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Onset of phase slip in suyerflow through channels*
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The energy required to change an initially uniform-flow field in a channel to a field containing a
vortex is evaluated. It is found that this includes an energy impulse propagated in from the two ends
of the channel. The result can be used to define the free energy of the vortex in an entirely
unambiguous manner, permitting one to determine the amount of energy dissipated from the superfliud
velocity field during an arbitrary phase-slip process. For the special case of a circular vortex ring
propagating upstream, the free energy is found to have precisely the form assumed in current theories
of intrinsic critical velocities. Further possible applications of the present more general result are
discussed.

I. INTRODUCTION

One of the most fascinating properties of super-
fluid helium is that macroscopic flow will persist
indefinitely without any detectable dissipation.
Similarly, large flow rates can be maintained even
through very small channels by vanishingly small
pressure differentials. The existence of such non-
dissipative flows is at first sight surprising since
intuitively one expects the fluid to slow down by
converting its kinetic energy of motion into internal
excitations of the fluid and the boundaries; but it
may be qualitatively understood as arising from the
fact that every wave function describing a possible
state of the superfluid has the unusual property of
spatial phase coherence. Because of this the prob-
ability amplitude of finding a particle at r, t will be
a complex function f (r, t) e'""", and there will be
a corresponding macroscopic velocity field given
by

v, (r, t) = (h/m) Vy (r, t),
where m is the mass of a He atom, and the time
dependence represents the quantum-mechanically
adiabatic response of the wave function to possible
slow changes in the boundary conditions. At finite
temperature, the superfluid will of course fluctuate
through various of these quantum states, and in
particular it can easily make transitions which pre-
serve the macroscopic phase y(r, t). Such fluctua-
tions would, for example, result from the inter-
actions of the phonon-roton elementary excitations
with each other and with the boundaries. However,
a transition in which y (and hence v, ) is changed
over macroscopic distances while various excita-
tions are produced involves two wave functions
which differ so profoundly that the direct transition
rate must be extremely small. One may therefore
expect superfluid currents to be metastable in the
sense that the fluctuations required to thermally
degrade the velocity field v,(r, f) are unlikely to

occur ~

Extensive observations have shown that in a giv-
en situation nondissipative behavior occurs only for
characteristic flow velocities less than some crit-
ical velocity e„above which dissipative effects set
in rapidly. These critical velocities have been
studied in many experiments involving a wide
variety of channel geometries and observational
procedures. While it has not always been easy to
interpret the results of such experiments, or to
reconcile one with the other, it has by now become
clear that there are (at least) two distinct types
of channel critical velocities, presumably involv-
ing somewhat different dissipation mechanisms.

At temperatures far below the A. point, it is gen-
erally found that v, decreases as the characteristic
channel size d becomes larger and that it does not
depend strongly on the temperature. This has been
called the extrinsic regime. One might argue on
dimensional grounds that v, = h/md, and indeed
there are many experiments which give critical
velocities on this order. The agreement, however,
is generally only very approximate, and it is in
fact not even clear in trying to fit the observations
to this phenomenological form whether one should
let d represent the average size of the channel or
the typical roughness of the channel walls.

In addition to being sensitive to the geometry of
the channel, the onset of extrinsic dissipation ap-
pears to depend strongly on various experimental
perturbations such as end effects, vibration, and
contamination of the channel by dust particles. A
most dramatic demonstration of this has been given
by Hess, 7 who found that rouge superleaks placed
in the flow channel above and below a 10-p,m pin-
hole could raise v, by a factor of 20 above the typ-
ical extrinsic value. It is perhaps useful to recall
that the onset of turbulence in a classical fluid mov-
ing through a channel is in practice also found to
depend greatly on the various nonideal features of
the experimental situation. This is well understood
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II. THEORETICAL BACKGROUND

