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A new approach to the study of structure in solids and liquids by pulsed NMR is described. Either multiple-

pulse line-narrowing sequences or single pulses, together with an applied linear magnetic field gradient are

used. The theoretical analysis highlights the analogy with plane-wave scattering in optics and is illustrated

experimentally with examples of diffraction by ordered and disordered systems and image formation or
microscopy. The factors affecting the resolution of the technique are discussed, and the problems of
reconstructing micrographs from their projections considered.

I. INTRODUCTION

The study of internuclear spacings in solids by
NMR has traditionally relied upon the dipole-dipole
interaction and its effect on line shape and second
moment in order to estimate intramolecular dis-
tances. Although all information on the unit cell
is contained in the dipolar lattice sums, there is
no direct way of obtaining the lattice structure
from the free-induction decay (FID) or from the
dipolar line shape of a solid. In general, one
needs a hypothetical model of the structure being
determined, so that the theoretical predictions
for the second moment or for the line shape may
be compared with results obtained experimentally.
This all comes about because a particular lattice
site is not uniquely determined magnetically and
hence is not uniquely identifiable in the frequency
spectrum.

Recently, '' we introduced a new method for the
determination of spatial structures in solids,
which relies on NMR diffraction effects, in which
identification of the lattice sites in the frequency
spectrum is obtained by applying a linear magnetic
field gradient to the sample. Lauterbur' has in-
dependently introduced a similar method for study-
ing the localized liquid regions in biological sys-
tems. 'The usual effect of a gradient is to produce
a FID which, through a Fourier transform, re-
flects the bulk shape of the material, assumed to
be a continuous distribution of spins. 'This has
been discussed by Gabillard' ' and others. ' '

Of course, in a solid, the spins are actually
distributed in a discrete manner at atomic sites.
One reason that this discrete nature is not appar-
ent in the observed FID signals is the large dipole-
dipole broadening in solids. However, this may be
removed by using one of the recently developed
multiple-pulse sequences, ' "or a derivative to
be described here. Self-diffusion is another broad-
ening mechanism which may be made arbitrarily
small by lowering the sample temperature.

The effect of a discrete structure may be illus-
trated by considering a model one-dimensional
regular lattice: the NMR spectrum of a number
of uniformly spaced layers of liquid-like material
("Vaseline" grease) containing resonant nuclei is
split by the application of a field gradient into a
"grating" spectrum. The nuclear transient re-
sponse from such a regular array of resonant
spins resembles the well-known intensity distri-
bution resulting from the diff raction of mono-
chromatic light at a grating. Figure 5(b) demon-
strates the diffraction effect for seven equally
spaced slices. The details of this experiment are
given in Sec. IIID2.

The analogy between the phase difference ob-
tained (a) from the different path lengths to the
various grating slits in the optical experiment,
and (b) from the different free-precessional fre-
quencies associated with the various nuclear posi-
tions in the linear field gradient of the NMR ex-
periment, have led us to call this phenomenon
NMR "diff raction. "

In this paper, which is an amplification and ex-
tension of our earlier letter, ' we show that there
is a formal analogy between the familiar scatter-
ing of a plane electromagnetic wave by a regular
lattice and the "scattering" of the Green's function
which describes the spin response in the magnetic
field gradient. This is treated in Secs. II and III.
In Sec. IV we show that NMR diffraction may also
be applied to partially disordered systems. The
factors affecting the limits to spatial resolution
common to both diffraction and microscopy ex-
periments are discussed in Sec. V. Finally, in
Sec. VI the diffraction theory is extended to con-
tinuously distributed spin systems and the optical
analogy of microscopy developed. Some experi-
mental results are also given which include an
example of a one-dimensional spin-density dis-
tribution or projection recorded in a physiological
specimenin vivo, and a two-dimensional recon-
structed image or micrograph.
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II. THEORY

A. General formalism

The transverse NMR response signal in the ro-
tating reference frame may be represented by the
retarded Green's function"

being zero, then we may define a vector gradient

0=i B„,+j By, +k9„, (9)

which completely specifies the interaction as fol-
lows:

(f), I (o)1 &

Z;&I.f, , I;1&

H, =y(r G)Ig.

C. Fictitious wave

(10)

where the step function

0 fort&0et=
1 for t&0

The time development of the spin-displacement
operators I, is given by

(f) etHt I -iHt

where the Hamiltonian, with h =1, is

(4)H =H o+H, ,

and comprises the Zeeman term H =

and an interacting or perturbing term H, .
We shall consider a set of N noninteracting nu-

clei with spin number I, the total Green's function
of which is just N times the single-particle Qreen's
function 6" (t). Differentiating Eq. (1) leads to the
exact equation of motion"

'The Zeeman interaction as well as the gradient
interaction are assumed to arise from a scatter-
ing process. In order to view the interactions
this way, it is necessary to regard the Zeeman
term itself as arising from the interaction of a
spin with the real field gradient G.

We represent the scattering process diagram-
matically in Fig. 1(a) by a fictitious wave origi-
nating at the source S, at position r, from 0. This
wave is scattered from p, to p,' through an angle e
to a point D by the gradient interaction with a
spin at 0 with position s from the origin 0', where
the initial "momentum" p, = yo t. As is customa, ry
with plane-wave scattering, we take p, = p,r, and

po po Yp whe re r", and r",' are unit vectors along
ro and r,', respectively.

The phase of our wave accumulated in going
from S to D is

p, r, +po ro=yGO(r, +ra)t=ytC s=n, &,f, (11)
C" (f) = G,"(f)+ G,"(t '}G,"(f f') df', —

where Go(f) is the unperturbed Green's function
evolving under the influence of Hp alone, and

is a higher-order Green's function involving the
total Hamiltonian H.

Equation (5) is the Green's-function scattering
equation and has its counterpart in the usual theory
of plane-wave scattering. " We shall develop the

analogy fur ther.

y 0

B. Linear field gradient perturbation

The interaction of spins with the magnetic field
gradient tensor 9 may be written generally as"

H, =yr ~ B ~ I =yB ~ I.
However, if linear gradients

8
8xz 8 g

8
B =—BPg ey g 9

8
8 =—Bgg

Q
g

only are applied, all other tensor components
PIG. 1. Fictitious wave diagrams representing the

scattering of Green's functions.

