interspin correla-
tions which brings the theory into accord with that
requirement of the fluctuation dissipation theorem
which relates static correlations and static response
(and which is violated by the molecular-field theory
itself). We shall consider first the general formal-
ism for a lattice of spins 8,. interacting via a Hei-
senberg exchange —g,g,J,, S,. 5&, where j,, mea-
sures exchange between general spins 5, and 5, ,
and each subject to a local crystal field V„. With-
in the CEF approximation' R local Hamiltonian is
written for the ith spin in the form

(2. 1)

(S:S) =+pnl StnStn+2kTQ (2 3)
n

where S„' are the matrix elements of the &th com-
ponent of spin between the nth and mth eigenstates
of Eq. (2. 1), E„and E„are the respective eigen-
energies of these levels, and p„ is the density ma-
trix

exp -&
" exp

In the most general case n", n', and 0.' can all
be different, in which case (2.2) defines three
different equations for these three quantities as
functions of temperature. The equations are not
in general independent, but they are not difficult
to solve numerically to an acceptable accuracy
without great effort. In many cases the problem
may simplify by symmetry with two, or even aQ
three, of the correlation parameters being equal.
In such cases the numerical problem is corre-
spondingly simpler.

One further result of formal static CEF theory
will be required, namely that for uniform static
susceptibility in the direction ~. It is

kT- 2J'(0)(1 —o. )(S:S') ' (2.4)

and it diverges when

kT=kTc ——2J(0) (1 —u )(S:S ). (2. 5)

The actual Curie temperature will be the largest
of the Tc (A. =x, y, z) and represents an onset of
long-range order in the corresponding direction.
Although the formalism above is valid without re-
striction of sign or signs of exchange J&& to Eq.
(2. 4), the relationship (2. 5) for transition tem-
perature has been calculated as a divergence of
uniform response and is therefore restricted to
systems undergoing a transition to a ferromag-
netic phase.

We shall now consider specifically the case of a
cubic lattice of spins S, (the sc, bcc, and fcc lat-

in which j runs over neighbor spins (not necessar-
ily nearest neighbor only), & runs over the three
Cartesian coordinates x, y, z, and ~ are cor-
relation parameters which are completely deter-
mined from the fluctuation theorem in the form

P;Z(q)(kT —2[J(q) —u J(0)](S~:S )) ~

gg J(0)(kT- 2[J'(g) —n'Z(0)] &S':S'))-'

where g is a reciprocal-lattice vector, J(q) is the
Fourier transform with respect to the lattice of
Jf y and the colon produc t ensemble average is de-
fined by
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TABLE L (S:S) (X= t, J.) from Eq, (2.2), for the
case of spins 8 =1 to ~2 inclusive. E(m) = exp(- my); y
=D'/ar.

(Sll .SN),

2E(1)
{1+2E(l)7

{4E(4) + 4E(g)l
{E(~)+E(4) 7

2{E(1)+4E(4)7
{1+2E(1) +2E(4) 7

&(z) +E($) +&(P)

2[E(1)+4E(4) +gE(g) 7

1+2E(1)+2E(4) +2E(9)7

&E(~) +~E(-,') +'-,'«7'}+'-,'E(", )

E(8+E( ) +E('-') +E(')

(S':S')

2y '{1-E(1)7
1+2E(1)

y '{(y+~)E(4 —4E(4) 7

E(41 +E(&)

2y- [3- 3E(l) --E(4) 7

1+2E(1)+2E(4)

(-, y+2)E(g —-„E(-,) —&E(@)

y {E(g+E(48)+E('-,') 7

2[6 —TE(l) -gE(4) —
5 E(9)7

y{1+2E(l.}+2E(4) +2E(9) 7

,{4y+~4)E(Q —
4 E(4) —gE(4 ) —gE(4)
8 8 ii 25 '! 48

y{E(4)+E(4)+E(24)+E(448) 7

tices will each be considered in turn) with nearest-
neighbor ferromagnetic exchange J' (only) and sub-
ject to a local crystal field at each site of the form

2
Vct = D~ )s. (2.6)

Q =Q ~ (2. 7)

The CEF ith-site effective Hamiltonian (2. 1) can
now be diagonalized very simply, and it has eigen-
values

