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A scaling form for the logarithm of the partition function suitable for a zero-temperature critical point is

obtained and found to hold for the spherical model in less than two dimensions and the classical n-component

Heisenberg linear chain. Nevertheless, several cases are found where the critical-exponent relations involving

the specific heat fail. These anomalous cases do not imply a breakdown of the scaling implicit in the basic
formulation of renormalization-group theory.

I. INTRODUCTION

The renormalization-group approach~ to the prob-
lem of critical phenomena depends explicitly on an
assumption which requires a certain scaling form
for the logarithm of the partition function. In this
paper we investigate the spherical model and the
n-component classical Heisehberg model for those
spatial dimensions for which the critical tempera-
ture goes to zero. We find in the case of the linear
three-component classical Heisenberg model and
also the linear spin- —,

' Ising model that anomalies
do occur. These anomalies imply the failure of the
expected scaling relations among the critical in-
dices which involve ~, the specific-heat index.
However, this failure does not invalidate the scal-
ing form assumed by the renormalization-group ap-
proach, as one might perhaps initially have feared,
but reflects certain special situations.

Hyperscaling for a zero-temperature critical
point implies that

In(C„)~)

where f„ is anormalization factor, F is a function
assumed not to vanish (but it can in anomalous
cases), and the I"s are the Fourier transforms of
the truncated spin-spin correlation functions. By
truncated correlation functions, we mean the Ur-
sell functions, ' or, in the language of statistics,
the cumulants, instead of the moments (correla-
tion functions). The rest of Wilson's renormaliza-
tion-group derivations appear to depend in an es-
sential way on this result.

As far as the thermodynamics of the system is
concerned, we need to know the logarithm of the
partition function

Z = Tr[exp( PÃ+ P—mHSR)],

where P =1/kT, 3' is the Hamiltonian, H is the mag-
netic field, M is the magnetization variable, and m
is the magnetic moment per spin. The form of
(I Zn)/ N, where N is the number of spins, can be
deduced from (2) by setting q; =0. We then con-
clude

(~)/N = g-4r(a&'-"), (4)
using the usual definition of critical exponents.
Here $ is the range of correlation, C» is the speci-
ic heat at constant magnetic field, d is the spatial
dimension, and T is the absolute temperature.
Specifically, the anomalies that occur are that in-
stead of zero for the right-hand side of Eg. (1),
we obtain 2 for the one-dimensional Ising model and
1 for the classical Heisenberg chain. If the "singu-
lar part" of the specific heat is used instead of the
dominant part, the result, —~, is obtained in-
stead for the linear classical Heisenberg modelt

II. REFORMULATED SCALING AND THE
RENORMALIZATION GROUP

Wilson explicitly assumes that there exists a
renormalization-group transformation with a fixed
pointand a particular, simple form near the fixed
point. He uses this assumption to show that

I (qs~ q2~ ~ ~ ~ i %pi ~)

where d, is called the anomalous dimension of the
spin field. The function Y is the formal sum of a
power series in H whose coefficients are derived
from (2). This form is supposed to hold at least
for T &T„daHn«g ~e".

In order to extend the form (4) to the case of zero
critical temperature, it is helpful to remember the
various definitions for the zero-field susceptibility,
specific heat, spin-spin correlation functions, cor-
relation length, and the magnetization along the
critical isotherm

X g~2 c

&~lnZ N
C /N= kg — ~ (7 —T,)
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$o: (T —T,)
ggccH T=T . (5)

The magnetization for T = 0 is a constant in H which
gives [by (5)] the values of p and 5.

82tl+8l~

BH"

8H"
8

(6)

In concert with these definitions (5) and the scal-
ing hypothesis (6), we may write (4) to display ex-
plicitly the dependence on inverse temperature P.
Thus we have

IV. n-COMPONENT CLASSICAL HEISENBERG MODEL

In the calculation of the properties of the n-com-
ponent classical Heisenberg model of Stanley, ~

we use the transfer-matrix method to compute the
solution for the linear chain. The transfer matrix
for this problem is

T = exp[PJS,'"' ~ S l".,'], (12)

and its eigenvalues are o

lnZ/N gdY(—IIS z$d X ) (7) X&n)(PJ} (2v)n/z(nP J)1-(n/z)I (nP J) (13)
Form (7) insures the definition of X and the scaling
hypothesis (6) with

& = —,'(zv+y+ 1),

where I~ is the modified Bessel function of the first
kind of order p, . From the analysis of Stanley, '
we have, under the normalization constraint (Sz

=n),

(i) y = 1+ (2 —n) v,
(ii) &=&I(& r), -
(iii) & = —,'(dv+y+ 1),
(iv) —n d

= dv,

(9)

and is a form of weak scaling. %hen, in addition,
we impose the (renormalization-group) assumption
s =d, we have hyperscaling. The usual exponent
relations then become

E/N= —nJy„,

X/N = Pm'(1+y. )/(1 —y.),
C„/N = k(nP J) [1—y„—(n —1)yg(nP J)],
(s, s/&=n(y„)',

where

X~~"~(PJ) I„/z(nP J)
Xo (gJ) I( /z) g(nil3 J)

(14)

by form (7) and the definitions (5) and (6). The
"singular-part" [relation (9) (iv) is equivalent to
the limit formulation (1)] of the specific heat has in-
dex ~„where it differs from ~. The modifications
from the usual relations [only (9) (ii) rema. ins the
same] are due to the confluence of the singularity
at T = 0 with that at T = T, when T, = 0.

