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Phonon dispersion in liquid He n
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The eigenfunctions of the linearized collision operator for the phonons in superfluid helium are determined
numerically. The calculated sound velocity is in quantitative agreement with experimental data in a wide
frequency and temperature range if an anomalous dispersion y = —10" in cgs units is used.

I. INTRODUCTION

In recent years the frequency and temperature
dependence of sound velocity and ultrasonic ab-
sorption in liquid helium II has attracted great
interest. Extensive experimental work has been
performed by the Argonne group. ' ' The most
remarkable feature of their results is the non-
monotonic frequency behavior of the sound vel-
ocity. Theoretical efforts to explain experimental
data which were based either on Green's-function
techniques" or on a relaxation-time treatment
of the phonon Boltzmann equation" invariably
yielded a monotonic increase of the velocity with
frequency for all temperatures smaller than 0.5 K.

Concerning the ultrasonic attenuation, Maris and
Massey' proposed that the discrepancy between
measurement and theory in the same frequency
and temperature domain could be resolved by
assuming that the energies of the thermal phonons
rel. evant for transport processes in the above
terr. perature interval are given by

~, =c.P(& rP'), -
with a negative y (anomalous dispersion). Using
Eq. (&), Naris' then solved the full collision equa-
tion numerically by an iterative procedure and
for the first time obtained values for the relative
velocity shift 4c/co in qualitative agreement with
experiment. Encouraged by this success, two of
the present authors'0 used a different method (the
integral equation for the phonon density was ap-
proximated by a set of linear algebraic equations)
and confirmed the findings of Maris. '

In a recent I.etter, Junker and Elbaum" reported
new measurements of frequency and temperature
dependence of the sound velocity in liquid helium
II. Their data complement the earlier work done

by Abraham et al. ' and Roach et al." Junker and
Elbaum state that their results are in qualitative
agreement with the predictions obtained from an
iterative numerical solution of the Boltzmann equa-
tion by Maris" if an anomalous dispersion y =
—15& 10" cgs units is assumed.

In this work, we present results of a different
method of solving the transport equation which,
in contrast to Maris's work, is most effective
for lower frequencies. Our results are in quan-
titative agreement with the measurements for a
wide range of temperatures and frequencies, pro-
vided that we use y = —10X1(P'. The theoretical
framework is discussed in Sec. II. In Sec. III we
present our results and compare them with the
conclusions of other work.

II. OUTLINE OF THEORY

The phonon-collision equation, which was also
used by Maris' ' in his investigations of various
aspects of superfluid hydrodynamics, is of the
form

t' —i 0 + i Q v(P)j y (p, Q, 0 )=

4'P'L p, p' y p', , 0 +Kp, , Q .

Here, y(p, Q, Q) is the time and space Fourier
transform of the density of phonons with wave vec-
tor p and group velocity v(P) -=8~~/Sp. L is the
phonon-collision operator. Its form can be ob-
tained by comparing the anharmonic terms in the
quantum hydrodynamic model with the correspond-
ing ones in lattice dynamics. For three-phonon
collisions we get
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with

x [2II((d +& ~ —& -)~(p+p' -p") f e(p)+V'(p') —V'(p")]

+II(&p-&R -~p-)~(p- p'-p")[V'(p) —V(p')-V(p")]], (3)

M(p, p', p") =PP'P" [2u —1+cos(p, p') + cos(p, p") + cos(p', p")]'. (4)

Here p is the density, u =(P/c)dc/dp stands for
the Griineisen parameter (u=2. 84), and

m(P) = [2sinh(k(u, /2k~7')] '.
Three-phonon collisions are only possible if the
dispersion is anomalous (y & 0), since otherwise
energy and momentum conservation cannot be
fulfilled simultaneously. X describes the effect
of an ultrasonic wave on the thermal phonon sys-
tem

angle scattering, a fairly large number of spheri-
cal. harmonics must be used in order to describe
the angular dependence of y. We typically used
300 values for (i)„,; e.g. , f =1, 2, . . . , 30, n
=1, 2, . . . , 10. This yielded fairly mesh-indepen-
dent results for what may be termed "collision-
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IC(p, Q, Q)= —(Q — uP+ ).p
(8)

