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Using techniques developed by Greenspoon and Pathria, a rigorous, asymptotic analysis of the onset of Bose-
Einstein condensation in a finite two-dimensional system at constant pressure is carried out. Some of the
results obtained by Imry, Bergman, and Gunther, who first considered this problem, are upheld while others
get modified. In particular, a macroscopic occupation of the single-particle ground state at finite temperatures
is indeed possible. As the critical region, T~ T, is approached from above, the volume of the system becomes
subextensive, ¥V, = O(N/In N), which is both necessary and sufficient for the onset of Bose-Einstein
condensation in the system. For instance, if the system is now cooled even at constant volume V (= V), the
condensate fraction gradually builds up and becomes nonnegligible as T approaches Ty~(T,)/2; below T, it
grows steadily as (1— T/ T;). On the other hand, if we continued to cool the system at constant P its volume,
over a thermodynamically negligible range of temperatures, would reduce to values O(N '/?) which, in turn,
would be accompanied by an abrupt accumulation of practically all the particles of the system into the single-
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particle ground state €, The specific heat C,, after having passed through a maximum, would also finally
reduce to subextensive values. Phase transitions of this kind may be of relevance to the physical behavior of

thin helium films and helium submonolayers.

I. INTRODUCTION

It is well known that an ideal Bose system of
dimensionality lower than three does not undergo
Bose-Einstein condensation at finite temperatures.
This is true if the system is cooled at a constant
particle density # (=N/V) and if » is finite through-
out the system.2 Recently, Imry, Bergman, and
Gunther® have pointed out that if the system is
cooled at a constant pressure P instead, a phase
transition accompanied by a macroscopic conden-
sation of particles in the lowest single-particle
state ¢, does take place at a finite temperature
T.(P). This is made possible by the fact that in
this situation the volume of the system becomes
subextensive, so that, in the thermodynamic limit,
the particle density no longer remains finite. In
a realistic system of bosons, interparticle inter-
actions will certainly prevent density from becom-
ing infinite; however, a modified form of the
aforementioned transition may still take place.
Such a transition would clearly be of relevance to
the problem of superfluidity in thin helium films*
and to the thermodynamic behavior of helium sub-
monolayers.®

We may recall that the problem of Bose-Einstein
condensation in a three-dimensional system at
constant pressure has already been broached by
London, ® who demonstrated the existence of a
first-order phase transition at the critical tempera-
ture i

1 1 hZ )3/2 ]2/5
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T =% [z(%) (21Tm Pl . @

London emphasized that in order to establish the
order of the transition it is inappropriate to pre-
scribe the volume of the system beforehand; one
must instead work with pressure and temperature
as independent variables of the problem. He also
showed that Cp, the specific heat of the system at
constant pressure, behaved very differently from
Cy, the specific heat at constant volume. While
Cy remained finite at all temperatures, Cp be-
came infinite as T - T,(P). Curiously enough,
London did not examine the occurrence of such a
transition in systems of dimensionality two or one.
In view of the relevance that it may have for actual
physical systems, such as thin films and sub-
monolayers of superfluid helium, we have under-
taken a rigorous study of this transition in a two-
dimensional system (of size LxX L). This may be
regarded as a first step towards a similar study
for a three-dimensional system (of arbitrary size
Ly X LyX Ly)—in particular, a thin film (for which
Ly<<Ly,,).

The most distinguishing feature of this problem
is the variation of the volume of the system with
temperature; we must, therefore, reckon with the
quantity (8V/9T)p, which makes it necessary for
us to treat the system as one of finite size. In
their study of the two-dimensional problem, Imry
et al. also argued for the necessity of subjecting
the system to Dirichlet boundary conditions
(¥s=0), so that the condensate could also make
a contribution

Py=No€/V~Nyi?/mv? (V=L? (2)
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towards the total pressure of the system and thus

help in keeping it fixed at the given value P even

when T is less than the critical temperature T'2,
1/1

where
1 -1 (2 —p)‘”- (3)
¢ B\ ¢(2) 2mm ’

clearly, this is not possible in the case of a sys-
tem which, right from the beginning, is treated
as infinite,

It follows from Egs. (2) and (3) that for N, to be
a significant fraction of N and for P, to be a signifi-
cant fraction of P the volume of the system must
be subextensive:

V~(hE/mkT®)N2 | (4)

This would result in an abrupt accumulation of
practically all the particles of the system into the
single-particle state €, over an infinitesimally
small range of temperatures around 7 =72, At
the same time, the specific heat Cp would show a
singular behavior, marked by an infinitely large
value at T=T¢? and a vanishingly small value for
practically all T<T®,

