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The change in shape of the free induction decay (FID) in solids is calculated for the case of the paint-defect-

induced quadrupole interaction. The calculation agrees in form with the result of Fedders and predicts an FID
of the form V(t)exp( —Kt"'), where V(t) is the FID with no quadrupole interaction (a perfect crystal), and

K is proportional to the defect density. We adapt this theory to analyze FID data taken on the three isotopes
in GaAs. The theory gives accurate fits to the data, and defect densities are calculated from the fit parameters
for several thermally damaged samples and one doped sample. The principal purpose of this paper was the
verification of the t '" exponential dependence in the FID introduced by the quadrupole effect. The densities

found for the damaged samples agree with the prediction of a thermodynamic calculation, for the smaller

densities. Significant deviations occur at densities large enough that approximations made in the line-shape

theory begin to break down. The magnitude of the deviations is larger than expected from the breakdown of
theory alone, and may be evidence for the formation of singly charged vacancy pairs. The defect density
measured for the doped sample is an order of magnitude less than the charge carrier concentration. This
failure may be due to the breakdown in the theory or to donor clustering on dislocations.

I. INTRODUCTION

The effect on the NMR line shape of point defects
in the crystal lattice of III-V compounds has been
investigated in several recent articles. ' 4 Our own

experimental research' in this area (this reference
is hereafter referred to as HSSW) has used pulsed
NMR to study GaAs in the technologically impor-
tant low-defect-density regime of 10"-10"cm '.

Similar defect concentrations have been investi-
gated by Sundfors' using cw NMR and nucl. ear-
acoustic-resonance techniques. Defect densities
several orders of magnitude greater, 10"-10"
cm ', were measured by Potts and Pearson' using
the Kossel line technique of x-ray diffraction.

In the past, the lack of an analytical form for
the NMR line shape of a crystal with defects has
limited the data analysis to comparison with mo-
ments of the line that can be calculated. This ap-
proach not only disregards much of the informa-
tion contained in the NMR signal, but also forces
one into the mathematically risky process of tak-
ing derivatives of an extrapolation of an empirical
free-induction-decay equation. Further, one must
then rely on theoretically calculated contributions
to the second moments from all other line-broad-
ening interactions in order to isolate the second
moment owing to the quadrupole interaction.

Fedders' recently calculated a functional form
for the quadrupole interaction contribution to the
free induction decay (FID) of an NMR signal. This
calculation permits a reexamination of the data in
HSSW' using the entire line shape in lieu of the mo-

ment analysis. This report constitutes a first
test of this line-shape theory.

A brief description of the experiment is given
in Sec. II. In Sec. III, a modification of Fedder's
derivation is outlined for the change in the shape
of the FID of zinc-blende structure single crys-
tals owing to the presence of defects. The mech-
anism considered is the quadrupole interaction
that is induced by the electric fields from charged
point defects. Details of the calculation are pre-
sented in an Appendix.

Since one goal of this research is to develop a
sensitive probe of crystal defect concentrations,
the result derived in Sec. III is used to relate
line shapes to defect densities in both thermally
damaged and doped single crystals of GaAs. Most
of the data used in this work were previously re-
ported in HSSW. However, some of the data were
retaken to improve the signal-to-noise ratio. The
analysis is given in Sec. IV.

Finally, the theoretical and experimental l.imita-
tions of this technique are discussed in Sec. V.
The maximum measurable defect density is calcu-
lated for each of the three isotopes in GaAs. The
functional forms of the change in the FID that
would result from other damage-related interac-
tions are discussed also.

II. EXPERIMENT

The experiment consisted of observing the FID
following a 90' rf pulse, for each of the isotopes
("Ga, "Ga, and "As, all with nuclear spin e), as
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a function of crystal orientation in the Zeeman
fieM. Data taken for several pure semi-insulat-
ing samples were reported previously in. HSS%.
Each of these samples was studied before and
after thermal damage caused by quenching from
a succession of temperatures in the range 500-
700 'C.

