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Comprehensive approach to motion-induced nuclear-dipole spin-lattice relaxation in the rotating
reference frame*
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A comprehensive perturbation formalism is developed in order to relate the rotating-frame spin-lattice
relaxation time T, z to the relative motions of the nuclear spins in a crystal lattice. A general relaxation

equation valid in the entire temperature region is derived, from which both the strong-collision (so-called
Slichter-Ailion theory) and weak-collision theory (valid in the motionally narrowed temperature region) are
obtained as special cases. In the low-field transition region between the two theoretical approaches mentioned

above, i.e., in the temperature region where the low-field Tl~ minimum occurs, the relaxation properties are not
governed by internal motions alone (as it is true in the temperature region where the T&z minimum occurs in a
high rotating field), but the spin dynamics associated with processes of internal equilibrization of the spin

system play an important role. The results are illustrated by a random-walk mechanism of self-diffusion in

cubic crystals.

I. INTRODUCTION

Since the pioneering work of Bloembergen, Pur-
cell, and Pound (BPP) on the effect of internal mo-
tions in liquids on NMR, ' a great depth of under-
standing of the diffusion-induced relaxation proper-
ties of crystals has been achieved. The experi-
mental techniques and the accuracies in the mea-
surements of the spin-lattice relaxation time T,
in the laboratory frame and T„in the rotating
frame, and the spin-spin relaxation time T, have
been improved considerably during the last decade.
Also, the theoretical methods have been extended
to include point-defect mechanisms of self-diffu-
sion through their effects, e.g. , on (i) the temper-
ature, or field, dependences of the relaxation
times, or (ii) on the variation of T„T„and T„
as a function of the crystallographic orientation of
the strong constant external field KD.' '

For the investigation of slow atomic or molecular
motions in crystals spin-lattice relaxation is usual-
ly studied in the rotating frame, since there the
quasiconstant rotating field K, &&H, results in a
much slower Larmor precession of the spins and
hence in an extended inherent time scale (charac-
terized by &u, = yH, ) in terms of which internal mo-
tions may be analyzed.

The main theoretical methods for relating the
microscopic features of a given mechanism of mo-
tion to the macroscopic relaxation time T„are
the following two:

(i) If H, may be considered as large compared
to the local field Hi, in the rotating frame (typical-
ly several gauss) the time-dependent dipolar Ham-
iltonian R~(t) in the spin Hamiltonian

X,=Ri, +X~(f)

may be treated as a small perturbation inducing
transitions among the discrete levels of the Zee-
man Hamiltonian K~,. This method was first ap-
plied by Look and Lowe, ' starting from the Hebel-
Slichter equation. '

(ii) In a weak relaxation field H, =Hi, the con-
ventional perturbation approach fails. Slichter
and Ailion' (SA) suggested calculating directly the
change of the dipolar energy due to jumping. This
energy change is communicated to the Zeeman
Hamiltonian and thus to the magnetization of the
sample through a process called thermal mixing
of dipolar and Zeeman heat reservoirs, i.e. ,
through the establishment of a common spin tem-
perature in a time of the order of T„(thermal
mixing time).

One of the basic assumptions underlying the SA

approach is that between consecutive jumps this
spin temperature is established, i.e., that 7 &) T .
Here, 7' denotes the mean time of stay of an atom
at a given lattice site. The related temperature
region is called "strong- collision" or "low-tem-
perature" region. As the field H, is increased T
becomes very long because of the very different
spacings of the Zeeman and dipolar energy levels.
Therefore, the concept of a common spin temper-
ature breaks down (r«T ) and the related region is
called "weak- collision, " "motionally nar rowed, "
or "high- temperature" region.

Within the frameworks of either concept de-
scribed above, the so-called encounter model has
provided a deeper understanding of the effect of
correlated diffusion mechanisms on T„."An in-
teresting feature' is the result of an extrapolation
of T„obtained in the strong- collision region
(H, =Hi„v„«T„«r»„, with r„den tion tghe mean
time between consecutive jumps of a point defect
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and 7.
„MR accounting for the mean time between

consecutive encounters} to the weak-collision re-
gion (H, »H~, ): The two approaches yield identical
results. This suggests strongly that the two dif-
ferent physical concepts may be treated in terms
of a more general formalism which includes both
weak and strong collisions.

In the present paper a general perturbation meth-
od recently developed by Jacquinot and Goldman'
is applied to a modified rotating-frame spin Ham-
iltonian. The result wi11 be a general equation for
Ty& valid for the entire temperature and field range
including the transition region from the SA theory
to the weak- collision approach.

with the classical "lattice" functions

E', ', '=.r, ,'(1 —3 cos'8 . .)