In this paper we wish to report the results of a
rigorous asymptotic analysis of this problem
carried out by using techniques developed earlier
by Pathria’ and by Greenspoon and Pathria.® While
some of the conclusions arrived at by Imry et al.®
(in particular, the macroscopic occupation of the
single-particle state ¢, at finite temperatures be-
low T,_.) are upheld, others are found to require
modifications. First of all, we find that the variety
of finite-size corrections appearing in the basic
expressions for the total number of particles N
and the total pressure P of the system is such
that the condensate pressure P, does not play a
dominant role in the critical region T~ T,.
Equally important is the role played by the finite-
size effect on the density of states of the system
which arises from the specific choice of the bound-
ary conditions. The two effects together deter-
mine the precise nature of the physical behavior
of the system in the critical region. Of course,
for temperatures below T, the condensate pres-
sure P, does play a dominant role in this problem.

We shall also demonstrate that as T'—~ T, from
above and the volume of the system becomes
“somewhat” subextensive, i.e.,

V=V~ (h*/mkT,)(N/InN), (5)

cf. Eq. (4), the system has actually shrunk enough
for the onset of Bose-Einstein condensation even
at constant V. Thus, if the system is cooled below
T, at a constant volume, V=V, the condensate
fraction gradually increases and becomes O(1)
when T <T, where Ty~ 3T,. Below T, the con-
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densate fraction varies as (1 ~7/T,). Clearly,
the process of condensation in this case is spread
over a finite range of temperatures between zero
and T, rather than being concentrated at a single
temperature T,. Apparently, this will simulate
more faithfully the superfluid behavior met with
in actual physical systems.

II. FORMULATION OF THE PROBLEM

We consider a Bose system of noninteracting
particles with mean occupation numbers (z;) for
the single-particle energy states ;. The total
number of particles N and the total pressure P of
the system are then given by

N=3 (n) ®)
and ,

p=_Z<n,,>%§;i, )
where

(my)=(eore/®r —1)* (8)
and

a=-(u/kT), ©)

1 being the chemical potential of the system; the
derivatives (9¢;/8V) appearing in Eq. (7) are
determined by the energy spectrum of the single-
particle states. For a two-dimensional system of
side L (and “volume” V =L2), the energy spectrum
undev Divichlet boundary conditions is given by

U5 1
(b, ) = g—x (& +l§)oc7 (1,,=1,2,3,...).

(10)
It follows that (9¢;/8V) =~ (¢;/V) and hence
€; U
= S oY
P=) (m;) F=7 (11)

i

U being the total energy of the system.,

For the evaluation of the sums in Egs. (6) and
(11) we first of all note that if the summand
f(1,,1,) is an even function of the quantum numbers
1, and I, then’

L 1 0
Z S, 5) = ry [ Z VAUA)

1,2=1 1, 25==
-(Z 700+ 3 r0,1) w0, 0]
11=-oo 12=-eo

12
or, alternatively, (12)

SP(L) = $[S¥ (2L) - 25(2L) +£ (0, 0)], (13)

where S{™ denotes an m-dimensional sum under
Dirichlet boundary conditions, while S{™ denotes
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a similar sum under periodic boundary conditions,
the energy spectrum in the latter case being

€(ly, 1) = (BP/2mLA) B +B) (4,,=0, £1, £2,...),

(14)
The sums S{™ may be evaluated by using the method
of Greenspoon and Pathria, ® whence Eq. (6) be-
comes (for L> 1)

L? o~
N=% (gl("‘) +2 25 Kil2y(gt +49)"?]

94,2577

by . A2
- =[g1/2(@) +27/2 a7V /2 g (29)] + =7 go(@) ),
L 4L

(15)
where X [ =1/(@2mmET)!/?] is the mean thermal
wavelength of the particles, g,(5) are the Bose-
Einstein functions®

1 [~ #tax
gn(5)=m_/; e (18)

and Ky(z) is a modified Bessel function, while the
thermogeometric pavametey y (which, in our
formulation, plays the role of a scaling variable)
is given by®10

y=212a2(L/N) =L/t ; %))

here, £ [=2/(27/%a'/?)] is the correlation length of
the bulk system. Note that the sum £’ in Eq. (15)
excludes the term with ¢, =g, =0.

In the region of interest (¢ <<1), we may write
1/Za-1/2 .