Data from a silicon-doped crystal were gathered
on the same apparatus reported in HSS% with two
minor alterations. The sample probe and associ-
ated rf circuitry were changed from 50 to 930
characteristic impedance to allow a large filling
factor in the sample coil despite a lossy sample.
The tube preamplifier was replaced with an Inter-
national Microwave Corp. Model No. SSOASA solid-
state broad-band unit for improved stability. Each
FID was recorded in the form of 1024 digitized
and signal averaged points, typically 0.8 p, sec
apart.

III. THEORY

Since the difficulties inherent in calculating the
entire NMR line shape are well known, this paper
is l.imited to deriving only the change in the line
shape resulting from the first-order quadrupole
interaction. The theoretical result wil. l then be
used as the basis for comparison of signals from
crystals that differ only in the amount of this in-
teraction that is present.

It is assumed that the quadrupole interaction
serves only to broaden the NMR frequency spec-
trum inhomogeneously. The effects of the quadru-
pole term on other elements of the total spin
Hamiltonian, e.g. , the dipole-dipole and indirect
exchange interactions, are neglected. This ap-
proximation is equivalent to assuming that

[Xo,X...]=0 .

The effects owing to the breakdown of this approx-
imation are discussed in Sec. V.

In this approximation, the NMR signal from a
spin--,' nucleus will be the weighted sum of the
contribution from the unperturbed (—,

' to -&) tran-
sition and the frequency shifted contributions from
the (-,' to —,') and (--,' to ——,') transitions. The latter
may be written as a convolution of the spectral
shape function g(e) and the probability of a given
frequency shift P(t) ~),

to the time domain with the aid of the convolution
theorem, giving

F(t) = 0.4f(t) + 0.6f(t)Q(t),

where F(t) is the observed FID, f(t) is the Fourier
transform of g(a) (and thus the FID in the absence
of quadrupole broadening), and

Q(')= f d~~ "'u(»)

is the quadrupole modulation function.
A particular arrangement of defects will give a

discrete frequency shift to one spin so that p(6(d)
can be represented by a D function

where ~(d„ is the shift owing to defect n.
This 6 function collapses the integral in Eq. (4)

to the result

(6)

In an experiment one sees the sum of signals
from nuclei that have many different arrange-
ments of defects. Thus the observed signal is

F(t) = 0.4f(t) + 0.6f(t)Q(t),

where Q(t) is a configuration average for the defect
contributions to b, u&„ in Eq. (6). Details of the cal-
culation of Q(t) are outlined in the Appendix.

The result of the configuration average is given

by Eq. (A21), which allows one to express the
quadrupole modulated FID as

F(t) = 0.4f(t) +0.6f(t)e (8)

where

K=~p~()te +eQR/I)'" (4cos'8 —2 cos'8)"' . (9)

In Eq. (9), p~ is the defect density, e* is the ef-
fective charge of the defects, Q is the quadrupole
moment of the observed nucleus, and A is the con-
stant that relates the induced electric field grad-
ients (efg) to an applied electric field. ' The angle
8 is the angle between the Zeeman field IIp and the
crystal [110]axis, for a rotation about a [110]
ax.'is that is held perpendicular to IIp.

G((d) = 0.4g(w) + 0.6 p(t ~)g(~ -»)d(&~) . IV. ANALYSIS

(2)

In writing Eq. (2), it has been assumed that g(e)
is symmetric about the Larmor frequency.

The FID is the Fourier transform of the fre-
quency spectrum. Equation (2) can be transformed

The theory in its simplest form permits com-
parison of the FID of a damaged crystal D(t) to
the FID of a perfect or virgin crystal V(t),

D(t) = V(t)A'(0. 4+ 0.6e ' ), (10)

where K=K(p„, 8) and A' is a normalization factor.
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In practice the FID of the undamaged crystal,
U(t), retained a significant quadrupole contribu-
tion owing to the native defect population, p, .
Thus, comparison of the laboratory signals D(t)
and U(t) required solving two equations simulta-
neously to eliminate V(t) . Then

A(0.4+ 0.6e-~"' )
D(t) = U(t)

0.4+0.6e ~0'

where K, is proprotional. to the native defect den-
sity.