E"'=x-'sing. cosg. e i~ijij ij ij ij
Z(2. ) =~-'sin2e. ~-»&i jij ij ij

(2.7)

A(I = 0u[-It I,. + z(I('It+I/I)],

where r„,8„, and &t),, denote the polar coordinates
of the vector r, j from spin i to spin j with respect
to the so-called magnetic coordinate system (with
its axis parallel to H,).'

The quantum-mechanical spin operators A',.qj' are
given by '

II. MOTION-INDUCED SPIN-LATTICE RELAXATION IN

THE ROTATING FRAME

A. Basic Hamiltonian

We consider a system of N interacting spins
with quantum number I and gyromagnetic ratio y
in a constant magnetic field Hp Hpt and an alter-
nating field H, =H, (x cos&dt +y sin&ot). In'the labora-
tory frame the Hamiltonian of the spin system is
given by (in units of 8)

A (2 ) (yI+I+ij 2 i j

with

3 2Q = —
~p

y (~) -y (q) 4
ij ij

A(-q) -A(q)tij ij y

y (q) -y (q)ij ' ji

A (q) -A (q)ij ji

(2.8)

(2.9)

R&~ =
&do +II + (t)i cos&dt+Iiz

+ 0&i sin(dt +II,+$C„(t), (2 1)

II(t) — i&@I t (2.2)

where (00 =yH0 and &oi =yH, . X~(t) denotes the Ham-
iltonian associated with the time-dependent dipolar
couplings among the spins.

The transformation of Eq. (2.1) into the coordi-
nate system rotating with frequency ur around the
direction of Ho (rotating frame) is provided by the
unitary operator

The dipolar Hamiltonian [Eq. (2.6)] may be re-
written as4

(2.10)X„(t)= X&0&(t) +X&"&(t),

where Xz&0&(t) includes the secular parts of K„(t)
[terms q = 0 in Eq. (2.6}]while Kz&" &(t) denotes the
nonsecular contributions (terms &I 0 0).

If the frequency of the alternating field H, is
close to resonance, i.e., if 4= ~p —co&&~, the ef-
fect of the nonsecular terms in Eq. (2.10) on the
Zeeman Hamiltonian in the rotating frame may be
neglected, and we may replace Kz, (t) in Eq. (2.4)
by

with

(2 8)

~(0)(t) —SitzI t~&0)(t)e- ttzIzt ~(0)(t)

with (see above)

~&0&(t) g g ~(0)(t)A(0)1

(2.11)

(2.12)

3C, =b,I,+ (d,I,+X„,(t), (2.4)

From a transformation of the Schrodinger equation
into the rotating frame we obtain for the Hamil-
tonian X, in the rotating frame For similar reasons the local field H~, in the ro-

taing frame is governed by the secular terms only,
and we have'4

with 6= cop —co and H~, =Ho Tr(SCz"' )/Tr(R~) . (2.13)

(t) C ituIzt~ (t)~-i(ulzt (2.6)

The dipolar Hamiltonian may be written in the well-
known semiclassical form' Xz ~pI (2.14)

X~ denotes the Zeeman Hamiltonian in the laborato-
ry frame

X,(t) =- g g P S &;.&(t)A',.;.',
. j q=-2

(2.6)
Thus we can write for the rotating-frame Hamil-
tonian [Eq. (2.4)]
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K = t&.I, + (u&I„+X~+)(t) . (2.15) density matrix 0* in the rotating frame is given by

The Hamiltonian (2.15) may be used to calculate
the relaxation behavior of the spin system in the
high-field region (H, )&H~,) by considering X~(o)(t)

as a small perturbation on the Zeeman term
4I, + u,I„. In the low-field region, however, this
method breaks down. Therefore, Eq. (2.15) is
modified in the following way:

+ & I +K(o)rl+K((&)(t) K(o)rl
p z 1 x d d d (2.16)

where Xd"'"' denotes the secular dipolar Hamilton-
ian 'Kd"' in a rigid lattice, i.e. , in the absence of
diffusion or molecular rotations. The idea under-
lying Eq. (2.16) is to treat the deviation of
K~"){t)from its rigid-lattice value X~")"' as a per-
turbation on the time-independent part, which now
includes the rigid- lattice dipolar Hamiltonian.
Since the perturbation X~o'(t) —X„'o'"' will be small-
er than X,"'"' (especially when the relaxation
process is caused by a few atomic or molecular
jumps only) even in zero field H, the perturbation
treatment should hold.