(18)

No such approximation is permissible for the func-
tions K,[2y(q? + ¢2)!/2] and g¢(2y) because the pa-
rameter y varies drastically over the transition
region. We, therefore, retain the relation

go(2y) =(e® -1)" (19)
and write
g1/2(@) +2rt/2 at/Egi(2y) = 7'/ at/2 cothy, (20)

gi(@)==In(l —e™*)~-Ina; gy,(a)=n

The primed summation in Eq. (15) can be reduced
to a more appropriate form by using a method
owing to Fetter, Hohenberg, and Pincus, !! with
the result (valid for all y)

-, .
2 Kol + )M =557 +Lm[S(e) - 3E,(<)]

a1, 5=

2 fd
L ( L ) 21
2m 01,22;-00 ) R o ) W A
where
_1 s expl - (1e/y?)(dd +a3)]
S5 qfv';;-» i+4 22
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and

E(e) = j: tlectdt . (23)

The behavior of the function S(€), for €<<1, can
be obtained by using a result owing to Glasser, *12
whereby

__1 1 1. D@1
S(e)-—zln<+2y—21n—z-7—r-§g-— +0(e) , (24)
v being the Euler constant, Under the same con-
dition,
E(€)==1lne-y+0(e) . (25)

We thus have,

1 In [F(%)]4

E{P[Sk) ~3E(]=y-3% el (26)

At the same time the last summation in Eq. (21)
can be written

z”:, ( )_21r2 _ 2m?cothy +2172
P B T E
#4020 (). 27)
q1’2=1

In view of Eqs. (26) and (27), Eq. (21) takes the
form

gy 2, a\1/27_1 4my®
Z Ko [2y(q5 +43) ]E_In[r(%)] +Y

41,2%=%
m mcothy w  2y® 2
-3+ y -z_yT - sl(y ) ) (28)
where
Si ()= D (@G+a) [+ +D]T. (29)

a1, 571
Substituting Eqs. (18), (20), and (28) into (15), we
finally obtain

== 4y’ 2
N=Z (lnx+C— Y 5,67), (30)
where x is another parameter, defined by
x=y2/a=4n(L/\)?, (31)
while
4w 27
C=1nm+2y-—3- =-3.56103 . (32)

Note that x is a measure of the “volume” of the
system.

At this point we wish to emphasize the fact that
our final expression for N is such that it passes
smoothly from the region with >0 to the region
with »2<0. This is important because, under
Dirichlet boundary conditions; one must ultimately
deal with the region of negative y%®—in particular,
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with the limiting situation when y?~ -~ 272, In this
connection, we observe that the zero-temperature
limit of the chemical potential u of the system is
given by €, which is equal to €(1, 1) =7#%/4m L%,
accordingly, the limiting value of a is — 7%/
4mL2RT = - £ 7(A/L)? and, by Eq. (17), the cor-
responding value of y2 is — 272, The relevance of
this limit is highlighted by the fact that the ground-
state occupation number N, is given by

1 o1 x
B ayBe(l,1) yE+2al

No= (33)

Clearly, for a macroscopic occupation of the
ground state, y? must be very close to —27%; in
fact, we must have for this purpose

y%==271%2+0(x/N). (34)

In passing we note that N, is also given directly by
the first term of the sum S;(y%) in Eq. (30).

Following a similar procedure we obtain for the
pressure of the system

BT (7% 1 _/3\2A
P—v{'e‘-#(E)z-"‘
2 42
x[lng— +C+1 = _7731_51(3}2)]} . (35)

Using Egs. (30) and (31), this becomes

P:87r2mk2T2<_7r_ ¢3) _Nyz__ya_>
R 24 4mlEglE T B 4wy )t

(36)
We note that the first term in Eq. (36) represents
the bulk behavior of the system, the second term
arises from the modification of the density of
states of the system owing to its finite size (and
depends crucially on the choice of the boundary
conditions!* %), while the last two terms arise ex-
plicitly from the discreteness of the single-par-
ticle states. The pressure P, exerted by the con-
densate can be extracted from the third term by
letting y®— — 272, we obtain, as expected,

167 mk?T 2 12 &

s =N, =Ny =< . (37)
héx 4m L |4

Py=N,

III. CRITICAL BEHAVIOR

For studying the critical behavior of the system
we must first of all determine the manner in which
the parameters x and y vary as the system is
cooled at constant N and P. From Eq. (30) we
obtain