Us ing a thr ee-para meter l.eas t-squar es fit of
Eq. (11), which could adjust A, K, and Ko, we
matched the FID's from damaged crystals, D(t),
to FID's from undamaged samples at the same
orientation. The fit values of K and Ko yielded
defect densities of the damaged and undamaged
crystals simultaneously. The fits consistently
gave defect densities of the undamaged crystals
of p0=5.2&10 cm

This value of p, was adopted as a standard, and
the analysis was repeated using a two parameter
fitting routine which could adjust only the normal. -
ization A. and the damaged crystal defect density
via K. No appreciable increase in y' was caused
by freezing the third parameter.

The two illustrations in Fig. 1 are samples of
this comparison process and are typical. of the
quality of fitting with Eq. (11). In Fig. 1(a) the
distinctly different FIDs from damaged and un-
damaged crystals are plotted together without
modification. The undamaged crystal signal in
Fig. 1(b) is multiplied by the fit values of the
modulation term in Eq. (11) to match it to the
damaged crystal signal.

The angular dependence of the fit constant K
shown in Eq. (A6) provides a second check of the
validity of the theory. A least-squares fit of the
vaiues of K as a function of angle (illustrated in

Fig. 2) was used to calculate an average value for
the defect density of the damaged crystals. These
values of defect density are listed in Table I. In
calculating p~ from K we have used the electronic
charge e for the effective charge e*. Justification
for this value is given in HSSW.

In the semi-insulating crystals, conduction-elec-
tron shieMing of the point defects is not significant.
Shielding owing to the dielectric constant of the
medium is included in the measured value of R.'
An extra factor of & was included erroneously in
the calculations in HSSW.

There is approximately 1(P/o uncertainty in the
measured defect densities owing to the standard
deviation of the values of K as a function of angle.
This probable error does not include error in the
quantities that relate K to p, , such as A and Q.
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FIG. 1. (a) Ga FID from an undamaged crystal with
the Zeeman field parallel to the [110]direction (plain
line) is compared with the Ga FID from the same orien-
tation of a sample quenched from 600'C (broken line).
(b) Similar to part (a) except the undamaged data has
been modulated by the use of Eq. (11).
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The product QR, measured by Gill and Bloem-
bergen, ' contributed a probable error of 30/0 to
the absolute valu'e of our measured p„.

V. DISCUSSION

Using the chemical thermodynamics calculations
of X.ogan and Hurle' as modified in HSSW, it is
possible to determine the populations of As mono-
vacancies created by thermal quenching. The re-
salt of this calculation is the line on Fig. 3. Since
th'e theory presumes a perfect crystal before
quenching, the native defect density is subtracted
from the measured values for comparison to the
theory. In Table I, the column labeled p~ (ther-
mal) gives the results of this subtraction.

Experimental values for samples quenched from
600 C and below, track the theoretical line fairl. y
spell. , particularly considering there. are no ad-
justable parameters except the FID normalization.

The experimental defect density from the sample
quenched from 700 C substantially undershoots
the thermodynamic value. Furthermore, the de-
fect density measured for the doped crystal. is
fuH. y an order of magnitude less than the carrier
concentration of (8.9-5.1)&&10" cm ' measured by
the manufacturer. These apparent failures must
be examined' jn l.ight of both experimental and the-
oretit:a, l limitations of this approach.

Within the theory, higher defect densities imply
faster decay of satellite contributions. This
places more of the rel.evant part of the signal
within the finite deadtime of the equipment. A
reasonable estimate is that most of the quadru-
pol. e contribution has occurred by the critical time
when the argument of the exponent in Eq. (8)
equals -1. So, one can expect experimental
saturation to set in when the critical time equals
our experimental deadtime of about 20 p sec. If
the ful. l angular dependence of E is to be observed,
this implies saturation densities of 34, 17, and

5.3&&10" em ' for "Ga, "Qa, and "As, respec-
tively. Experimental saturation arguments could
thus contribute to the anomalously low densities
for M5D700 and EMC2 as measured by "Qa and
"As. However, the "Ga densities appear to sat-
urate at values lower than this estimate.