A. Ro1e of vortices

As discussed earlier, it is not hard to understand
qualitatively why dissipation-free flows can occur
in superfluid helium. It is, however, much more
difficult to identify the critical velocity mecha-
nisxns that limit this behavior, such a task requir-
ing an examination of the likely ways in which

y(r, t) can be changed. Since the detailed micro-
scopic description of superf low at finite tempera-
tures becomes impossibly complicated, theoretical
discussions of critical velocities have usually been
based on the two-fluid model. In this approxima-
tion, the elementary excitations are assumed to act
like a weakly interacting gas of wave packets with
an effective mass density p„, while the superfluid
component of the motion is characterized by a den-
sity p. = p —p„and a velocity field v.(r, t) which
obeys the ideal-fluid equations

ev, VP' +(v, ~ V)v, =—
Ps

V ~ vs 0 ~

(2a)

(2b)

because of Eq. (1), the flow field must obey the

as arising from the fact that, although the classical
flow is stable against infinitesimal perturbations
up to very high velocities, it is unstable against
small finite perturbations at much lower velocities.
The analogy should not be pushed too far, but it
serves to indicate that the observed extrinsic crit-
ical velocities reflect the response of the superf low
to finite disturbances which may vary from one ob-
servation to the next. We will return to this idea
later.

In recent years, in a series of very elegant ex-
periments, critical velocities near the X point have
been found to be essentially independent of the chan-
nel geometry and to vary strongly with temperature
according to the simple power law v, ~ (T„—T)'~'.
This second, intrinsic regime also differs from the
extrinsic regime by the manner in which dissipa-
tion sets in. In contrast to the sudden, somewhat
unpredictable instabilities seen at lower tempera-
tures, one finds here that the channel velocity de-
cays in the well-defined logarithmic manner char-
acteristic of a thermally activated relaxation pro-
cess. In this regime, v, may be approximately de-
fined as the velocity at which the dissipation be-
comes large in some sense. Since the intrinsic crit-
ical velocity increases rapidly as T is lowered,
there is an e'ventual crossover to extrinsic behav-
ior. The crossover typicaQy occurs around 2'K,
but the experiment of Hess shows that if great care
is taken to suppress external perturbations intrinsic
behavior can be observed down to 1.2 K.

additional quantum restrictions

V&&v, =0, (3)

Both experiment and theory indicate that, sufficient-
ly far below the X point, the description of the su-
perfluid velocity field provided by Eqs. (2)-(4) is
useful down to a scale of 1 or 2 A. Normal-fluid
excitations do not interact dissipatively with v, (r, t),
provided v, is uniform over a typical excitation
wavelength. Velocity fields that do vary signifi-
cantly on this scale will scatter excitations, an ef-
fect which can be approximately included in Eq.
(2a) by adding a nonconservative force field.

Our form of the two-fluid equations is based on
the assumption that the normal fluid remains in
thermal equilibrium with the channel walls. Then
the normal-fluid velocity v„ is zero, and the mass
current density j = p„(v„—v, ) +pv, reduces to p,v,.
Equations (2a) and (2b) now simply represent New-
ton's law and the condition of mass conservation.
In light of our later use of these equations, it should
be notedthat they adequately describe a situation in
which v, (r, t) consists of the superposition of a mac-
roscopic channel field u(r, t) and a, microscopically
localized field v, (r, t) that is strongly nonuniform
only over distances on the order of 1-10 A. The
macroscopic velocities may be assumed to vary
slowly enough with time that the normal fluid stays
in quaszequilibrium with the walls. The fieM
v, (r, t), on the other hand, is so localized com-
pared to the momentum-relaxation mean free path
& of the excitations that its presence does not sig-
nificantly affect their distribution function. Our
discussion will not apply in its present form to
situations involving appreciable counterflow, highly
developed quantum turbulence, or temperatures
very near the X point where A is only a few ang-
strom s.