2) (2L)
<dx >N‘ T ) S0 % (38)

where

5,069 =37 o [3%8,5°)]
= f: [y*+7%(gi+aD)]? . (39)
1,271

Equation (36) now gives

(Z) o2, ormir () [__tQ)
T )y °T 2 oT /)y L 871/ %3

+2<2N+ 1 )_(N _1__)2 1 »
Y\ " ) "\ ) 50 |0 @O

The constancy of P, therefore, implies that

55) w8
0T ) y,p AT°mB2T° | \x% "d1x/) (3P

¢(3) 22N 1\
T E 32 Y\ e : (41)
Now, thermodynamics requires that (6x/87)y, »

be non-negative, see Egs. (31) and (53); accord-
ingly, we must have

N 1\2
_ > 2
(';z' + 4”) Sa(»%)

><[817“§(x%5)72

The foregoing inequality forces us to consider
temperatures above the critical point separately
from those below the critical point. The former
correspond to 2> 1, the latter to y2=~ - 272,

2N 1
+ 92 (7 I )] (42)

A. Region of T> T,

To study this region we note that, in view of
Egs. (28) and (39),

S1(9%) = (/49*)(Iny? + C) + O(1/y*) (43)
and hence
S:(»%) =(1/4m?) - 0(1/5*) , (44)

with C as given by Eq. (32). Substituting Eq. (44)
into (42), we obtain the asymptotic condition

which restricts us to temperatures above a critical
value T, where T, is determined by the relationship

£, =[3273/2/¢(3)IN? (£=x%/%/y%) . (48)

At this stage we also recall Eq. (30) which, in
view of Eq. (43), takes the form

N=(x/47)In(x/92) (y?*>1). (47)
Equations (46) and (47) together determine the
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critical pavameters x, and y2 .
One readily sees that

_8TN  ,_4m¢(3)(2N)t/?
YTl YT TN 48)
and
m? _\'/?_N
V°~<3mP) v (49)

The corresponding critical temperature T, can
be determined by using Eq. (36), whence

62(3)  24Ny2  6y2 \
TadEIrT T T2 wix, :

T;

_ 3n’P 1
T m3mk?

(50)
Using Eq. (46), this gives

t = Tc-Tc(oo) ~ 3;(%) (1+ Xe + xﬁ )
¢ T,l(x) w32 172 87N  32m2N2
~ _32_ e (?_ (ZN)-I/Z 1n1/2N (51)
27 2 3

here, T,(») denotes the bulk value of T, and is
given by Eq. (3). For the amount of condensate
present at T=T, we have, see Eq. (33),

(o). = (x,/v2) ~ [1/£()](2N)*/? In*/ 2 N, (52)

which is not macroscopic in magnitude.
For the specific heat at constant pressure we
have

9 v
Cp= ( T (U +PV))N’P=2P(?7:>N’P

P2 o x
_PX (e x 3
27 [(8T>N'P T]’ (53)
where (9x/8T)y, p is given by Eq. (41). We observe
that, for temperatures close to T,

Cp/NE=0(N'/%/1n*/2 N), (54)

which diverges in the thermodynamic limit. The
exact nature of this divergence, as T~ T,, can be
studied by introducing the shifted temperature
deviation'®

i=t-t,, (55)
where
T = T, () 3¢3)  12N)%  3y?
t= Tc(”cj( = 1r3/2;”2 * ﬂxzy Tt (36)

and expressing the limiting behavior of Cp,
namely,

Cp _ m x? £, (

x5/2 57)
& 576 y2N? E-¢, Ty >’

y
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in terms of . We obtain

C 2 2\ 3/2 3 -1/2 2N5/4°
o (5) (o)) B e

It will be noted that, for Eq. (58) to yield a result
of the same order in N as Eq. (54),  must be
O(N-'/21n"'/2N), which may be compared with
expression (51) for ¢,.

At this point we would like to remark that if
one ignores the finite-size effects arising from
the modification of the density of states of the
system and takes into account only those that arise
explicitly from the discreteness of the low-lying
quantum states one recovers precisely the results
obtained earlier by Imry et al. for T >T,(~). For
instance, one then obtains from Eq. (56)

y2/x%~nt/12N (59)
whence one gets, with the help of Eq. (30),

_ 4N 2. 473Nt
X" Tt Y ST - 80)

One is then led to the following results:

57 S @

ver g 12513 )1/2'1'1%7 ’ (62)
and

%E %x'*g% . (64)

As t decreases and becomes O(InN/N) one obtains
the limiting forms

x=0(N/InN), 3%=0(1/InN),

Ny=O(N), Cp/k=0(NZ%/In°N), (65)

V/N2=O0(N/InN), and Cy/k=0(N/InN).
A comparison of these results with the ones ob-
tained in the preceding paragraphs shows that the
inclusion of the density-of-states effects causes

significant modifications in the results obtained by
Imry et al. for the critical behavior of the system.