Thus, summarizing the considerations of this
section, we rewrite Eq. (2.16) as follows:

@*=1 —PXop (2.22)

with p= I/'p(). Similarly, the thermal equilibrium
density matrix 0~ may be written as

vz = 1 —PzX0, , (2.23)

where P~ is related to the "lattice" temperature
e~ by Pi=I/kei.

Inserting Eqs. (2.22) and (2.23) into Eq. (2.20)
we obtain

dt (Q) = (P Pl)-»{([Q,X„(t)][K„(t'),K„]),.}(tt .

=-—Tr(X )
d 2

dt (2.25)

(2.24)

For the calculation of spin-lattice relaxation we
have to choose Q =X„. With Eq. (2.22) we obtain
for the rate of change of the expectation value of
Ko ~

d do*—gc„& = rr —„3c,)

X,=X„+X„(t),
with

(2.17) since K„ is traceless. Inserting Eq. (2.25) into
Eq. (2.24) we obtain the relaxation equation'

K =4I +e I +K"'"'
Op z 1 x d (2.18) dP 1

dt (2.26)

K (t) K(o)(t) K(o)r) (2.19)
with

B. Application of the Jacquinot-Goldman method

Recently Jacquinot and Goldman' have suggested
a method to calculate the time evolution of the
density operator of a spin system which may be
described by a Hamiltonian of the type of Eq.
(2.17) in the rotating frame. For an operator Q
which is a quasiconstant of the spin system in the
rotating frame they derived the following master
equation:

—(Q)
d
dt

l Tr(([Q, X„(t)][K„(t'),o* oz]),,}(ft, (2.20)

where (Q) denotes the expectation value of Q, i.e. ,
(Q) = Tr(oQ), and the brackets ( ),. account for an
average over the time t . Here, the interaction
representation of K„(t) has been introduced by

X„(t)=e' Or'K„(t)e '~&»' (2.21)

1 1
T„Tr{X'„)

Tr(([K„,X„(t)][K„(t'),X„]),,}et .

(2.27)

As pointed out above, Eq. (2.27) was derived under
the assumptions that a spin temperature exists in
the rotating frame and that the high-temperature
approximation may be applied to the spin system.
The assumptions leading to our starting equation
(2.20) may be found explicitly in the appendix of
Jacquinot and Goldman's paper. '

In the following Eq. (2.27) will be applied to the
Hamiltonian introduced in the preceding section
[Eqs. (2.17) to (2.19)].

With our spin-lattice interaction K„(t) [Eq.
(2.19)] and the secular part of the dipolar interac-
tion [Eqs. (2.11) and (2.6)] we obtain for the inter-
action representation X„(t)defined by Eq. (2.21)

If the field H, is large enough to saturate the lab-
oratory frame resonance we may assume that a
spin temperature e exists in the rotating frame.
Then „ in the high-temperature approximation, the

(t) — g g [F((&)(t) F(0&rig(0)(t)

where

(2.28)
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A (0)(t) —ei X00(A (0 &e iX00( (2.29)ij ' ij
and E',.',.'"' denotes the geometrical part of X~"' in a
rigid lattice. Since in our semiclassical approxi-
mation the lattice operators in (2.28) are con-
sidered as classical statistical functions, the trace
over lattice operators in the Jaequinot-Goldman
master equation has been replaced by a time
average as indicated by the brackets ( ),, in Eq.
(2.20). If we insert Eq. (2.28) into Eq. (2.27) and
define a correlation function K,.&(t) by

dg„(t)
Qt

x Tr([R„,A(', )(t)]AI', &}, (2.38)

Integrating Eq. (2.36) by parts and applying the
commutator relationship

Tr(A[B, C]) = Tr([A, B]C)= Tr([C,A]B), (2.37)

which holds for arbitrary operators A, B, and C,
we obtain

K„(t)

([y (0)(t) y (0&rl][y (0&(td) y (0)rl]) (2.30)

where

A"'(0) =A"'ij ij (2.39)

we obtain for the relaxation rate

1 1
T„2T (X ')~ ~

(2.31)

In the derivation of Eq. (2.31) it was assumed
that the correlation functions C,,,(t) associated
with the correlated motions of three spins i, j,
and k are negligible compared to the pair corre-
lation functions K,,(t). This assumption should
hold well in monatomic crystals, but not neces-
sarily in molecular crystals where groups of atoms
can move in a highly correlated manner.

The character of the correlation function K„(t).
becomes more apparent if we transform the time
scale according to t —t =t„ from which we obtain

(2.32)

1 1 C&g (0)T„2T.(X„)Z Z
"d2

d,"Tr(d, l'(t)A;, ]dt)
0

(2.41)

where the relationship

has been inserted [see Eq. (2.29)], and the assump-
tion

(2.40)

has been made. It is seen from Eq. (2.38) that the
function II"„'.does not contribute to the relaxation
process.