Consider now a situation in which superfluid hel-
ium is flowing steadily through a long channel. In
order for some change u(r)-u(r)+v, (r, t) to con-
stitute a dissipative relaxation process towards
thermal equilibrium, it must result in a net trans-
fer of energy from the superQow field into the oth-
er ava. ilable degrees of freedom of the system. Of
course, if the whole flow field u(r) were suddenly
'to slow down it would certainly release energy, but
the rigidity of the superfluid wave function rules
out such processes. Indeed, the most likely tran-
sitions should be those which produce the most lo-
calized modifications v, (r, t) possible. Since the
velocity field is completely determined by Eqs.
(2b) and (3), the only way in which a local change
v, can in fact come about is through the introduc-
tion of a discontinuity, such as a vortex line. The
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FIG. 1. Examples of typical loops and rings formed
by vortex-line sigularities in a channel. Both a side
view and an end-on view of the channel are given.

v(+")-v(- )=—I vs' ~l

vortex line essentially makes the region occupied
by the curl-free fluid multiply connected, and
provides the extra freedom to specify the circulation
about the line as part of the boundary conditions
determining the velocity field. Vortex lines are
indeed known to exist in superfluid helium, and to
be adequately described by Eqs. (2)-(4) down to a.

core radius of order 1 A, inside of which the ideal-
fluid description fails. By Eq. (4), the circulation
about such a vortex line must be quantized in units
so= h/m.

The idea that quantized vortex lines play a major
role in the breakdown of persistent Qow has sev-
eral attractive features. First, it follows from
what we have just said that vortex loops or rings
(Fig. 1) are the only ~ allowed microscopically lo-
calized fluctuations of v, . Such vortex configura-
tions need be no larger than a few angstroms
across, and therefore represent a minimal distur-
bance of the phase p(r, t). Second, once a vortex
ring or loop has been introduced into v„ it provides
a mechanism for coupling v, dissipatively to the
thermal degrees of freedom: Both the scattering
of excitations from a vortex and the pinning of a
vortex to a wall exert nonconservative forces on

v,. Finally, it has long been recognized~ '~ that
the growth and motion of vortices can give rise to
a decrease ih the phase difference between the two
ends of a channel, thus providing a natural way for
the macroscopic superf low to slow down, or to
maintain a steady dissipative state when a pres-
sure gradient is applied along the channel. This
is most easily illustrated in terms of the two-di-
mensional geometry of Fig. 2. A general way of
describing the fluid slowing down is to say that the
phase difference

decreases, where the line integral is taken from
one end of the channel to the other. If a pair of
quantized vortex lines (the a.nalog of a ring) is
added to u and then moves across the channel as
shown in Fig. 2, this phase difference will de-
crease by exactly 2z. A quantized vortex line
which detaches itself from the boundary layer (the
analog of a loop) and moves across the channel has
the same effect. The elegance of this phase-sHP
description should not be allowed to obscure the
fact that it does not in itself explain why a vortex
would appear in the first place or why it should
move so as to produce a decrease in the phase dif-
ference along the channel. Et is these questions
that are at the heart of the critical-velocity prob-
lem.

B. Extrinsic regime

One popular early approach ~~ was to calculate
the energy change when a vortex-ring field v„ is
added to the channel field u. According to the Lan-
dau criterion, if u+v„ is of lower energy than u,
v~ is an allowed excitation. From the more mod-
ern point of view, one would say that the process
u-u+v& releases energy from the flow field and is
hence a thermal relaxation process. The central
concern of this type of calculation is to evaluate

Ex=2 ps (2u vs+'4)~l ~

where V* is some volume large enough so that the
integral is well defined. For a channel of uniform
cross section, u is just a constant, U, and the en-
ergy difference becomes

E„(U)=Z,(0)+u p„(0), (f)

where Es(0) and P„(0) are the energy and momen-
tum associated with the field v~ alone. Equation
(7) implies that above some critical velocity

I
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FIG. 2. Two kinds of vortex-line motion which can
generate phase slip. The three-dimensional analogs of
these are the growth of a vortex ring from some point
in the fluid and the growth of a vortex loop from the
boundary. Note the circulation direction which is re-
quired to decrease the phase difference between the two
ends of the channel.
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[E„(0)/P„(0)] „, Es(U) can be negative and ther-
mal relaxation becomes possible. For a ring of
radius —,'d, coaxial with a channel of circular cross
section, it is found that

E„(O)
P„(0) „2%d (8)

where f is of order one and depends on the details of
the calculation. Even for less-idealized geometries,
Eq. (8) gives roughly the lowest value of U for which
a negative-energy ring will fit into the channel.