B. Region of T < T

To study this region we put

y¥=-2n%+e€ (exx/Ny=~x/N<1), (66)
In this case
Sa(9%)=1/€2+0(1)~N?/x? , 67
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Substituting Egs. (66) and (67) into Eq. (42) we
obtain the asymptotic condition

which restricts us to temperatures below a critical
value T) where T, is determined by the relation-
ship

xy =[32m2N/L (B ; (69)
accordingly,

Y= —2m? 1 [3275/2 /¢ G) PN (70)
Equation (30) now takes the form

N:N0+4iﬁ<lnx+c—%+%q), (71)
where

n=3. @+ (@} +q3-2)"=0.24341; (72)
a3,2%1
note that the summation =/ in Eq. (72) excludes the
term with ¢, =g, =1. It follows that

Ve=220(N?/3), (No)i=N-O(N®31nN),  (73)

which means that practically all the particles of
the system are in the state €,. From Egs. (3) and
(36) we now obtain

T (. . 683) 487rN>'1/2

Tc(w)_<1_}ﬂ§72x172+ x ’ (74)
whence

s TE=Ty) 9 (26G)\*® .1/

tC_JTT@.___Szﬁ (——n ) N3 (75)

For T close to T,(~), we may write

T-T (o) 1 ,[ (x’)l/a (x')z}

— ¢y I~ kel -3 - g
e TALL L )" | o)
and

o ry\ 1/2 1\ 2
t=t—t;z%t; [4(%) -(%L) -3] =0. (77)

We may also define a variable ¢ where

E=(x=-xL)/x.=0. (78)
For |f| and 1¢] <1, we obtain

@28y /3a7e .
o N
lel=3 HOIRE

lelz . (79)

The specific heat at constant pressure then be-
haves as

Cp. 167°N [ (x2\* (xi\*%]™
F e () -7
3275N 2 61/3 23/6 .
o o> S
(81)

The same result follows by observing that, in this
limit,

gfﬁl 4 .a_é:
k 12x°<a£>' (62)

Equations (58) and (81) describe, asymptotically,
the nature of the singularity in Cp.

As T decreases below T,(») we encounter a
rather broad range of temperatures in which
x<<x!. The (x, T) relationship in this range is
given by, see Eq. (74),

chw)z ( L+ 431;1\,)-1/2 ’ (®)
whence

x = (48TN)Y/ 2 T [T3(e0) — T?]/2 (84)
and

V= (NI?/4mP)*/ 2 T () [T%() - T?]/2, (85)

As T—0, V—Vy=(Nn?/4mP)'/?, which is precisely
the volume required, in this limit, to maintain the
system at constant pressure P; see Eq. (37). The
specific heat at constant pressure is now given by

Cp/k= (3 T°N)/2 T To() [T3(=) = T?]*/2 (86)
and the condensate fraction by
No/N=1-0(N"'21nN). (87)

Results (83)—-(87) apply in that range of tempera-
tures in which the finite-size effects arising from
the modification of the density of states of the sys-
tem are not as important as the ones arising ex-
plicitly from the discreteness of the low-lying
quantum states, viz.,lt|> N3, Accordingly,
they correspond to the treatment of Imry et al. for
temperatures below T,(~), with the difference that
in their case the validity of these results is sup-
posed to extend right up to the limit l#] - 0. One
then obtains

VOCNl/2|t|-1/2 (88)
and
Cp N/2|t]=3/2 (89)

which may be compared with our rigorous results
(73) and (81), respectively.

An awkward feature of the foregoing results is
that the temperature regions A and B somewhat
overlap; see Egqs. (51) and (75) for ¢, and #, where-
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by t,>t,. This means that if we approach the
region of overlap from above we encounter a
somewhat different behavior of the system than

if we approach this region from below. Hopefully,
a more refined treatment of the problem will
overcome this difficulty. Nevertheless, since

the width of the region of overlap is thermodynami-
cally negligible, the main results obtained in this
section may provide a correct asymptotic picture
of the situation actually obtained in the system.