E(m) =I)'m' (2. &)

Since the resulting system is axially symmetric in
a phase with unbroken symmetry (e. g. , the para-
magnetic phase), the transverse correlation param-
eters n" and +' are equal by symmetry and we can
define parallel and perpendicular correlations with
respect to the axis (z) as follows:

and eigenfunctions I m), where m is the quantum
number of the z component of local angular mo-
mentum S&„and where

D' =D —zJ(n„—n~), (2. 9)

Z;~(q)/f~(0) - ~(q)]
K,"~(0)&t.~(0) —~(q)1 ' (2. 10)

which is independent of V„. and is readily evaluated
once J(q) is specified. Inserting into Eq. (2. 10) in
turn the Fourier transforms relevant for the three
nearest-neighbor cubic lattices under considera-
tion, viz. ,

sc: J(q) =2J[cos(q„a)+cos(q,a)+cos(q, a)], (2. 11)

bcc: Z(q) = &Juncos( —,'q„a) cos(2q„a) cos(-,'q, a)],
(2. 12)

fcc: J(q) =4J[cos(—,'q„a) cos(—,'q„a)

+ (cyclic perms. )], (2. 13)

where a is a linear dimension of the basic cubic
unit cell in each case, we find values for ~~& equal
to 0. 34053, 0. 28223, and 0. 25632 for sc, bcc, and
fcc, respectively.

In the present context, where we have only near-
est-neighbor exchange, the correlation parameters
n" take on a rather simple physical interpretation.
They are defined, in general, '8 by replacing all
operators S;(jwi) in the paramagnetic zero-field
equation-of-motion for 5, by A;, S; and writing

P A,'., Z, , = n ' P Z, , (2. 14)
i

It follows that when J,&
are restricted to nearest

neighbors which are all equivalent by symmetry,
then n =A„(i,j nearest neighbors) and nearest-
neighbor correlations (S; S;) in particular are ap-

in which z is the number of nearest-neighbor sites
of any individual spin (z=&, &, 12, respectively,
for the sc, bcc, and fcc lattices) and where we have
dropped constant terms. This knowledge of local
CEF eigenfunctions and eigenlevels now enables us
to calculate explicit forms for (S:S') and (S:S )
from Eq. (2. 3) for any spin quantum number. We
have obtained results up to and including S=p;
the explicit forms are detailed in Table I.

The many-body problem for T~ in CEF approxi-
mation now reduces to the simultaneous solution of
Eqs. (2. 2)(&= ~~, &) and (2. 5) for n„, n~, and T, .
One of the correlations can be obtained analytically,
as we shall now establish, so that the numerical
problem for estimating T~ as a function of anisot-
ropy reduces finally to the solution of a pair of
implicit equations for two unknowns.

Suppose that the incipient direction of ferromag-
netic ordering is ~= JL(, . Writing T= Tc= T~ in Eq.
(2. 2) with &=)J. and using Eq. (2. 5) also with &= p, ,
we obtain
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I. I I I I I I

0 -2 -4 -6 -8 -10
—.1 —.08 —.06 —.04 —.02 0

0/J

Fig. 1. Curie temperature as a function of anistropy
D/J' for the Heisenberg simple cubic system with an easy
anisotropy axis (D negative) and for spin quantum num-
bers S=1 to ~2.

kTa =kT'a =28'(0) (1 —n "c)(s":S")z r, (3.2)

where (S:S ) and (S:S ) for T= Tc can be taken
from Table I and where a.~ is independent of anisot-
ropy and spin quantum number and is equal to
0. 34053, 0.28223, and 0. 25632 for the sc, bcc,
and fcc lattices, respectively.

Vfe have solved these equations numerically for
the complete easy-axis anisotropy range —~
~ D/J~O. The results for Curie temperature as
a function of D/Pare shown in Figs. 1-3 for the
sc, bcc, and fcc lattices, respectively, and for
S=1 to S=~ inclusive for each case. The cor-
responding curves for critical (T = Tc) correlation
n c as a function of anisotropy are detailed (for
brevity) only for the sc lattice (Fig. 4). The na-
ture of the curves for the other lattices is quali-
tatively similar.