(b)
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subject to the constraint that

G =G, &2(1 —cos6)'~'. (12)

The applied field gradient G =Gs, where s is a
unit vector along s.

l. Scattering at r"

Again we consider a fictitious wave originating
at source S which is scattered from p, to p,

'
by

the gradient interaction with a spin I placed at
position r from 0 [see Fig. 1(b)]. In this case,
we take p, =P,r", and p,'=P,x,'. The Green's func-
tion, Eq. (5), along the new path SID becomes,
therefore,

~&p~'~~+pf ~ f)p, )j=e

point-diffraction theory in optics (apart from com-
/

mon factors of 1/r) when the source and image
points are sufficiently far from the scattering
center, that is to say, in the parallel-ray approxi-
mation. Also, the condition for constructive or
destructive interference is identical.

III. DIFFRACTION FROM STATIC NONINTERACTING SPINS

A. General

We consider a set of static noninteracting spins
in an orthorhombic lattice with unit-cell dimen-
sions a, k, c. The displacement vector r, „(k) from
the origin of the kth spin site in the (l, m, n)th unit
cell (I, m, n integer) is given by

f(po' ro+ po ro& c&p& p&)
' r

t (13) r, „(k)=(I+u»)a+(m+v, )b+(n+w»)c, (14)

for r", =r, and r,'=r",', that is, for r„r,' large.
This corresponds to the parallel-ray approxima-
tion in optics. Equation (13) is the complex re-
sponse signal of a single spin in a field gradient.

If we were to consider two spins, the second
of which be placed at 0 in Fig. 1(b), then the sum
of the amplitudes of the scattered fictitious waves
corresponds exactly to that obtained from the

where a=ate, etc. , and u„, v„M, are fractions of
the primitive- cell dimensions.

For a semidiscrete spin distribution in a uni-
form magnetic field gradient G, in which the spins
are distributed with a density of p(r) over a range
b.x, hy, A@from, the position r = r, „(k)+ r', where
r' is a continuous variable, we obtain for the FID
function of the system at resonance [see Eq. . (13)],

(l+NP)c+ M f (fN+oy)b+ 6 y ~ (fl + fop)c+6 g

S(p) = Re
i man "

& "a&' 4 (m+vg, )b ~ ~n+~y&c

p(r)e'P' 'd r', (15)

where p=p, —p,'=yGt, in which y is the nuclear
magnetogyric ratio and t is the elapsed time.

For a set of point spins, as in a crystal lattice,
Eq. (15) reduces to

S = Re g a, „„exp[2wi (le+mf +ng)]
f, m, n

sity of a scattered wave as in x rays, there is no
phase problem. The phase of the "carrier wave"
is implicit in the NMH diffraction pattern, pro-
vided phase-sensitive demodulation of the signal
is used. It is clear that the dimensionless quanti-
ties e, f, g correspond to the lattice Miller in-
dices at appropriate times t.

xg f, exp[2mi(u„e+v» f+w„g)],

where e =ytaG„/2w =aP„/2w, etc. , and a,„„=0,1.
The term involving the summation over k corre-
sponds to signal contributions within the unit cell,
and is equivalent to the geometrical structure
factor S, in electron or neutron scattering. In
our case, the scattering cross section f„=0,1.
Unlike ordinary x-ray scattering, NMH scattering
is in principle selective, since only resonant spins
contribute to the signal, nonresonant spins having

f» =0. This is an important point in the study of
protons in solids which are effectively transparent
to x rays.

Also, since we observe the amplitude of the
scattered Green's function rather than the inten-

8. Solids

The point-spin formula Eq. (16) shows that in a
cubic lattice with G along the [001] axis, observa-
tion of first-order diff raction requires g =1. For
protons with a typical lattice spacing, c =3 A and
a maximum feasible gradient G, =10' Gcm ', the
diffraction peak would occur at 8 sec from the
time origin. Thus, in order to observe this sig-
nal, an intrinsic narrowed linewidth of about 0.1
Hz would be required. By employing one of the
recently developed multiple-pulse sequences, ' "
or a suitable modification described below, the
principal broadening terms in a solid, that is to
say, the dipolar and chemical-shift interactions,
may be artificially reduced to a very high degree,
while at the same time leaving the spin-field gra-
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dient interaction only slightly reduced. This can
be achieved by applying a modified compensated
reflection-symmetry cycle, designed to remove
dipolar and chemical-shift terms, while at the
same time appropriately reversing the. linear-
field-gradient direction. Such a sequence is, in
the pulse-timing representation,

P „—[7(+) —P, —7(+) —P„—2T(+) —P„-7(+) —P„

-2T(-) —P„—7 (+) —P, —2r(-)
—P, —v(+) —P, —~(+)]„,

where r(+) indicates the sense of the field gradient
applied during the delay 7. 7o date, the best line-
narrowing achieved in a single crystal of CaF, is
about 20 Hz, ' using standard multiple-pulse meth-
ods. Thus practical realization of crystallography
by NMH diffraction is some way off. In addition,
the application of large field gradients degrades the
line-narrowing efficiency in the present-day» cy-
cles,"but this effect may be reduced by using
samples of very small diameter so that the total
static-field variation over the sample is kept with-
in a reasonable limit of about 1.0 G.

At this point we may ask what field gradient
would be necessary to observe first-order diffrac-
tion in a solid excited by a single 90' rf pulse?
Again, ' if we take c =3 4 and insist that the dif-
fraction peak be observed within about 2T2-100
p.sec, we find that G, = 10' Qcm ' t

1. Biological systems

NMR diffraction could be useful at the macro-
scopic level in biophysical and other system, if
the material has an approximately regular struc-
ture. When there is little motion, e.g. , in frozen
cell membranes or filamentary or fibrous struc-
tures, some artificial. line-narrowing would cer-
tainly be required. As an approximation to such a
system, we consider a uniform one-dimensional
lattice of lattice constant c, which comprises X
+1 flat slabs of thickness b,z containing uniformly
distributed spins, Fig. (2). For this model, Eq.
(15) gives for the normalized transient signal

s(P, ) =
( exp[i)t, (kz ~Nc)/2]

sinP sin[P, c(N+ 1)/2]
p (N + 1)sin( p, c/2)

where P =-,yG, thz. This result is similar to the
classical diffraction-grating formula. The sinP/P
term represents the signal coming from. one plate
of thickness Az, and corresponds to the results ob-
tained by Gabillard, »' ' Bradford et al. ,' and Carr
and Purcell' in the interference limit of continu-
ously distributed spins.

Although we have stressed here the regularity

xe']' ' dr', (18)

where we assume that, because of its shorter-
lived transverse signal, the solid contribution to
the signal, p(r), is not observed. Thus, instead
of observing the diffraction from the solid spheres
directly, a complementary pattern from the liq-

z &~

FIG. 2. Model of a one-dimensional lattice.

of the structure 4o be studied, we shall see in
Secs. IV and VI that the formalism presented is
quite general and allows the analysis and study of
nonxegular structures.