A serious objection to this kind of argument is
the implausibility of describing the onset of dis-
sipation in terms of the sudden appearance of mac-
roscopically large vortex rings. Such a state would
never appear as the result of a direct quantum-
mechanical transition, and it is unlikely to evolve
statistically from more localized vortex fluctua-
tions since these have E„(U,) &0. The most that
can therefore be said for this type of calculation is
that it establishes the possibility of dissipation for
velocities above (go/2') f.

A second difficulty that arises in these discus-
sions is the evaluation of P for a vortex in a chan-
nel. The actual momentum contained in the flow
field of a vortex ring coaxial with the channel is, in
fact, identically zero. The common practice has
beento replace Psin Eqs. (7) and(8) bythe impulse
of a vortex ring in an unbounded fluid. No entire-
ly satisfactory justification or physical interpretation
of this procedure has been given, although some of the
ideas appearing in our later discussion are to be found
in the interesting papers of Huggins and Campbell.

Qladerson and Donnelly have offered a totally
different interpretation of extrinsic behavior.
Their idea is that a macroscopic pinned vortex
which may initially be present in the stream U will
simply develop a curvature such that its self-in-
duced velocity will keep it stationary in the channel.
For stream velocities greater than (vo/2nd) f this is
no longer possible, the pinned vortex then grows
without limit, and dissipation sets in. The main
objection to this model, and to later elaborations
of it, is that a pinned vortex will certainly not be-
have in the simple manner assumed. For exam-
ple, if a straight vortex is placed across the chan-
nel with its ends pinned to the wall, the center part
of the vortex will be swept downstream before any-
thing else happens. It is obvious that an extremely
complicated nonlinear development ensues which
bears little resemblance to the simple pictures
presented in Befs. 21 and 22. Nevertheless, the
work of Glaberson and Donnelly contains the impor-
tant idea that extrinsic critical velocities represent
the response of the system to a large perturbation
such as a pinned vortex of macroscopic length. As
we discussed in Sec. I, there are reasons to be-
lieve that this is the proper interpretation.

where A is the cross-sectional area of the channel.
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FIG. 3. Free energy of a circular vortex ring in an
unbounded fluid, with propagation axis opposite to U.
The free energy is plotted in units of p~Kp for U=2. 5, 5,
and 10 msec . The vertical lines show the appropriate
values of Ei',~.

C. Iordanskii-Langer-Fisher

The theory of critical velocities in the intrinsic
regime appears to be in much better shape, mainly
due to the work of Iordanskii and of Langer and
Fisher~4 (ILF). These authors assume that the free
energy of a vortex ring in a uniform flow field is
given by Eg. (7). If one considers specifically a
circular ring with axis opposite to U, approximates
Es(0) as the energy of the ring in an unbounded
fluid, and replaces Ps(0) by the impulse of such a
ring in an unbounded fluid, one obtains the result
that E(R, U) varies as shown in Fig. 8. Free-en-
ergy curves similar to these are found in the theory
of homogeneous nucleation of supersaturated va-
pors, and a model of phase-slip nucleation can be
developed along analogous lines. Briefly, once a
ring fluctuates into the region R &R„ it has an
overwhelming probability of continuing to grow un-
til it a.nnihilates at the walls. It is clear from our
earlier discussion that one such event will decrease
the phase difference between x=+~ by h/m. If the
system has achieved quasiequilibrium with respect
to the existence of very small vortex rings, the
density of rings with R= R, is proportional to
e '"" ' &, and the rate per unit volume of phase-
slip events is therefore voe '"&' ' aT. Here vo

contains the factors determining the absolute num-
ber of rings per unit volume, and the rate at which
a ring with R = R, is kicked up to the next larger
state. ' Thus, the superfluid must on the average
be slowing down at the rate