For the isotropic D=0 limit the method gives
the same estimates for T& as the HPA Green's-
function approach. These are within a few per-
cent of the best known (high-temperature series)
values for all spin values. The other value of
anisotropy for which we have good series expan-
sion estimates is the opposite limit D/J- —~ for
which the system goes over to an Ising extreme
K= —(S ) g; g& Ja,' a,'. in which i and j run over near-
est neighbors and o' can take only the two values
+1. In this limit the RPA Green's-function ap-
proximation becomes equal to the molecular-field
theory and gives estimates of Tc between 23%
(fcc) and 33% (sc) too high. In this same limit the

proximated as a. ((S,')'). Thus the correlation
parameters n' and n for our examples can be
construed as a measure of nearest-neighbor spin
correlations in the sense

a.' = (S,' S,')/((S ',.)'), (2. 15)

III. EASY-AXIS CASE

When the anisotropy parameter D of Eq. (2. 6)
is negative, the parallel susceptibility diverges
first as temperature T is decreased in the para-
magnetic phase. The systems therefore order
along the z axis and n~c of Eq. (2. 10) is equal to

The "unknowns" are therefore n~ and Tc = Tc
and are obtained by the numerical simultaneous
solution of Eq. (2. 2) with T= Tc, X= & and Eq.
(2. 5) with X = II, i.e. , of

y, Z(q) fk Tc —2[v(q —n'c Z(O)] (S':S'), „]
g;Z(0/k T, —2[v(q) —;~(0)] (S':S')...]-'

(3.1)

0 I I I

0 -2 -4 -6

0/J

b. c.c.
easy axis

I I I I I

-8 -10
—.08 —.06 -.04 -.02

J/0

FIG. 2. As Fig. 1 but for abcc lattice.
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easy axis

considerably). If we take Yang and Wang's cal-
culation to be the most accurate yet available, and
probably accurate to within a few percent over
the entire anisotropy range, then it is apparent
that the CEF method of the present paper (which
in terms of Tc(D/J)/Tc(0) never deviates from
the Yang and Wang value by more than - 5%) is a
very useful representation in this context.

From Fig. 5 we see that the molecular-field
theory probably somewhat underestimates the
sensitivity of Curie temperature to easy-axis
anisotropy. At first sight this is in conflict with
the high temperature series results of Brankov
ef al. ,

t who find that for i D~ /J up to -10 the mo-
lecular-field and series estimates for T,(D/J)/
Tc(0) agree, while for larger anisotropy values
the molecular field estimates are a little too
large. The explanation is contained in the fact
that, in order to avoid the mathematical com-
plexities introduced by noncommutation of opera-
tors, the series work was performed for an Ising
exchange —g, g ~ JSf S& (i,j, nearest neighbors).

a," (all spin)

0.3-

I I I I I I I

0 -2 -4 -6 -8 -10
-.1 -.08 -.06 -.04 —.02 0

D/J —J/D

FIG. 3. As Fig. 1 but for a fcc lattice.

CEF theory goes over to the spherical approxima-
tion'4 with Tc estimates from 8% (fcc) to 12% (sc)
low. In the case of spin S =1, which is the only
case for which a major body of existing literature
is available, it is possible to do a more careful
comparison of methods. The quantity which has
received most attention is the ratio Tc(D/J)/
Tc(0), i.e. , the enhancement of Curie temperature
by the presence of the easy-axis crystal field. In
Fig. 5 we show a full calculation of this quantity
for the sc lattice over the complete range —~
~D/J~0 using the molecular field theory, the
RPA Green's-function approximation, the present
work, and finally the Green's-function diagram-
matic technique of Yang and%ang. ' It is apparent
that of these methods the RPA Green's-function
approach is the least satisfactory, seemingly
overestimating the sensitivity of Curie tempera-
ture to anisotropy very seriously. The molecular-
field theory is surprisingly good in its estimate
(although of course it overestimates the actual
values of Tc(D/J), rather than the ratio, very

0.1

0
0 -2 -4 -6 -8

0
-10
—.1 -.08 -.06 -.04 -.02

J/0D/J

Flo. 4. Correlation parameters e& and G.'& of the CEF
theory as a function of anisotropy D/J for the Heisenberg
simple cubic system with easy-axis anisotropy.
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s. c.
easy aris