I

C. Liquids

1. Babinet's principle

In this section we shall ignore the broadening
effect caused by translational self-diffusion. This,
together with its effect on spatial resolution, will
be fully discussed in Sec. V.

Since the random isotropic thermal motion in a
mobile liquid automatically averages the dipolar
interaction to.zero, there is, in general, no need
to employ multiple-pulse techniques as for solids.
Experimentally, observation of the FID following
a single 90' rf pulse is all that is required. Of
course, with a liquid, it is harder to define or
recognize a rigid lattice. However, if we imagine
a rigid lattice of solid spheres of spies. coznplete-
ly immersed in a,n isotropic homos. neous fluid of
noninteracting spins of constant density p„ then
it is clear that the response of such a system to a
single 90' pulse is

~la+ M „mb+ h, y &n c+ hz

S(p).=Re P ~, [p, —p(r)]
g, m, n ~ ntb fl C
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uid is observed. This complementary effect has
its counterpart in optical diffraction, where it is
known as Babinet's principle. Of course, if both
solid and liquid signals were observed, and if the
spins in each component were uniformly and homo-
geneously distributed with constant density, then
a signal reflecting the bulk shape of the sample
would be observed. That is to say, the sum of the
narrowed absorption spectra from a solid and
that of its complement obtained by immersion in
a liquid, should be constant within the over-all
lineshape.

Although we have so far discussed regular solid
arrays immersed in a liquid, it is clear from the
foregoing theory that Babinet's principle should
hold whatever the solid spin distribution. This
can easily be shown from Eq. (16) in the limit of
a continuous, nondiscrete rather than semidis-
crete, material. The application of Babinet's
principle to continuous systems is discussed in
Sec. VI of this paper.

It would thus appear that the difficult problem
of removing the dipolar interaction in solids in
order to study spatial spin distributions, and
hence structure, may be obviated by immersing
the solid in a suitable liquid and then studying the
liquid signal. One could no doubt think of arti-
ficial systems to achieve this, but of course, most
biological materials approximate well to such an
immersed system with something like (80-90)/0
water surrounding between (10-20)% solid ma-
terial. A physiological example of such a system
would be bone surrounded by normal flesh, which
approximates well to a solid immersed in a liquid,
vide infra Of course, .in such biological systems,
one might well be interested in the density varia-
tions seisin the solid as well as the external shape
of the solid, indeed, whether there be solid ma-
terial at all or simply a hole! In this case one
would have to study the material using both single-
and multiple-pulse excitations and then by Ba-
binet's principle subtract off the true liquid part
of the distribution to reveal the solid spin-density
distribution.

The subject of nonregular density distributions
will be discussed more fully in Secs. IV and VI.

2. Spin-lattice relaxation time mapping

The formalism as developed in Eq. (15) can
easily be extended to systems with macroscopic
regions with localized spin-lattice relaxation times
T,(r). In this case, the localized equilibrium scat-
tering cross section, which is proportional to spin
density p(r) and the local spin populations will, if
perturbed from equilibrium, reflect variations of
T, throughout the sample. For example, if the

spin system is initially prepared by population
inversion (an initial 180' rf pulse), subsequent in-
spection after a time t by the procedures dis-
cussed above will yield an effective spin density

p(r, t) = p(r)(1 —2e ' ""). (19)

Further experiments in which t is varied will allow
the spin-lattice relaxation times T, (r) to be
mapped.

D. Experimental results for regular arrays of solids and liquids

1. Solids

As a preliminary test of our results [Eqs. (15) and

(17)], wehaveapplied the I(1, 3, 2;1, 3, 2j multiple-
pulse line-narrowing sequence" with v = 6.4 p, sec
to protons in model one-dimensional lattices com-
prising equally spaced plates of solid camphor.
In these experiments, the field gradient is kept
constant so that the chemical-shift terms, which
are rather small for protons, are retained in the
average Hamiltonian. However, the spatial reso-
lution achieved is governed by much larger devi-
ations from field-gradient uniformity due to the
coil design. " The important point is not so much
the resolution, which at present corresponds to
0.5 mm, but that temporal coherence of the first-
order diffraction peak is restored due to removal
of the dipole-dipole interaction in a solid.

Figure 3(a) shows the transient signal from a
three-layer camphor sample with zero applied
field gradient recorded at 9.0 MHz. The receiver
coil was cylindrical with a 9.5-mm-diam access.
The nuclear signal from camphor in the absence
of artificial line-narrowing decays with T, -44
p, sec. Figure 3(b) shows the transient signal as
for Fig. 3(a), but with an applied field gradient
G, =0.77 Gcm '. Note the first-order diffraction
peak. Figure 3(c) shows the narrowed transient
signal from a five-layer camphor sample under
the same conditions. A fir st- order diff rac tion
peak is observed here also. All these data were
recorded at room temperature and off resonance,
to facilitate Fourier transformation. ' The reso-
nance offset (see Fig. 4) introduces a modulation
of the transient signals in Fig. 3. However, it is
the envelope of the wiggles which constitutes the
d iffraction signal.

We see from Eq. (15) that the inverse Fourier
transform of S(p) yields the spatial distribution
function p(r). The spatial distribution function
p(z) obtained by Fourier transforming the data
shown in Figs. 3(b) and 3(c) is presented in Figs.
4(b) and 4(c), and indicates clear resolution of
the plate assemblies. The mean spacings of the
plates were 1.8 +0.2 mm for the three-layer sam-
ple and 1.06+0.10 mm for the five-layer sample;
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FIG. 4. (a) Fourier cosine transform of the transient
response, Fig. 1(a). A narrowed linewidth of 150 Hz is
observed. (b) Fourier cosine transform of the transient
response, Fig. 1(b). The three camphor layers are
clearly resolved. (c) Fourier cosine transform of the
transient response, Fig. 1(c). The five camphor layers
are well resolved. The abscissas in {b) and (c) were
calculated from the measured values of the field grad-
ient and the multiple-pulse-sequence scaling factor,
which was 2.1. The peaks observed at the frequency ori-
gin arise from the damping and baseline shifts in the
transient responses in Fig. 1.