~+~0 "8(R~,U) /k~T
dt m
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There is no doubt that the ILF theory is essen-
tially correct. Langer and Beppy discuss in de-
tail how Eq. (9) at least qualitatively predicts the
logarithmic decay of U, the value U, at which the
dissipation becomes large, and the variation of U,
with temperature near the X point. However, as
with the arguments discussed in Sec. II 8, the phys-
ical meaning of some of the basic assumptions made
in the ILF model remains obscure. Specifically,
one should like to understand (a) how to use Eqs.
(6) and (7) to represent a free energy associated
with the vortex field, (b) how to treat the momen-
tum term properly, and (c) how to generalize the
results to describe arbitrarily complicated vortex
loops and rings. It is the main purpose of our pa-
per to address these particular questions, with the
aim of perhaps throwing new light on the nature of
both extrinsic and intrinsic critical velocities.

The superfluid velocity field may be thought of
as a system in weak thermal contact (but not equi-
librium) with a very large reservoir composed of
the normal-fluid excitations and the boundaries.
Since this is a rather unusual thermodynamic sys-
tem, me first discuss briefly the meaning of the
free energy which appears in the ILF thermal-nu-
cleation model. Let us again consider a change in
which v, goes from a uniform channel velocity U

to U+v, , where v, represents the field of some
microscopic vortex loop or ring. %e shall shortly
show that such a change mill be accomyanied by the
extraction of a well-defined amount of energy
E(v, , U) from the thermal reservoir. Hence the
reservoir will suffer an entropy change AS~
= —E(v„U)/Ts. If one for convenience pictures the
reservoir as a large closed system, the number
of microstates available to it will be W~=e' ~

so that

gr g+ Vv )i~ (U) e E(v&, U&/ih-sr'

The specification of v, does not involve any degree
of randomness. Thus to the extent that the suyer-
fluid velocity field is in thermal equilibrium with
respect to small vortex fluctuations, the relative
probability of seeing the configuration U+ v, is
given by Eq. (10). One can conclude that the free
energy appearing in the ILF theory and in the ear-
lier Landau-Feynman arguments discussed in Sec.
II B is it&st the energy E(v, , U) extracted from the
nonhydrodynamic degrees of freedom when v, goes
from U to U+ vg .

In order to find E(v, , U) we begin by considering
horn to calculate the kinetic energy of a channel-
flow field, which consists of a macroscopic flow
moving fl'0111 x —~ to x +0 (x being tile axis of
the channel), plus the localized velocity field v,
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FIG. 4. One possible surface of integration S-" for a

ring in a channel. Shown is a cut through the plane of the
ring, and parallel to the axis of the channel.
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arising from some configuration of quantized vor-
tices (Fig. 1) in the region near x= 0. The dis-
cussion will be limited to channels the cross sec-
tion of mhich does not change as one goes down the
channel. The macroscopic velocity is then simply
a constant, Ux, and the associated scalar potential
is given by P„= Ux. I.et P, denote the scalar poten-
tial arising from the quantized vortex, including
the effects of the boundaries. To find the total ki-
netic energy contained in some volume of fluid,
one may make use of the transformation (V ~ v-=0)

2p v vdV= &p V- v dV

E2 El 2P2 (42 41)(v2+ v1)

For the case v&
—=0, this reduces to the expression

(11). Also, using V $1 ——V $2=0 and Green's the-
orem, it is easily shown that Eq. (13) is equivalent
to

= —,'p, Pv ndS,
v$

where S* is the surface enclosing the volume under
consideration Sinc.e Q= Q„+ Q, is multiple valued,
this transformation is valid only if the surface is
drawn so as to exclude the vortex-line singularity
as, for example, in Fig. 4.