S=1

The Curie temperature is now determined from
(2. 2) (X= It) and (2. 5) (X= )t). Substituting the latter
into the former we find

(3.4)

0 2—

Cl

I-

1.5

which is independent of anisotropy D and takes on
the values cited earlier for the sc, bcc, and fcc
lattices with nearest-neighbor exchange. Thus,
for the easy-axis Ising problem, the correlation
determination is trivial with o'. c = 0. 341 (sc),
0. 262 (bcc), 0. 256 (fcc), and no =0 for all values
of D/ j. The resulting Curie temperature is

kTc =2J'(0)(1 —o'c)(S:S )D'/krc& (3. 5)

where we have now labeled the ensemble average
with that parameter (i.e. , D /kTc) of which it is
a variable at the Curie point.

Let us now compare the Curie temperature find-
ings for the CEF Heisenberg (T c), CEF Ising
(Tlc}, and molecular-field Heisenberg or Ising
(Tc }approximations. They can be written as the
solutions of

1
I I

0 -2 -4 -6 -8 -10 -.08 -.06 -.04 -.02 0

kTc =28(0)(1 —n'c)(S":S")c.g~r&,

D~ =D zoo'c +c) ~ (3 6)

0/J J/0

FIG. 5. Ratio of easy-axis Curie temperature Tc(D/J)
to its value in the isotropic limit T~(0) as a function of
easy-axis anisotropy D/J for the simple cubic lattice witI:
spin S =1. The simple molecular-fieM estimate is com-
pared with those of the RPA Green's-function theory, the
diagrammatic Green's-function theory of Yang and Wang
(Ref. 10), and the CEF approximation of the present
paper. We have not been able to find a published RPA
Green's-function curve for all D/J, and the dashed part
of the relevant curve in this figure is an interpolation be-,

tween published values fD I/J&6 and the known f D I/J
0 limit.

1.6

1.4C}

I-

o 13
I-

Mol. Field

D ' (Ising) = D —zdn„. (3.3)

Via the CEF method we can easily demonstrate
the effect which the removal of the transverse
spin operators from the problem has on the sensi-
tivity results.

For an Ising exchange Hamiltonian subject to an
easy-axis crystal field V„=DS~„(Dnegative), the
local ith site CEF Hamiltonian still has the form
of Eq. (2. 1), but now the perpendicular correla-
tion parameters n"= n'= n' are zero by definition.
The resulting problem therefore involves the single
correlation parameter n'= ~" which, from Eq.
(2. 15), is a measure of z component nearest-neigh-
bor correlations. .The CEF Hamiltonian again has
eigenvalues D'm and eigenfunctions I m) but now

I I

0 -2 -4 -6

D/J

-8 —10
-.08 —.06 —.04 —.02

J/0

FIG. 6. As Fig. 5 but for the case of an Ising rather
than a Heisenberg exchange form. For this case the
RPA Green's-function and molecular field curves are
identical. Also shown on this plot are the estimates
from a high-temperature-series expansion extrapolation
as calculated by Brankov et al. (Ref. &2).
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02

0.1

5/2 =S

~ 5/2~ 7/2

0
0 2 4 6 8 10

.1 .08 .06 .04 .02 0
D/J J/D

FIG. 10. Correlation parameters 0'.& and +& of the
CEF theory as a function of anisotropy D/J for the Hei-
senberg simple cubic system with easy-plane anisotropy.

and the sc lattice. Thus, whereas the CEF and
Yang and Wang estimates for Tc(D/J)/Tc(0) are
generally greater than the molecular-field curve
for the Heisenberg problem, they are both very
close to the molecular-field estimate for the Ising
case except at higher anisotropies, where they fall
below molecular field. This is in qualitative accord
with the series expansion findings of Brankov et al. '3

for the Ising system, which are also plotted in Fig. 6.