Concern that the quadrupole frequency shift may
have placed an appreciable portion of the signal
beyond the spectrometer's bandpass prompted con-
struction of a fitting progxam that couM adjust the
weighting of the various transitions in the total
signal (i.e. , the factors 0.4 and 0.6). Bandpass

TABLE I. Defect densities of the experimental cry-
stals as measured by the whole line shape technique.

Quench
'

p„ total"
Sample temp C Isotope (10~~ cm 3)

pz thermal ~

(10~~ cm 3)

0.9

0.8-

0.6-

N~ 0.5.
x
K0 0q.'R

03-

0.2-

500

550

600

M7 600

M5 700

EMC2 Sx doped

"Ga
7~Ga

"As
"Ga
~~Ga

"As
69Ga

~~Ga

"As
Ga

7 iGa
"As

Ga
"Ga
"As
"Ga
V~Ga

"As

0.71
s ~ ~

0.82
1.0
1.4
0.88
1.3
1.8
0.86
1.7
2.3
1.3
1.6
1.7
1.2
1.6
2.0
1.5

0.19

0.30
0.48
0.88
0.36
0.78
1.3
0.34
1.0
1.6
0.58
1.1
1.2
0.68
N/A
N/A
N/A

l5 50 45 - 60 75
CRVSTaL 0RIENTAT~ov (d~g)
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FIG. 2. Sample of the angular variation of the experi-
mental fit parameter ~ compared to the theoretical
orientation dependence from Eq. (ll) (solid line). The
data points were derived from Ga FIDs of a crystal
quenched from 600'C.

For example, M7 designates crystal 7 from an ingot
manufactured by Monsanto. These crystals were mea-
sured before and after damage was introduced by rapidly
quenching them from the temperature listed in the sec-
ond column. EMC refers to Electronics Material Cor-
poration.

"
p& total is the defect density measured using Eq. (11).
p& thermal=p& total-po where po is the defect den-

sity prior to damaging. Note crystal M7 was damaged
to 500 C, then to 600 C.
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limitations would result in consistent deemphasis
of the satellite transitions. No such pattern
emerged in practice, and bandpass was judged
not to be a problem.

Breakdown of the theory will occur when the
initial approximation in Eq. (1) ceases to apply.
The error terms wil. l become appreciable when
the quadrupole broadening approximates the broad-
ening owing to other crystal Hamil. tonian mechan-
isms. This condition is assumed to exist when the
time required for the quadrupole modulation func-
tion Q(t) to decay to one-half is less than or equal
to the time t*, required for the pure-crystal FID
V(t) to reach its half height. Using Eq. (8), one
can solve for the maximum value of K that satis-
fies this condition, which is

The experimental value of t* is approximately 150
p, sec, implying values of 3.8, 1.9, and 0.58x1.0"
cm ' for "Ga, "Ga, and "As. These values are
consistent with the saturation values of p„shown
in Fig. 3. At least in part the poor agreement for
the high-damage investigations can be attributed
to a breakdown of the theory itself.

Microscopically the theory breaks down when
the field gradients owing to defects are large
enough so that the changes in energy-level spac-
ings from one nucleus to the nearest like nucleus
are larger than the width of the levels. Then most
of the mutual spin-flip terms of the dipolar broad-
ening are no longer secular, and the linewidth of
the separate transitions (i.e. , —,

' to —,', etc. ) de-
creases by about 1(Y/p.

' We have not generalized
the theory to eliminate the troublesome approxi-
mation of Eq. (1), and cannot draw any conclusions
with assurance, but it is hard to understand how
such a small change in V(t) can cause an apparent
decrease in K by a factor of 10.

If one ascribes the deviation between the charged
defect density and the Logan and Hurle calculation
at 700 C to the formation of singly charged As di-
vacancies, then this deviation can be explained if
the divacancy bonding energy is =1 eV. Both the
theory and the data must be improved to confirm
this speculation.

The Si-doped n-type sample EMC2 has both a
higher mobility and a higher etch pit density than
the original values for the Monsanto ingot. This
would indicate that many of the donors are trapped
along dislocations rather than being uniformly dis-
tributed throughout the bulk of the sample. This
effect couM explain the deviation between the mea-
sured defect concentration and the charge carrier
concentration for this crystal.