Equation (11)for the energy has a direct physical
interpretation. Since the velocity field is irrota-
tional in the entire volume under consideration, the
energy-flux vector v, (p+ —2'p, v') may be written in
the form v, (const —p, s&j&i at) by virtue of Hernoulli's
theorem. If the velocity field changes from
vl(r, fl) to v2(r, t2) by any process which does not in-
volve the action of nonconservative forces within
V*, the energy change must be given by

E,-El= p,
' v(r, t) ~ n dt dS . (12)

"se(,f)--
g+ Jg 8t

1

If the process of going from v& to v~ is imagined to
occur very rapidly through the application of very
large pressure fields acting across S* for a very
short time, one can make the usual impulse ap-
proximation of replacing v by its mean value and
carrying out the time integration over Q:
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(a)

S
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and the surface surrounding the core of the vortex.
It may be thought of as a local energy impulse,
transmitted to the fluid by the impulsive pressures
which these surfaces would have to exert on the
fluid in order to generate the vortex.

While the contribution from the ends of the chan-
nel does not enter into our final expression for
E(v, , U), it will nevertheless prove informative to
study it in greater detail. For a localized vortex
configuration in a channel, v, drops off faster than

as x-~, while Q, goes to a constant value.
Hence the energy propagated in from infinity is
just

FIG. 5. (a) Three-dimensional phase-slip processes,
side view of channel. The dashed lines show how the
barrier is extended as the configurations evolve. (b)
Three-dimensional phase-slip processes, end-on view
of channel. The arrows on the line core show the re-
quired direction of the circulation vector if U is taken
to be out of the plane of the figure.

E2 E1 2 p (e2 v2 el v1)

The energy transmitted into V* through a given
part of S* during an impulsive change in the flow
pattern must, however, be obtained from Eq. (13).

The particular process of interest here is one in
which vz= U and v2= U+v&. Then

AE= —,p, P, (2U+v, ) ~ n dS . (15)
S~

The walls of the channel make no contribution to
the surface integral, since both U ~ 6 and v, ~ n are
zero there. Thus the total kinetic-energy change
of the fluid contained in V* consists of a contribu-
tion transmitted in from the fluid at infinity,
through the parts of S* at + xo in the limit xo- ~,
plus a contribution transmitted in through the bar-
rier and the surface surrounding the vortex core.
The contribution propagated in from infinity is
provided by the superfluid field itself, and cannot
be charged to the account of the local thermal res-
ervoir. Therefore, the free energy E(v, , U) ab-
sorbed from the nonhydrodynamic degrees of free-
dom equals the increase in the total kinetic energy
of the fluid contained in V* minus the energy trans-
mitted zn tkrougk tke Part of S*at +xo. E(v, , U)
is then just the term in Eq. (15) that arises from
the integration over the two sides of the barrier

where A. is the cross-sectional area of the channel.
The important point is that, while we have so far
considered only impulsive processes, this expres-
sion is in fact valid for a~y kind of process in which
the fluid goes from U to U+v, , provided only that
the ideal-fluid equations hold at x=+~. This fol-
lows immediately from Eq. (12): Since v(r, t) ap-
proaches U far away from x= 0, the velocity factor
may be taken out of the integral. In particular,
we may consider vortices which are created in
some initial configuration 1 in Fig. 5 and then move
to 2, generating the phase-slip barrier as they
move. The change in the kinetic energy of the
superfluid contained within V* is of course inde-
pendent of how the line was made and has traveled
from 1 to 2, while we have just seen that the ener-
gy transmitted in from infinity also does not depend
on the mechanism by which the new flow field was
established. Hence one can assert quite generally
that the process in which the vortex is created and
moves from 1 to 2 will absorb an amount of energy
from the thermal reservoir equal to the local ener-
gy impulse.