FIG. 3. {a) Transient nuclear signal from protons in
a three-layer sample of synthetic camphor, C~OH&60, in
response to the b, 3, 2; 1, 3, 2]j multiple-pulse sequence,
7 =6,4 psec, with zero applied field gradient. {b) Same
as (a) but with an applied field gradient of 0.77 G cm
A first-order diffraction peak is observed. (c) Trans-
ient nuclear signal from protons in a five-layer sample
of synthetic camphor in response to the same pulse se-
quence and the same field gradient as in (b). The ab-
scissas in (b) and {c)were calculated from the measured
values of the field gradient, and the multiple-pulse-se-
quence scaling factor, which was 2.1. The data were
recorded off-resonance {see text and Fig. 4, and, also
Ref. 10).

in the response corresponding to first- and sec-
ond-order diffraction can be seen. The decay of
the first- and second-order diffraction peaks is
somewhat faster than expected and is attributed
in part to deviations from uniformity in the field-
gradient coils. " Figure 6 is the theoretical ex-
pression Eq. (17) for a seven-layer sample with
dimensions corresponding to the sample of Fig. 5.
The positions of the first- and second-order dif-

fractionn

peaks agree well with those observed in
Fig. 5. The theoretical amplitudes should be
further reduced by the intrinsic lifetime (see Fig.
5), but will still be substantially larger than ob-
served experimentally, for rea, sons mentioned
above.

these values are consistent with the spacings de-
rived from Figs. 4(b) and 4(c) to within the 10%
accuracy of our field-gradient calibration. '

2. Liquids

We have also obtained diffraction results for
layered liquid samples and liquidlike rubber sam-
ples in response to a single 90 pulse at 15.0 MHz.
Figure 5 shows the nuclear transient response
from protons in a model one-dimensional lattice
comprising seven layers of "Vaseline" petroleum
jelly of mean thickness 0.54 mm and mean spacing
0.96 mm. The lifetime of the response without the
linear gradient applied is limited mainly by the
inhomogeneity of the static magnetic field. When
a field gradient of 1,4 Gcm ' is applied, peaks

IV. DISORDERED MATERIALS

In this section, we wish to consider the diffrac-
tion pattern and its spatial Fourier transform

"DIFF RACTION" AND MIC BOS COPY IN SOLIDS AND. . .
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FIG. 5. (a) Nuclear transient response from protons in
a model one-dimensional lattice comprising seven layers
of "Vaseline" of mean thickness 0.54 mm and mean
spacing 0.96 mm recorded at 15 MHz. The lifetime of
the response is limited mainly by the inhomogeneity of
the static magnetic field. (b) Nuclear transient response
from the same sample when a magnetic field gradient of
1.4 Gcm ~ is applied. The labeled peaks in this re-
sponse correspond to zeroth, first, and second orders
of diffraction. Diode demodulation is employed. Time
scale: 1 msec per large division.

when we have a partially disordered lattice. We
are thinking particularly of systems like biologi-
cal membranes, fibrous structures, or mosaic
crystals, whose over-all spatial distribution may
not be perfectly ordered. The question is, there-
fore, whether one expects to see an NMR diffrac-
tion signal in this case. Qf course, x-ray studies
in liquids and amorphous solids do in general re-
veal some structure, the origin of which was first
explained by Zernike and Prins. " Their idea and

subsequent developments in x-ray studies have
allowed the so-called "radial distribution function"
to be measured in liquids and amorphous solids. "

A. Model system

We consider a random collection of spheres of
resonant nuclei with constant spin density p, con-
fined within a rectangular container of dimensions
J, E, L,, where the direction of L coincides with
that of the linear field gradient, which is applied
along the z axis.

We shall approximate the spatial distribution
function of the spheres F(x, y, z) by

FIG. 6. Plot of the modulus of the theoretical expres-
sion, Eq. (17), for a model one-dimensional lattice with
dimensions corresponding to the sample of Fig. 5. The
zeroth-, first-, etc. , order diffraction peaks are labeled
0, 1, 2, etc. The positions of the first- and second-or-
der diffraction peaks agree welt. with the experimental
data in Fig. 5.

Thus, we imagine our random system to consist
of a randomly spaced array f(x, y) of M lines of
N spheres, the spheres on each line being random-
ly distributed along its length.

If the mean spacing between sphere centers is
greater than 2VSa, where a is the sphere radius,
we shall assume that there is no correlation be-
tween adjacent lines of spheres. We then refer
to this case as the uncorrelated model, Fig. 7(a).
If, however, the mean spacing is less than 2 v 3a,
then we would expect some correlation between
adjacent lines of spheres froin purely geometrical
considerations. Indeed, in the

perfectly

inter-
locked, regular case, the spheres would form a.

„n

E(x, y, z) =f(xy)g(z), (20) 2h
where g(z) is a linear distribution which may be
easily calculated. In performing the calculation,
however, we shall further assume that the total
number of spheres to be distributed along z is
constant and therefore independent of x and y.

2

FIG. 7. Model linear distributions of spheres. (a) Un-
correlated model. (b} Correlated or interlocking model.
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hexagonal-close-packed array.
We shall consider in particula. r the situation

where the spheres a.re not quite touching; even
in this case there can exist a highly ordered situa-
tion, as we shall see later. We shall also con-
sider slight disordering of this regular case. This
situation we shall approximate by the correlated
model [Fig. 7(b)], bearing in mind that the aim
here is to account only for minor deviations from
the ordered state.

B. Linear distribution function

The analysis in this section follows closely the
work of Zernike and Prins. " Consider a long row
of adja, cent cells of length hz. Let some of the
cells be occupied randomly, each with an occupa-
tion probab ility

2b = 2(a~ b2)»' (26)

is the projected distance between the centers of
touching spheres along the z axis [see Fig. 7(b)],
and 2h is the distance between adjacent interlock-
ing rows.

C Diffraction signal

Using the distribution function, Eqs. (25)
and (26), we are now able to calculate the diffrac-
tion signal. This is obtained from Eq. (15) for the
one-dimensional case.

The spin density for a single homogeneous set of
spins in the shape of a sphere of radius a centered
z' from the origin is

p,(z
' —z) = p, m[ a' —(z —z ')'] for z ' —a & z & z '+ a .

(29)
p =az/l, (21)

where L is the mean spacing between occupied
cells.