The lower limit of defect densities that can be
measured with confidence can be roughly placed

APPENDIX

In order to calculate the configuration average,
the frequency shift &e„of one nucleus owing to
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FIG. 3. Measured valUes of defect densities induced
by thermal quenching are compared with the chemical
thermodynamics calculation of HSS% (solid line). The
open circles are measurements based on 6~Ga resonance
data, solid circles on ~~Ga, and triangles on 5As.

by estimating that the modulation function Q(t)
must have reduced the FID by at least 2/0 at f*
in order to be detected. This corresponds to de-
fect densities on the order of 7&10" cm '.

The principal. purpose of this paper was the ver-
ification of the P" exponential dependence in the
FID introduced by the quadrupole effect. This has
been clearly established by the quality of the fits
between the FID and the theory. In fact the theory
continues to fit the shape of the curves well beyond
the defect densities where its approximations
break down.

As derived by Fedders, ' the FID will be modu-
lated, in general, by a term exp( —ct"") for field
gradients that fall off as r ". We investigated the
possibility of a x dipole-field-induced efg effect
by fitting an exp(-cf) dependence to our data.
The resulting fits took three parameters to equal
the two parameter performance of the exp(-Kt"2)
function, as measured by p . An attempt to fit the
data with an exp(- cP) function led to large g .
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AQ) =2 2COg

where

(A la)

&uo =A+ V, ,(3y;y, —5;,) (A lb)

and

one defec t must be found. For the firs t-order
(high Zeeman field) quadrupolar interaction, the
net shift of the satellite (~ to —,') transition is'

interest in the center. The sphere has a, radius
A =0.5 cm. Charge defects occur randomly
throughout the sample, with the closest approach

0

distance r0 = 2 A depending on which sublattice the
defect resides.

If the defects are randomly located and statist-
ica, lly independent, except that no two are per-
mitted to occupy the same site, the probability
P, of a given configuration of defects is given by
a product of single defect probabilities,

A = eQ/[4 I( 2I —1)J . (Alc) P, =(P (r, )d'r, ))P (r, )d r2 = [ (P (r„)d»r„,
The V, , a,re the components of the efg tensor, the

y, are the direction cosines of the Zeeman field
with respect to the crystal lattice, and Q is the
electric quadrupole moment of the spins I.

In the zinc-blende lattice, the efg tensor is in-
duced by the electric fields from charge defects
according to the rela. tion'

n= ].

where (P(r„)d'r„ is the probability of a defect occur-
ing in a volume element d'x„ located at position
r„, and N is the total number of defects. The
probability density (P(r„) is the same for each
r„, namely,

(P(r„) =1/V,
V~, ——-R Q &;,»E», (A2) where

where E~ is the k component of an unshielded
electric field from an effective point charge e*,
and 6...= 1 if the indices i, j, and k are all. dif-
ferent, and 0 otherwise. Substitution of Eq. (A2)
into Eqs. (Al) yields

V, = ,' nR' ——'4 vr „' = 3~ vR' [1 —(r„/R )' J (A7)

is the free volume in which one defect may occur.
Ordinarily the small excluded volume —,&&

could be ignored, but in the limit A, N- it con-
tributes an important correction.

Now the configuration average becomes
2A.Ae*

Q (3y~y, —5,,)6,,-»Q» (A3)

n= ].

where the Q, are the direction cosines of K at the
nucleus. Eq. (A3) can be simplified and rewritten
in the form

J~(f fQ)v)]'I d'v„

where

= n cos)J)/r (A4) where each integral is over the volume V0. Sub-
stitution of Q(t) from Eq. (6) gives

n =6AAe*I', (A5)

I' = (4 cos'8 —3 cos'8)'", (A6)

where 8 is the angle between H, and the [110] di-
rection.