The local energy impulse can be expressed in a
very simple form. The potential &f&, has a discon-
tinuity )~ol =k/m across the barrier, while U and
v, are continuous everywhere Thus .Eq. (15) re-
duces to an integral over the surface B defined by
the barrier (Fig. 5)

E(B, U)= p, vo U n dS+ —,'p, vo v, n dS,

where 6 is in the downstream direction and I(.0 is
given a positive sign if the circulation is such as
to move the fluid through B in the sense ~. The
small corrections arising from the integration over
the surface of the vortex core have been neglected,
but could easily be included. Since the two inte-
grals in Eq. (16) are proportional to the mass fluxes
of the U and v, fields through the barrier, E(B, U)
depends only on the boundaries defining the barrier
(i. e. , the initial and final positions of the vortex),
and not on the details of how the line has moved to
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its final position. It is also clear from the pre-
vious discussion that Eq. (16) can be interpreted
in terms of a process: If the line moves so as to
change the barrier from B& to B&, the amount of
energy that must be supplied by the thermal reser-
voir is E(B3, U) —E(B„U).

JV. APPLICATIONS AND SPECULATIONS

%ithin the limitations of the two-fluid approxima-
tion, Eq. (16) provides avery general and power-
ful expression for the free energy of a vortex fluc-
tuation. Its physical origin is clear and it applies
to arbitrary processes leading to arbitrarily com-
plicated vortex configurations. Furthermore, it
is simple in form with each term having a straight-
forward physical interpretation. The first term
on the right-hand side is just p, &p UB~ where B, is
the area of the barrier projected onto the plane
perpendicular to U. That is, it is ep times the
mass flux carried by V through the phase-slip bar-
rier. The second term is just the kinetic energy
associated mith the f lorn field v, in the absence of
U. It is positive definite. %e note that, while me
have neglected the integral over the core surface
in Eq. (16) and while the core radius is also rela-
tively unimportant in the first term of Eq. (16),
the core radius does enter into the second term in
a crucial way: Near the center of the line v, - zo/
2m', and the integral of v, ~ n over the barrier will
diverge logarithmically as the edge of the barrier
approaches the line center. A phenomenological
cutoff at x=ap must therefore be introduced as
usual.

In order for any phase-slip process to be part of
the dissipative thermal relaxation of the superf low,
it must give E(B, U) &0. Since the second term in
Eq. (16) is positive definite, this can only occur if
Kp is negative in the sense defined earlier. From
Fig. 5 one sees that the line motion which defines
the barrier must then be such as to decrease f,
v, ' dl. Thus the statistically driven motion of the
line does in fact satisfy the requirement of the
phase-slip picture in that it leads to a decrease in
the superfluid phase difference g(+~)- p(- ~).

%e now turn to more specific matters, recalling
that the particular vortex fluctuation assumed to be
important in the ILF theory is a circular vortex
ring of radius R heading upstream. If boundary
contributions are neglected Eq. (16) gives

B(B, U) = —vp, ~, Uft'+ —,
'
p, ~', R[ln(8R/a, ) —2I (17)

for such a configuration. Equation (1V) is precisely
the form of the free energy assumed by the authors
of the ILF model, and one may therefore view the
discussion of the Sec, III as providing a sound phys-
ical basis for this particular ansatz.

The generality of Eq. (16), however, also makes
it useful for discussing more complicated fluctua-

I
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FIG. 6. Inhomogeneous versus homogeneous nuclea-
tion for two highly idealized cases. Again, the arrows
denote the required direction of the circulation vector
if U is taken to be out of the plane of the figure.

tions. It is of course rather difficult to find v, for
an arbitrary vortex loop or ring, particularly when
the boundary effects are important. But for any
reasonably simple vortex configuration, one can
mrite the useful approximate relation

E(» U)=- ps I~olUBi+ p (+o/4&)i. »(2~/&0) (18)

where L is the length of the vortex and 5 is a char-
acteristic length. For a circular ring or a half-
circle loop on a plane surface, 5 mould equal 4R.
For a pair of vortex lines or a vortex line parallel
to a plane, 5 would have the meaning shown in Fig.
6. Since 6 has a weak logarithmic effect, Eq. (18)
should be fairly accurate for geometries interme-
diate between these extremes.