'IO

II)„,(p) =A„, (P)F, (cos &),

where Y, are spherical harmonics with argument

cos8 =(Q p)/IQIP (8)

and A„, is the "radial" part depending only on the
magnitude P of p. In the present work, we used
the expansion

Observing the spacial isotropy of the probl. em,
Maris" introduced eigenfunctions of I. of the form
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T = Oe25K—

W(p, Q, f1 ) =Q a. (Q, f1 ) &. V ) 1' (cos ~)

in order to calculate b c/c, . This (luantity is then
determined by

~ \

Co

1= 2,I,T 4 '" ., "~~' ~)
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~ ~~ ~ R ~ e'"0' 1

«g (uRe(a„,)R„,(p)+ Re(a„,)R.,(p))
1

, m(P)p'(u+ cos &)R. (10)

Numerically, this method turns out to be su-
perior to the one used in Ref. 10, since it auto-
matically guarantees the correct hydrodynamic
limit for small 0 and Q and the results are less
sensitive to the mesh in p space, provided that
a sufficient number of g„,'s are taken into ac-
count. Owing, in particular, to the almost linear
phonon dispersion [Eq. (1)], which favors small
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FIG. 1. Change in sound velocity, normalized accord-
ing to Eq. (11), as a function of frequency for T =0.25
and 0.35 K. The curves showing the present results for
y = -Bx 10 cgs units are labeled by the respective
values of E. In the frequency region where the mesh de-
pendence becomes appreciable, these curves are dotted
representing averages over various reasonable meshes.
The results obtained by Maris (Refs. 9 and 12) for B =8
are shown by dashed lines. Experimental points are
the measurements of Roach et al . (Ref. 3), 0; and
Junker and Elbaum (Ref. 11), U.
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7 = 0.4 K

5c =Ac/Ac, =
E c(T, 0) —c,] /gc„

for various values of temperature 7' and disper-
sion coefficient y. A. is given by"

2

kv'(u'+2u+ 3) AT
30pco ~ co

(12)
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dominated" frequency domain, i.e. , 0/2v ~20 MHz
for T=0.2 K, and 0/2v ~100 MHz for T =0.4 K.
On the other hand, the values of b.c/c, showed
a significant mesh dependence in the high-fre-
quency region where the number of eigenfunctions
used here is still insufficient.

III. RESULTS AND COMPARISON WITH OTHER WORK

In Figs. 1 and 2, we present our theoretical
results for

FIG. 2. Change in sound velocity, normalized accord-
ing to Eq. (11), as a function of frequency for T =0.3 and
0.4 K. The notation is the same as in Fig. 1.

Our plots demonstrate that the peculiar behavior
of the sound velocity as a function of frequency,
found experimentally, is indeed reproduced. The
maxima and minima of 0c are shifted towards
higher 0 with increasing temperature in a sys-
tematic way. This is expected if we interpret the
decrease of ~c with 0 as being due to the trans-
ition from the hydrodynamic (07&1) to the high-
frequency (Qv& 1) domain, 7 representing some
mean reLaxation time. " QuantitativeLy, it is evi-
dent that a value of y= —10&&10"cgs units yields
good agreement for all temperatures shown in the
figures. The values for ~c obtained by Maris"
are consistently higher than ours in the relevant
frequency domain. The present result for y lies
wel. t. within the range of values deduced from mea-
surements of specific heat C and viscosity q. The
original analysis of C(T) by Phillips, Waterfield,
and Hoffer' yielded y = —4.1. & 1.0 ' cgs, whereas
Maris, ' by reexamining their data, found y=
—8&10". Maria, "vrorking with the same eigen-
functions of the collision operator as used here,
calculated g and found agreement with experiment
for y = —10& 10", Thus our y, extracted from
ultrasonic data, deviates considerably less from
these values than y =15&&10"given by Junker and
E lbaum
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