The probability that nz of the first n cells are
occupied is, from probability theory, "

Outside these limits, p,(z'-z) =0. Thus, in a
simple generalization of Eq. (16), we obtain

S(p,) =He J Q p„(z)e"*'dz, (3o)

nt ~z Sz "-
P (n)= 1—

m!(e —m)! l l ) (22)

which, in the limit Az - 0 with n4z =z' remaining
finite, becomes the continuous function

zrm
I' (z')=, , e '".

mfa'
(23)

z =z'+(2m +1)a, (24)

giving the linear distribution function for sphere
centers,

r % - (z-a)/& - (z-Sa)/1
E

This is the probability that m occupation sites
will lie within the distance z'. To account for the
finite radius a of our spheres and the fact that
spheres cannot interchange along a row, we make
the transformation in Eq. (23)

where

p(z) = Q p (z) . (32)

1. Spin density distribution

For a completely random distribution with no
order (corresponding to large l), we may replace
the distribution function g(z) by the step function
9(z —a)/l, in which case we obtain

p, w (a'z ——,
'

I
a' —(a —z)'] }/l

p(z) = for 0&z &2a, (33a)

~4p, ma'/l for z &2a. (33b)

p (z)= f d (z' —p —Pmblp, (z' —z)dz'. (ll)

Since the full density distribution is observed ex-
perimentally, we shall need to calculate

where

( — )',. ..„,
)+ 2)2 e +'''

=Pg (z —(2m +1)a), (25)

In calculating the density distribution in the gen-
eral case, since the various functions occurring
in Eq. (23) are discontinuous, the limits of integra-
tion and the corresponding ranges of z are impor-
tant. For the first term in Eq. (25) corresponding
to m= 0, we get

g (z —(2m +1)a) =0 for z &(2m +1)a. (26)

z =z'+a+2mb,

where

(27)

Equations (24)-(26) apply to the uncorrelated mod-
el. For the correlated model, we replace the
transformation Eq. (24) by

a+z

g,(z' —a)p,(z' —z)dz'
a

for 0&z&2a (34a)

for z &2a. (34b)

p.(z) = &

g, (z ' —a)p,(z ' —z) dz '
z-a
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For m = 1, we obtain

p, (z) =

z+ a+2b

g, (z' —a -2b)p, (z —z')dz'
a+ 2b

for 2b&z&2(a+b) (35a)
Sample

z-a
g, (z' - a —2b)p, (z —z')dz'

for z & 2(a + b) . (35b) rf pickup
coll

These integrals have been calculated exactly up toI= 2 and evaluated numerically for the particular
cases discussed in Sec. IVD.

D. Experimental results

In order to test the predictions of the theory on
a disordered material, model systems were con-
structed using spherical glass beads of 1.96-mm
mean diameter with standard deviation of 0.02 mm.
The complementary resonance signal was observed
by surrounding the spheres with water. The signal
from a distribution of spheres of spins may then be
deduced using Babinet's principle.

The spheres plus water were contained in a
square-cross-section glass cell, Fig. 8. The ex-
ternal cell dimensions were 10 mm square by 20
mm long. The receiver coil was a close fit around
the cell and extended 10 mm along the length. The
sample was oriented so that the field gradient G,
was normal to one face. In this case, for a homo-
geneous distribution of spine (i.e. , no spheres),
the absorption line shape was rectangular, Fig. 9.

ection
ection

FIG. 8. Diagram showing rectangular sample and re-
ceiver coil geometry.

The samples were prepared as follows: A speci-
fied number of large beads and an arbitrary quan-
tity of the 470- pm beads were placed in the sample
cell and vigorously shaken to thoroughly mix them.
Water was added slowly to just cover the beads.
The cell was ultrasonically agitated and excess
air was pumped off, allowing the beads to settle
or bed down. The level of the beads was marked.
After the experiment, the volume occupied by the
beads was measured by filling the empty cell up
to the mark with water. The volume of water was

1. Correlated model

For this case, the beads were first placed in the
dry sample cell, then water was added. The cell
was then ultrasonically agitated and occluded air
was pumped off. The agitation also had the effect
of ordering the spheres, giving the experimental
density distribution shown in Fig. 10(a). Slight
disordering'of the spheres was achieved by giving
the cell a single shake, which resulted in the den-
sity distribution of Fig. 10(b).

The complementary signals, corresponding to
resonant spheres, are plotted in Fig. 11 and com-
pared with the theoretical spin density Eq. (32),
and indicate moderate agreement with the model.

2. Uncorrelated model

Since the beads need to be spaced apart by about
one diameter, it was necessary to support the large
beads by a solid matrix of 470-pm beads. As the
smaller beads are on the threshold of the spatial
resolution of the spectrometer, they did not affect
significantly the signals observed.

h
l

a

O
CL
CL
D
l/)
CQ

I I l & i I

5 10
z (mm)

I

15

FIG. 9. Absorption line shape from protons in water
contained in a glass sample cell of square crosssection.
A linear magnetic field gradient of 1.42 G cm is ap-
plied as indicated in Fig. 8. The center frequency is 15
MHz. The abscissas were determined from the mea-
sured field gradient.
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FIG. 10. (a) Absorption spectrum from well-ordered
glass spheres immersed in water and contained in a cell
of square cross section. The spectrum was obtained by
Fourier transformation of the proton FID recorded at 15
MIlz in a field gradi. ent of 1.48 G cm ~. The abscissas
were derived from calibration of the field gradient. (b}
As for (a) after the spheres have been slightly disordered
by shaking.

I I I I I I I I

5
z (mm)

10

FIG. 11. The circles are the experimental spin densi-
ties for distributions of spheres of nuclei obtained by
Babinet's principle from Fig. 10. The curves are Eq.
32 with m =0, 1, 2, reflected about z = 2L for conven-
ience. (a) The curve corresponds to N+1=5, a=0.98
mm, L=105 mm, and b=0.91 mm, so that 1, =0. (b)
This curve has N+1=5, u=0.98 mm, L =105 mrn, and
b=0.75 mm, so that l =0.26 mm, corresponding to some
disorder, hence the damping.

deduced by weighing.
The density distribution results for 45 spheres

in a volume of 1.62 em' are shown in Fig. 12(a),
while the result for 46 spheres in a 1.98 cm' vol-
ume is shown in Fig. 12(b). Again using Babinet s
principle, the complementary signals are plotted
in Fig. 13 and compared with the theoretical ex-
pression, Eq. (32), with 5 =a, giving fair agree-
ment.

V. PRACTICAL AND THEORETICAL LIMITS TO SPATIAL
RESOLUTION

In this section we examine quantitatively the
principal limitations of NMR diffraction and dis-
cuss the factors affecting the spatial resolution ob-
tainable. In both solids and liquids, the resolution
is directly related to the uniformity of both the
static magnetic field B, and the applied linear field
gradient G. The intrinsic lifetime of the signal,
T, or T„for multiple-pulse experiments, as well
as translational diffusion, also play important roles.