Equation (18) still exhibits the characteristic
free energy peak (F-ig. 3), provided B, is assumed
to vary as L, n&1. The curves for the inhomo-
geneous nucleation of a loop from a mall may, how-
ever, have a different shape and be much lower
than those for homogeneously nucleated vortex
rings. This is already obvious for the highly idea-
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FIG. 7. Inhomogeneous nucleation from a boundary
imperfect on a scale small compared to the channel size.

lized vortex loop shown in Fig. 6, for which the
peak height would be exactly half the height for a
circular ring. The effect should be even more
drastic for the more realistic geometries shown in
Figs. 7 and 8. Figure 9 summarizes the various
free-energy curves estimated from Eq. (18). One
may conclude that if the channel walls are rough
on the scale of R, , inhomogeneous vortex-loop
nucleation could well be the dominant dissipative
process, particularly in very small channels where
the surface-to-volume ratio is high. In this con-
nection it is interesting to note that perhaps the
only serious difficulty with the ILF model is that
it predicts an activation energy which is quite a
bit larger than that determined experimentally.
Obviously, one worthwhile extension of our ideas
would be to carry out a quantitative calculation of
the inhomogeneous nucleation rates, to see whether

lf

i

ttt7&

100 A

FIG. 8. Inhomogeneous nucleation in a channel with
a highly irregular cross section.

-tO-5xl0—

0
FIG. 9. Semiquantitative free-energy curves for the

nucleation events shown in Fig. 7 (solid curve) and Fig. 8
(dashed curve). U is taken to equal 5 msec ~. The
horizontal dashed line gives E(R,. U)/p, ko for the ideal-
ized half-ring shown in Fig. 6.

these will explain the experimental observations.
Finally, we would like to suggest that Eq. (18),

when combined with the Glaberson-Donnelly con-
cept of considering the response of the superfluid
to a large "external" perturbation, also throws
some light on the nature of extrinsic critical ve-
locities. Suppose for example that the channel walls
are rough on a scale 6, and assume that this non-
ideal feature generates vorticity within a distance
6 of the wall. Such an assumption is entirely
speculative, but the fluid velocity around a sharp
projection can be very high and may serve as a
region of anomalous inhomogeneous thermal nuclea-
tion, "or vibration of the channel walls may cause
local projections to act as impulse-delivering sur-
faces in the sense discussed earlier. Qne may
idealize the resulting perturbation as a half-ring
(Fig. 6) with 8 equal to b,. The response of the
fluid to such a finite disturbance will depend on
whether the half-ring finds itself on the "uphill"
or "downhill" side of the free-energy curve. This
depends on U, the critical value being approximate-
ly given by

Uc= ' lnJzo) 86
ma ao

If U & U„ the loop will be on the downhill side and
will continue to grow, thus completing the phase-
slip process. If U& U„ it will annihilate at the
wall with no resulting phase slip.

It is clear that there is a critical velocity above
which the imagined process can lead to phase slip.
This critical velocity is similar in form to Eq. (8),
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but it is based on a quite different physical picture
in which the scale of roughness & of the channel
walls is the dominant characteristic distance. Al-
though we have derived Eq. (19) by considering an
idealized process which injects a half-ring, a very
similar result is obtained for vortex loops of ar-
bitrary shape. The simple physical point is that
if some ex cathe&'a mechanism creates vortex
lines at a characteristic distance d from the wall
of the channel, there exists a critical velocity

p, = (vo/4va)f ff is O(1)] above which the lines can
move out into the channel and lead to phase slip.
While this interpretation of extrinsic behavior is
at present no more than an interesting speculation,
it appears to be at least as attractive as other ex-
planations that have been offered. To test its ul-
timate validity will probably require more detailed
experimental investigations of the influence of chan-
nel roughness, etc. , than have been possible up to
now.
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