IV. EASY-PLANE CASE

When the anisotropy parameter D takes on posi-
tive values it favors a divergence of perpendicular
susceptibility (in the xy plane). This situation
creates a more difficult decoupling problem for
Green's-function techniques and to my knowledge
has not yet been attempted in the literature, al-
though there have been some efforts (e.g. , Lines" )
to discuss the easy-plane problem for exchange anisot-
ropy. From Eq. (2. 8) it is immediately evident thatfor
positive D' [or equivalently positive D, since o.', ) o.'„ in

Eq. (2.9) for the easy-plane situation] the problem
takes on a different character for integral or
half-integral spins. In the former case the low-
est local CEF crystal-field is a singlet i0), with
energy E(0) =0, and for large enough values of

TABLE II. Critical values of D/J for which singlet-
ground-state ferromagnetism is just stable at T& =0, as
calculated in the CEF approximation.

(D/J)rc
0

sc
bcc
fcc

13.784
20. 711
32. 621

9=2

45. 439
66. 648

104.01

92.921
135.55
211.10

D/J the exchange interaction is unable to induce
a spontaneous moment into this singlet single-
ion ground state even in the limit of temperature
T going to zero. For this case there will exist
a "critical" value of D/J which marks the limit
of stability of the singlet-ground-state ferro-
magnetic order. For half-integer spins the low-
est CEF crystal-field level is the doubly de-
generate I+ 2), E(+2) = ,'D' w—hich can be split at
low enough temperatures by even an infinitesimal
exchange field for any O'. It follows that a finite
Curie temperature exists for the whole range
0& D/J& ~ for the case of half-integer spine.

For positive D the direction p. of incipient order-
ing, when a susceptibility divergence occurs, is
i z. For this case, therefore, from Eq. (2. 10),
n& ——n~. This leaves as "unknowns" the Curie
temperature T~ = T& and a~. They are obtained
from the numerical solution of the simultaneous
Eqs. (2. 2), with T= Tc and X=il, and (2. 5), with
~=i, i.e. , of

J(q) (k Tc —2 [J (q) —o'c J'(0)](S":S"&, „)'

g; J(0)[kTc —2[J(q) —o.'" J(0)](S":S")r rc) '
(4. 1)

and

kTc =kTG =2J(0)(1 —o.'c)(S':S')r r, (4. 2)

where (S:S') and (S':S') are taken from Table l
and ac = 0. 841 (sc), 0.282 (bcc), and 0. 256 (fcc).

These equations have been solved numerically
for the complete easy-plane range of anisotropy
0& D/J& ~. The results for Curie temperature
are shown in Figs. 7-9 for the sc, bcc, and fcc
lattices, respectively, and for S=1 to S =~~ in-
clusive for each case. The corresponding curves
for critical (T= T~) correlation n'c as a function of
anisotropy are shown only for the sc lattice (Fig.
10). The correlation curves for the other lattices
are qualitatively similar to those shown for the
sc case.

We see, in general, that the transition tempera-
ture increases at first as a function of D/J, but
then goes through a maximum and falls off at high-
er anisotropy values. For half-integral spin the
falloff is to finite Tc values in the infinite D/J lim-
it, while for integer spin, Tc, as a function of D/J
falls continuously to zero at a large, but finite and
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spin-dependent, value of D/J.
The limiting case of D/J- ~ and half-integer

spin is not difficult to probe analytically within the
theory. Restricting the calculation to only the low-
est degenerate pair of local spin states we readily
establish that

~c(S) =(S+~2) 7'c(S=~24 (4. 3)

kT (S=—') =—J(0)(1 —o.' ), (4. 4)

where Tc(S= ,') is th—e Curie temperature for the
equivalent spin-& system, which is unaffected by
single spin anisotropy and in CEF approximation is

D/J=z [4$ '~ —nc(4$ ~ + I )] . (4. 5)

Using the relevant values of n ~ and the fact that
P, = 1, Qz ——3, $3 = 6, . . . , from Table I we calcu-
late the critical values of D/J within CEF theory
as shown in Table II.

with nc given by Eq. (2. 10).
The "critical" D/8 value for the vanishing of

singlet-ground-state magnetism with integer S can
also be probed analytically using Eqs. (4. 1) and
(4. 2). Writing (S':S ) =(2/y) Pz from Table I,
where y=D'/kTc we find that nc-0 and Tc-0
when
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