For high resolution, chemical-shift variations
and changes of the bulk electronic susceptibility
will clearly have an important effect as well. The
fact that. spatial resolution depends on position in
the field gradient implies that movements of both
sample and gradient coil will be important.

Finally, the texture of the sample material itself
and the presence of polycrystals will impose some
limitations. We shall discuss the various factors
in turn.

A. Resolution criteria

The criteria adopted for the just-resolved first-
order diffraction peak of a one-dimensional lattice
of spacing c are clearly arbitrary. However, they
must depend on the signal-to-noise ratio of the
initial signal in Eeroth order. If Ro is the initial
signal-to-noise ratio and R„„-„is the minimum sig-
nal-to-noise ratio tolerable, we find from Eq. (16)
that the time to the first diffraction peak (g= 1)
gives
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FIG. 12. (a) Absorption spectrum from 45 1.96-mm-
diam glass spheres randomly distributed in a volume of
1.62 cms supported in a matrix of 470-pm-diam spheres
immersed in water and contained in a cell of square
cross section. The spectrum was obtained by Fourier
transformation of the proton FIB recorded at 15 MHz
with a field gradient of 1.33 Gcm ~. (b) As for (a} with
46 large spheres randomly distributed in 1.98 cm3 and a
field gradient of 1.48 6 cm . The abscissas were ob-
tained from calibration of the field gradient.

i, = 2 «/yc G, = T„« ln(R, /8, „,„)= n T„«, (36)

where T2 ff is the effective transverse relaxation
time due to all broadening mechanisms present.
The Rayleigh resolution criterion corresponds to
n =3.53 in Eq. (36) for a Lorentzian line, which in
turn corresponds to a 10% drop in signal amplitude
from maxima to minima in the spatial or frequency
distribution.

Numerically similar resolution criteria may be
defined for other line shapes. For example, the
Rayleigh criterion corresponds to truncation at
e '" for a Gaussian decay and s "' for an exp(-&')
decay.

Evaluation of Eq. (36) will depend on the various
magnetic fields available and the various line-
broadening factors, which we now discuss in turn.

5
z (mm)

FIG. 13. The circles are the experimental spin densi-
ties for distributions of spheres of nuclei obtained from
Fig. 12 by Babinet's principle. The curves are Eq. (32),
with m =0, 1, 2 and for a=b, and are reflected about z
= 2I for convenience. (a) The curve corresponds to N
+1=3, I.=88.2 mm, and a=1.08 mm, so that l =0.77
mm. (b) The curve corresponds to %+1=3, L =87.0
mm, and a=0.88 mm, so that l =0.42 mm.

1. Line-broadening factors

a. Static field. If f = n B/B, is the fractional
static-field inhomogeneity over the sample, hp
is the inhomogeneity of the bulk susceptibility over
the sample due, perhaps, to macroscopic regions
of different susceptibility, and if (6')' ' is the
average chemical-shift variation over the sample,
then the effective linewidth due to these terms
treated as independent Lorentzian lines is

EWE M yB (f +EX +(6 ) ) (3'I)

b. Structural inhomogeeeity. In a regular struc-
ture, small deviations and imperfections over the
bulk sample, attributable to a polycrystal mosaic
structure or other causes, will give a line broad-
ening

(36)

where (b z')'~' is an average spatial deviation.
This term can also contribute if the sample moves
during, for example, a multishot signal-averaging
process. That is to say, such movements may not
affect the resolution directly in individual shots
but rather in a collective manner, through signal
averaging.
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c, Diffusion. The time for the transverse re-
sponse to decay to e ' of its initial value through
transfational self-diffusion of spins in a linear
field gradient G, is"

—.(3/Dy2G 2)1/3 (39)

where D i,s the self-diffusion constant. This gives
a linewidth contribution 4$'d'ff which depends rather
on the line shapes of the various other contributed
terms. In general, all the factors affecting the
linemidth produce different line shapes, so the
over-all linewidth can only be specified generally
in functional form:

BW„,=f(EW „, , AW„,„„,AW.„„hW,„,). (40)

Here, the intrinsic linewidth contribution &W;„,= 1/
mT„„„and the intrinsic transverse-decay-time
constant 7„„,= T„ for multiple-pulse sequences,
while for single-pulse experiments in liquids,

.2 int

AG/G, = Az/L. (41)

For over-all optimal conditions, we would take hz
as the smallest resolvable distance caused by all
factors otPgex than the linear-gradient coils. This
distance is of course related to the linewidth by

(42)

Taken together, Eqs, (41) and (42) mean that when

AW„, = yfhio and B,& G,I., the required fractional
nonuniformity in the field gradient can be less than
that required of the static field.

The linearity of the z gradient will not in general
affect the-resolution, since all spins in the xy plane
are isochromatic. It would, of course, affect the
linearity of the Fourier transform and, if uncor-
rected, would give compression of the axes.

B. Practical resolution

X. Solids

Let us assume that n=3 in Eq. (36). In current
multiple-pulse sequences, the line narrowing
achieved is adversely affected by resonance off-
set."'" A conservative value for the multiple-
pulse decay-time constant T„ is 2.0 msec for pro-
tons, and in order to keep within this value, the
total static-field variation across the sample

2. Field gradhent uzi fonnity

A praetj. cal coil configuration designed to pro-
duce a uniform gradient G, will in general produce
small undesirable gradients 4G„and 4G, in some
regions of the sample which we shall label collec-
tiveky as 4G. If we wish to resolve a distance 4z
in a tots, l sample volume I.', then we must satisfy
the condition

should not exceed about 1 G." For a sample 0.1
mm thick, this corresponds to a maximum field
gradient G, = 100 0 cm '. This is a fairly modest
gradient and should be easily achieved by conven-
tional means. ""If T„ is the only broadening
source, then the best spatial resolution obtainable
for protons in a solid is -4.0 p.m. In fact, as dis-
cussed in Sec. IIIA, the 4R'„.„,-broadening contri-
butions can in principle be removed by using a
specially designed multiple-pulse sequence. How-
ever, for protons in solids at low frequencies,
that is, 10-20 MHz, chemical shifts should not be
a worry.

The gradient uniformity required in the above
example is, from Eq. (41), only 4.0%. A lower
limit for the diffusion constant may be estimated
by taking the diffusion contribution to the decay-
time constant to be at least 10T„=20.0 msec. This
assures negligible additional diffusional broaden-
ing. For G = 100 6cm ', this gives D = 6 X 10 '
cm' sec '. Many .solids have diffusion constants
much smaller than this at room temperature. For
example, in ice at 273 K, D =3 ~ 10 "cm' sec ';
in adamantane at 300 'K, D = 10 "cm' sec '." Of
course, for a sample as thin as 0.1 mm, it may be
necessary to enhance the signal-to-noise ratio by
lowering the temperature. In this case, the diffu-
sion constant will become even smaller.