IV. COOLING THE SYSTEM AT CONSTANT VOLUME V.

We have seen that the system under study, when
cooled at constant pressure P from above, reaches
a stage (as T~ T,) where its volume becomes
“somewhat” subextensive, i.e.,

V-V, =2%(x,/47) =22 O(N/InN).
Still, at this stage, the amount of condensation in
the single-particle ground state ¢; is not macro-
scopic. We shall now show that, for a macroscopic
occupation of the state ¢, a further reduction in
V is not necessary; the system may, if desired,

be cooled at constant volume V,, Under this con-
straint, we would have

x =41V, /N =x,(T/T,) (90)
and

% _ X _
(BT)N L =T =const (for all T<T,). (91)
L

The parameter yz, as a function of 7, will now be

J

4an(T/T,)

e(T) =

which gives explicitly the dependence of €, or of
92, on T. The condensate fraction is then given

by

ATy =1~ 2 Tlo [1n<x0 %) —3.5‘7781] (99)

- <1 w%) +0(“1i'7\r') 0<T<T).  (100)

Thus, in the present case, the condensate builds
up steadily as T decreases over the finite range
of temperatures from T to 0, and not abruptly
around T,. Nevertheless, a macroscopic growth
of the condensate does take place at finite tempera-
tures.

The foregoing result is in sharp contrast with
the one obtained by cooling the system at constant
volume, LZ right from the beginning. In that

4a1(N/ %) — (T/T)In(%,T/Ty) +C =2/ + (8/m)n

3703

determined by Eqs. (30) and (90).

Since a macroscopic occupation of the ground
state requires that y be close to ~ 272, see Eq.
(34), it appears advisable that we first locate the
temperature range in which |y?| becomes O(1).
We find that this occurs in a very small neighbor-
hood of the temperature T, at which y*=0, i.e.,
where y® passes from positive to negative values.
We get

To=(x/x,) T, , (92)
where x, is the solution of the equation

N =(xo/47)(Inx, + C). (93)
Clearly,

xo~47N/InN . (94)
Recalling Eq. (48), we find that

To/T,=%0/%; =% « (95)

The amount of condensate present at T =T turns
out to be

(No)o =%o/27% ~(2/7)(N/1nN). (96)

Comparing this with Eq. (52), we find that, as T
decreases from T, to T, the condensate fraction
f (=Ny/N) builds up considerably., Thermodynami-
cally, however, it still remains negligible:

fo=0(1/1nN). (97)

For further analysis we set y®=-27%+¢, with
€=0(1/1nN); this would make f=x/(N¢€)=0(1).
Equation (30) then gives

) T/Ty (08)
"N 1-(1/Ty) +0(1/InN) ’
[
case, one would have from Eq. (30)
L? L2 9 442
A1) =1 -5 [ln(‘“’ XF>+C-; -+ S{(yz)],
(101)

where Si(y?) denotes the sum S;(y?) minus the term
with gy =¢q,=1. As 9%~ —272, the last term in the
square brackets tends to the constant value 8n/7
=0.61984. In the thermodynamic limit, there-
fore, the asymptotic behavior of the condensate
fraction f(T) is essentially determined by the
relationship

(L%/23) In(L?/3®*) = (1 - f) N.

It follows that for a macroscopic buildup of the
condensate in this case we require that

(102)

A2~ L2(InN/N) ,
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that is,

LK N1 1

"k V InN _ InN’ (103)

which, in the thermodynamic limit, tends to zero.
In our problem, however, the volume of the sys-
tem, as a result of prior cooling at constant pres-
sure, itself reduced from the original value
V~O(N) to the critical value V,~ O(N/InN). No
wonder that a further cooling of the system, even
at constant volume, resulted in Bose-Einstein
condensation at finite temperatures!

In the end we consider the specific heat of the
system at temperatures below T,. Naturally, in
this case, we must consider C,, at V=V, rather

than Cp. We obtain
124 9P
(Clver, = (ﬁ)N =V (BT) , (104)

where (8P/8T)y_ may be obtained from the rela-
tions, see Egs. (36) and (38),

_ 8 mszzz[ 7 (1711‘ )2_ ¢3)

T 3/2 yz T Nyz
e
T 4mx, T, x5 (105)

and
2 2
aL) =_1._[_1Y_<_7.1a> __7};] 1
<3T v, To L% \T ) "2 T |5,00
(106)

We obtain

Ly T __3t6) (._T_ Ve

z VV="c"‘°[12 T, ~8r 2,7 \T,

(107)

The asymptotic behavior of C; is essentially deter-
mined by the first two terms of Eq. (107); of these,
the first one represents the bulk behavior (with

V= Vc), while the second one represents the cor-
rection arising from the finite-size effect on the
density of states of the system.
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