III. SPHERICAL MODEL

It is well known that the spherical model is the
n- ~ limit of the classical n-component Heisenberg
modelv and that it can be treated in such a way that
the space dimension d plays the role of a continu-
ous parameter. The critical temperature falls to
zero as d decreases to 2. For d & 2, the scaling
form (4) is known to hold; however, many of the
critical indices divergee as d- 2. By use of the
general formulas of Joyce, 9 we have verified by
direct calculation for 0&d& 2 the validity of form
(7) with z =d. The critical indices for this model
are

(n —1} (n —1)(n —3)
2' J' 8(ng J) (15)

(16)

9 lnZ/N 3 X X
&II (1—y„)z(1 —z„) (1—y „)

where E andE are constants. Thus by substitu-
tion of (15}and (16) into (14) and (17), we obtain

by the asymptotic expansion of the Bessel functions
for large arguments. It is to be noted that when
n is 1 or3, theseries (15)doesnot havetheexpected
leading order terms, and, in fact, the correction
terms to those explicitly given in (15) are of the
form e' ~+. If we follow the analysis of McLean
and Blume 5 for the four-spin correlation function,
which generalizes directly from their case n= 3 to
general n ~ 1 in terms of the eigenvalues (13), we
can compute, using

o, ,= -d/(2 —d),

v = 1/(2 —d),

4 = 2/(2 —d),

y = 2/(2 -d),

g= 2-dy

which satisfy the relations (9) and

6
d/ (2 d)Y[IISz/ (2 d)]

(10)
y=2, n =0, 0.,= —1

p=1, &=1, &=2, 5=~,
for all n except 1 and 3. (The definition of the mag-
netization in terms of the limit of the spin-spin cor-
relations has been used. ) Comparison with (10)
shows that these results agree identically with those
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for the spherical model with d = 1.
In the case n=3, the form

Cz/N=k(n —1)(~+c,T+caT + ~ ~ ~ ) (19)

for specific heat fails, as all the e,. coefficients
vanish. The correct formula"' is

Cz(n= 3)/N= k[1 —(PJ')~/sinh~(PZ)], (20)

which yields the anomalous value n, = —~.
In the case n = 1, Eq. (15) fails as every coef-

ficient vanishes, and we get

y, = tanh(PJ} = 1 —2e (21)

This exponential approach causes, y, p, and o. to
be infinite. [The coefficient K in Eq. (17) vanishes
for this case as well. ] Even so, all the relations
(9) continue to hold, with the exception of (9) (iv), if'

we interpret them as limits in the sense of Eq. (1).
First we have 6= 1, since y, goes to unity as T-0.
Then relation (9) (i) becomes

nition & = 2 —a —y, then relations (9) hold for this
model. This result differs, of course, from the
spin- —,

' Ising ease where (9) (iv) fails. We would like
to point out in connection with the n-vector models
that the assertation of Balian and Toulouse that n =1
for n & 1 in these models is somewhat artificial, as
the coefficient of P in C„exactly vanishes. This
analytic continuation of the one-dimensional Stanley
sequence is interesting in that T, & 0 for n& 1.
[Note that if T, continued to stick at zero, Eq. (19)
would indicate a negative zero-point specific heat. ]
The scaling form for the logarithm of the partition
function continues to hold, but z = 0 and a failure of
the usual (T, & 0) scaling law d p = 2 —n for these
models is the correct conclusion. It is to be noted
that for n= 0, the second- and third-largest eigen-

- values are exactly degenerate for all temperatures,
since for integral order I =I, and so the critical
behavior may not be given by the above analysis.

V. SUMMARY

(22}

which we directly verify as

X/N- Pm'e"' g 'e"-'- (23)

In(NP'e4"/EXP),
lim ' = 0,—lnT

(25)

The explicit form for lnZ/N of Nelson and Fish-
er'~ for this case

In@/N= pJ+e-2~~[1+(pmH) e ~~]' 2 (24)

with error terms of e-2~~ in comparison with the
terms retained, allows us to observe that "P " is
replaced by Pe 8; so relation (9) (ii) correctly
yields 5=~. Relation (9) (iii) becomes

1 563 + 0 003r y = 1 250 a 0 ~ 003

0 638+0o002
~Oo001

(27)

In conclusion, we point out that for all the models
considered here, the scaling form (7}holds with
z =d and relations (9) (i)-(9) (iii) are valid. The n
dependent relation (9) (iv) fails inavariety of cases .

for a number of reasons unrelated to the validity of
the scaling form. For this class of models (n
vector, d dimensional, d&4) it appears, as is well
known, that the only substantial evidence for the
failure of hyperscaling as distinguished from the
failure of a particular exponent relation, is the
numerical evidence for the three-dimensional Ising
model, where the best exponent values are

as expected. Since

C„/N = k(PZ)2 sech~(PZ), (26)

which imply by Eq. (8),

z = 2. 94 + 0.02, (28)

we see that relation (9} (iv) fails, i. e. , Eq. (1).
The reason is clearly that the derivative with re-
spect to P of terms like e-2~ ~ does not increase the
divergence, as it does for a power of p.

Thompson' has considered in detail the critical
properties of the one-dimensional, spin-~ Ising
model (see also Joyce'9). For this model $
ct- P '8~~~, although Thompson did not compute the
four-spin correlation functions, if we use the defi-

which shows a small but persistent difference from
the value 3, i.e. , an anomalous dimension of the
vacuumt The determination of an index ~ is, of
course, a verification of the scaling form (7).
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