It is clear that for most solids the spatial reso-
lution is currently limited by the line narrowing
achieved in the multiple-pulse sequence. Funda-
mental limits due to diffusion alone (D = 10 "-10 "
cm' sec ') would correspond to c=2-5A. The
gradient uniformity required in the diffusion. -
limited case would have to be 5 parts in 10' f

2. Liquids

In liquids the major limitations to resolution are
likely to be static-field inhomogeneity and diffu-
sion. It turns out that the Rayleigh criterion with
Eq. (39) is equivalent to allowing the spins to dif-
fuse an average distance about equal to the spatial
resolution desired. If one works with a single 90'
excitation pulse, static-field inhomogeneity effects
and chemi. cal shift mould remain and could present
problems at high static fields. Of course, one
could use multiple-pulse and switched-gradient
methods here as well. However, the problem can
be avoided by morking at lower static fields.

If we take diffusion as the limiting mechanism of
resolution, and consider protons in water in parti-
cular as the material most common in, for ex-
ample, biological specimens, then for a=1.85
~ 10 ' cm' sec ' and G = 100 Gcm ', we find a
resolution limit of 6 p,m. Since the water must
remain liquid, diffusion is not an experimental
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variable, so that resolution improvements must
come from larger field gradients. It is of interest
to consider the size of the gradient required to re-
solve 5 A in water. Its value must be G, =1.5x 10"
Gcm ', with a corresponding uniformity of 5 parts
per million.

Of course, in liquid experiments using one 90
pulse, we are no longer constrained to keeping the
magnetic field span across the sample down to 1 6
as for solids. This allows larger samples to be
used.

VI. NMR MICROSCOPY

Bp-

C
O

CL
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Gz
projection

~~ direction

z, ~U orhH

FIG, 14. Diagram showing the expected line shape for
a cylindrical sample of spins with uniform density,
placed in a uniform magnetic field gradient. The inset
shows the field-gradient direction which is normal to the
projection direction.

We have already shown in Eq. (15) that the spin-
density distribution p(r) may in general be obtained
from S(p) by taking the inverse Fourier transform.
The one-dimensional Fourier transform is
straightforward to perform and may be useful if
the general form of the object is known. Figure
14 illustrates this point. It is a sketch showing the
expected lineshape for a cylinder of spins in a
field gradient as indicated. "'

Some experimental results for various samples
are presented in Fig. 15. Figure 15(a) is the pro-
ton-spin distribution for a cylinder of water 13.4
mm in diameter, while Fig. 15(b) is the spin dis-
tribution for the same object but with a coaxial
occlusion 9.S mm in diameter containing no spins.
The axes of these distributions are transverse to
the cylindrical axis in each case, as indicated in
Fig. 14. The distributions shown are characteris-
tic of this sample geometry. The spatial resolution
achieved here is about 0.5 mm, and is limited by
the nonuniformity of the field gradient. "

Figures 15(c) and 15(d) are one-dimensional

10 mm

FIG. 15. One-dimensional projections obtained by
NMR microscopy. In each case, the NMB sample coil
was 18 mm in diameter and 3 mm deep. The scale indi-
cated was obtained from calibration of the gradient. (a)
Projection of a cylinder of water 13.4 mm in diameter.
(b) Projection of a cylinder of water 13.4 mm in diameter
with a coaxial proton-free occlusion 9.8 mm in diameter.
(c) Projection of the left-hand little finger of P. K. G.
The lunule of the nail was positioned under the NMB coil.
(d) As for (c), with the digit rotated through approximate-
ly 45'. The left-hand side of the spectrum corresponds
to the dorsal surface of the digit.

spin-density distributions of the tip of the left-
hand little finger of P. K. G. recordedin vivo. "
Strong proton signals are received from the skin,
subcutaneous tissues, synovial sheath, blood
vessels, etc. , while much weaker signals come
from the distal phalanx, The NMB coil was posi-
tioned over the region where the nail merges with
the eponychium. The general similarity between
Fig. 15(b) and Figs. 15(c) and 15(d) is consistent
with the fingertip being approximately cylindrical
with the bone centrally placed. Also apparent in
Figs. 15(c) and 15(d) is a small distortion caused
by the nail.

Full three-dimensional Fourier transforms,
though difficult to perform unambiguously, would
be extremely valuable, since one would then have
the full three-dimensional structure of the object.
In two dimensions, p(x, y) represents a cross-sec-
tional picture or micrograph of the object. We now
consider the theory of such reconstructions.

A. General theory

If we consider a general two-dimensional object
consisting of a continuous spin-density distribution
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p(r), divided into a regular array by a grid with
lattice spacings &, &, and with a continuous density
distribution within grid cells, then the transverse
response signal is, from Eqs. (15) and (16),

S =He g Q exp[2wi(le+mf)j p, (42)

where p, is an integrated spin density for the
l, mth matrix element. If we now set

le+nzf = Ph, (44)

P integer, with h = dGyt/2m and d the projected
lattice constant, Eq. (43) can be regrouped to give

(45)

where

Pp= Prm& (46)

subject to I' being constant. The inverse Fourier
transform of Eq. (45) produces p~ which, as we
see from Eqs. (44) and (46), is just the Pth pro-
jection of the total matrix p. ("Projection" here
is used in the sense of the optical analogy, where
the passage of a parallel beam through an opaque
material produces a shadow or projection the in-
tensity of which depends on the integrated optical
density along the beam path. ) A similar result
pertains for three dimensions and, in this case,
p~ =Pim, n pinna , where P& =fe+mf +ng

The grid spacings are arbitrary and control the
resolution of the spin-density map or micrograph.
In the present work we shall take a=6 and l =rn,
that is, a square array. The problem is, there-
fore, equipped with the various projections pJ, cor-
responding to various directions, how do we re-
construct the density map? We shall restrict our
present discussion to two-dimensional arrays for
simplicity.