To simplify the configuration average, the sam-
ple is assumed to be a sphere with the nucleus of

and )J) is an angle relating the efg tensor principal
axes to the direction of the electric field. This
angle wil. l be averaged over in the configuration
average so it need not be specified further. I' is
a function of the crystal orientation in the magne-
tic field

1 =2(r.'r'. +r r', +r',r,')'" .
In the case of interest, the crystal is rotated about
a [110] axis that is perpendicular to the Zeeman
field. Then

Q(t) =
Var

1

0
exp —i Ace„t d'r„

S n= ].

exp(-i&(u„t)d'r„. (A8)

Since the defects are randomly located, each of
the JV integrals in Eq. (A8) is identical and Q(t)
simplifies to

1
Q(t) =—„exp(-it»~t) d'r

~o V0
(A 9)

Substitution for &~ from Eq. (A4) and integrat-
ing over the angular portion gives

~a/a

~ 1/2
S

(A10)

where y, —=nt/r', is the maximum phase shift from



3616 CUEMAN, HESTKB, SHER, SOK37, AND LONE 12

resonance accumulated by a nucl. eus located at the
closest possible distance from a defect. Similarly,
@,=

—c/t/R is the maximum phase shift for a nucle-
us at the center of the sample owing to a defect
near the surface.

The quantity Q„ found from the parameters in
Eq. (A5), is a large number after a time on the
order of 1 p, sec. If one uses values of e and ro
appropriate for GaAs, one finds

remains constant:

p& =N/V=SN/47/Rs =const.

In that limit,

Q(t) = lim [1+G(Q,)4//r3/SN]" =exp[p~vG(p )],
l
= const

(A18)

where

$0=2n'(40MHz)t= 2.5x10't
@= 3' „~

4
(A17)

In contrast, Q, is a very small number through-
out the FID, since

q, /@, =r', /R' =10

for a sample with R =2 mm. Thus at the end of a
FIB lasting 1 msec,

$, =10 "go=10 "(2.5x10')10 '=2.5x10 '.
Integrating Eq. (A10) by parts and using the ap-

proximations sing, =g, and cosg, =1 yields

4'', Q "' Ssing, 2cosg 4

5y, 5 5

4g, sing~ 8Q',"

For very short times the Fresnel integral in

G(@)approaches the square root of its argument,
and other small angle approximations can be used
to show

G($0- 0) -const. —f' .

Thus for short times, Q(t) approaches a Gaussian
shape. However, the short time behavior is influ-
enced most by nuclei with nearby defects, so the
continuum average calculation is likely to be in-
accurate for this time domain.

At long times, the Fresnel i'ntegral approaches
a constant, and G(P, ) becomes

r~ Ssing, 2cosg, 4g, sing,

4y3/2(& &)l/2

5
(A18)

The last term in Eq. (A12) cari be replaced with
a form of the Fresnel integral

.

@
1/2

&(4,) = cos(y') dy (A13)

introducing a small error.
Substitution for Vo from Eq. (A7) and retaining

terms of O(l/R') or larger gives

8/Vo =1+G(p, )r„'/R'

where

r' 3 sing, 2 cosy, 4'~'y,'/2

8y',"5:(y,)
5

(A14)

Finally, Eq. (A9) becomes

Q(f) = [1+G(4,)r„/R'] (A15)

where E is the number of defects, typically on the
order of 10". To complete the calculation, let
N- ~ in such a manner that the defect density p„

The last term finally dominates Eq. (A18), giving
3/2

Q(g. ~) e Et- (A19)

where

r3 4(L&)1/8 & 3/2r„5 (A20)

Q(t) =i exp[-r';p„(re *eQR /k)"'

x (4cos'8 —Scos~8)~/4t'/'] .

For the case of GaAs, it was shown in Eq. (All)
that @, is large for times as short as 1 l/, sec,
very early in the FID. Experimental. limitations
caused by a large piezoelectric response from the
sampl. e make it necessary to begin analyzing the
data after t =20 psec, where $,= jx10'. Thus the
long time approximation is adequate for our data.
This simplifies the analysis of the data, but at the
price of loss of information about x, .

Combining Eqs. (A20), (A19), and (A17), we
conclude that the quadrupol. e modulation function
can M wri:tten
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