1. General method

For a square matrix p of discrete points p, ,
reconstruction from the projections is straight-
forward. For an rnx rn array, there are m' un-
knowns. Along the [10] direction there are m pro-
jections and, crudely speaking, if we look at the
object in rn directions, we have m' equations which
may be solved simultaneously to give a unique de-
termination for all points p, . In practice, one
does not have to solve the complete set of equa-
tions simultaneously. Referring to Fig. 16, pyy

can be determined directly for all projection direc-
tions greater than [ 10], that is to say, [ 11],[ 12],
etc. Having determined this point, p» can likewise
be determined from the [12] projection direction.
Once suitable single elements have thus been de-
termined, they can then be used in combination to
determine other points, possibly with lower-order
projection directions. For example, given p»,
then p» may be determined from the [11]projec-
tion direction. This procedure is exact and there-
fore unambiguous for a point matrix or for ele-
ments whose extent do not cause overlap with other
elements which are not supposed to be contributing
to the projection for a given direction. From this
point of view, neither the [10] nor [01] projection
direction gives overlap troubles. The higher-order
projection directions do, however, give overlap
troubles, which are not necessarily ameliorated
by reducing the grid size. A particular array ele-

12

B. Image reconstruction

The problem of reconstructing an image from
its projections is an old one motivated by the need
to reconstruct two- and three-dimensional images
from electron micrographs, x-ray shadowgraphs,
and one-dimensional scans of cosmic distribu-
tions. ""

In x-ray and electron-microscopy studies, the
need to reconstruct images from a few projections
has arisen because of the radiation damage pro-
duced in the sample. In NMR microscopy, damage
of the specimen presents a much smaller hazard. "
However, in physiological applications, it is im-
portant to produce micrographs rapidly and sim-
ply. For this reason we describe our simple pro-
cedure.

FIG. 16. Sketch of a two-dimensional discrete-density
distribution showing two projection directions. Note that

p&& may be determined from either the [11]or [12] p»-
jection direction, whereas p&2 may be determined uniquely
from {12]only.
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ment will show variation when determined indepen-
dently from a number of projections in a continuous
array. In this case we take the average, p, , but
this leads automatically to none of the projections
being quite satisfied. In spite of this difficulty,
image reconstruction using this method does give
a recognizable micrograph. "

C. Results and discussion

Figure 17 is a simple two-dimensional image
obtained using the method outlined here, by com-
bining the results of five spin-density projections
identical to Fig. 15(b) for rotations about the cy-
lindrical axis. The reconstruction is based on a
17 & 17 matrix using ten gray levels. The calcula-
tions were done by hand. Despite the coarseness
resulting from the relatively small number of ma-
trix elements, the image shows the broad features
to be expected, viz. , a proton-dense annulus en-
closing a circular proton-free occlusion.

Another approach to spin-density mapping for
liquids, recently proposed by Hinshaw, "uses two
or three sinusoidally time-varying magnetic field
gradients which reduce the isochromatic plane to
a line or a point, respectively. Data acquisition
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FIG. 17. Two-dimensional image reconstructed from
five projections from data similar to Fig. 15(b), using
the method outlined in Sec. VI B1. Each projection was
digitized using ten gray levels, and the reconstruction
was based on a 17x17 matrix. The proton density in the
image is depicted by dots of various diameters. The
false proton density at the center of the image is a noise-
introduced artifact produced by the matrix-reconstruc-
tion technique.

could take considerably longer by this method for
equivalent resolution and signal-to-noise ratio.
We therefore briefly consider the analysis of the
relative data-acquisition times of the two imaging
methods.

If we consider a micrograph of m' elements and
take the time to record the data from one transient
decay a.s (t„)~ for the projection method and (t„)
for mapping method, the time to acquire the data
for m projections by the projection method is

T'=m(t„)~+/, ', (47)

whereas for the point-mapping method the time is

T„=m'(t, ) +t~„, (48)

where t» and tp are the data-processing times
for the projection and mapping methods, respec-
tively. For regular pulsing, we may take (t')~
=(t~) = a T„where T, is the mean spin-lattice re-
laxation time and & is a positive scaling factor.
Let ~W =2m'/T, and 4W~ =2m/T» be the respec-
tive bandwidths over which signal is received, and
T, , T» the corresponding inhomogeneous trans-
verse decay times.

Let S, be the single-shot signal arising from the
entire sample and N~ the noise corresponding to
the bandwidth hW&. The signal-to-noise ratio of a
point defined over the frequency range d W rela-
tive to the frequency range AR'p =2mhlV, is there-
fore,

(49)

To achieve the same signal-to-noise ratio in the
projection method, the signal must be sampled 2m
times. " Since 2m T,p

—&2, this may clearly be
achieved in the time (t,)~ by recalling and sampling
the signal in a Carr-Purcell echo sequence. ' In
this analysis, we assume that no further signal-
to-noise enhancement by echo methods is possible
in the point-mapping method due to the time de-
pendence of the field gradients.

If m(t')„» t», t,., the relative acquisition time
becomes

T /T~=m. (50)

For large m, therefore, the projection method is
superior from the point of view of data-output rate.

VII. CONCLUSIONS

The new technique of NMR diffraction and mi-
croscopy has been presented together with the
appropriate analysis following optical analogies.
It is shown that certain effects common in optics
and x-ray diffraction have their counterpart in
NMR diffraction. In particular, NMR of disordered
systems in the region of a boundary can be made «
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yield the spin-density distribution analogous to the
radial distribution function in x-ray studies.

A critical account of the limits of spatial resolu-
tion expected in NMB diffraction and microscopy
is given, and this shows that with a technologically
reasonable field gradient of 100 0cm ', the best
resolution obtainable in a liquid (water) is about
6 p.m, the principal limit being translational self-
diffusion. For solids, using multiple-pulse line-
narrowing techniques, the resolution limit is cur-
rently 4 p,m. In this case, however, the limit is
imposed by the intrinsic linewidth due to imperfec-
tions in the multiple-pulse sequence used. For
this reason, we believe that the practical realiza-
tion of NMB diffraction and microscopy presents
new and compelling reasons for continued efforts
to improve the line-narrowing efficiencies of these
sequences.

The problem of reconstructing the two-dimen-
sional Fourier transform from its projections is
also discussed. The two-dimensional image or
micrograph allows examination of internal and ex-
ternal structures and characteristics of specimens.

The application to biological materials is stressed
and an example of its application to a physiological
specimen in vivo is given.

Finally, we remark that an intriguing possibility
may exist for the study of nuclear -spin-phonon
interactions in solids placed in a linear magnetic
field gradient. The passage of an acoustic plane
wave through a solid (or even a liquid) should pro-
duce observable variations in the NMB diffraction
pattern. Indeed, in a continuous and homogeneous
material, formation of a standing wave might be
made to produce a diffraction pattern in its own

right. We hope to report on these possibilities
el sewher e.
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