Equation (2.38) may be simplified further by
another use of Eq. (2.35) and subsequent integra-
tion by parts, from which we finally have

O
dt

(2.42)

and

(2.33)

—t —A I", (t) = [X„,A I", (t)], (2,35)

we find

Brl — (~(0)(t + td)) p(0)rlij ij 1 t' ij

(y (0)(td)) y (0)rl + (y (0)rl)2 (2.34)

Assuming that the value of (E,.0,.)(t, +t )),, is inde-
pendent of t, (invariance under transformations of
the origin of the time scale) we see that SPl is in-
dependent of time, while Eq. (2.33) is the definition
of a classical pair correlation function.

Substituting Eq. (2.32) into Eq. (2.31) and using
the equation of motion of A',.0'(t) [see Eq. (2.29)],

was assumed to hold.
Before we proceed further, the operators

A, l0 (t) are analyzed in more detail.

C. Relaxation in the doubly rotating frame (arbitrary distance

from resonance)

According to Eqs. (2.29) and (2.18) the time de-
pendence of the operators

4( 0) (t) ei((& td+ (d&t„+20&
" ) t

ig

&+( 0) -~ &.~ r, + f,r„+X„(o) rr
(2.43)

is due to (i) the transformation of A(;0l& into the so-
called doubly rotating frame, i.e. , the frame ro-
tating with frequency ~,«around the effective field

ff 0 ff g given by

H, (( = (FI0 —(0/y)Z + Ff, X

= (0&.(( &r) (2.44a.)

(2.36) (2.44b)



3600 DIETER WOLF AND PETER JUNG

and (ii) the operator involving the rigid-lattice
dipolar Hamiltonian. Since the two transformations
do not commute, the exact evaluation of Eq. (2.43)
is very difficult. A(;o) (t) as given by Eq. (2.43)
may be simplified, however, by realizing that for
t=0

A( o) (0) A(o) (2.45)

and that the time variation of A(oi)(t) is governed by
the two processes discussed above. Therefore,
we rewrite Eq. (2.43) as follows:

A(io)(t) —e~& i [ei &U ffziz tA(o)e i eff Iz tf($6(o) QI + (z& I t)]e iz"t),40) r t .„gp) r1
(2.46)

cosa 0 sin3 I„

I,, = o l 0 I, .

-sing 0 cosg

(2.47)

Using Eq. (2.47) and the results of Douglass and
Jones, "we can write for A',', (t), inste. a. d of Eq.
(2.46),

where the function f(t) accounts for the fact that
the two transformations do not commute, and I, .
denotes the z' component of I in the doubly rotating
frame Si.nce for t =0 Eq. (2.45) must hold, we
find that f (t =0) must be unity.

If we characterize the orientation of the doubly
rotating frame with respect to the rotating frame
by the angle 6 between z (parallel to Ho) and z'
(for 6 = —

2&( the z' axis is parallel to the x axis of
the rotating frame), the doubly rotating frame
transformation entering Eq. (2.46) is easily car-
ried out explicitly by transforming the individual
spin operators according to

have been defined by [see Eq. (2.46)]

A(p)'(t) —equi "'tA(p)'

&&f(K,' ",t&.I, +(d, I„,t)e '
p (2.49)

and

a ' = ——,sing cos3,
a = ——'sin 8,2

(2.50)

=0 ' (0 =+co (2.51)

Inserting Eq. (2.49) into Eq. (2.41) and taking into
account that

A(')(0) -=A'."= ~ ( &A(.') (2.52)

The prime indicates the representation of A~~&~ in
the doubly rotating frame, i.e. , I (o. =x, y, z) has
to be replaced by I' in A~;~~.

According to Douglass and Jones' the coeffi-
cients a~~~ are given by

a(o) =-,'(1 —3 cos'6),

A(o)(t) g (p)A(pj'(t) i(u p t (2.48) [see Eqs. (2.45) and (2.49)], we find for the re-
laxation rate

where the operators A(P (t) entering Eq. (2.48)

(A(o) )
Aii( ) ~ ~ (P) (z) d gii& T [A(P)tt)A(z)']

Op P=-2 a=-2
(2.53)

The remaining problem is the calculation of the time-dependent trace over the correlation function of spin
operators under the integral in Eq. (2.53). Using the independence of the trace operation of representation
and inserting the definition (2.49) we may rewrite this correlation function as follows:

Tr[Api (t)A,'i ] =Tr[Api(t)Azi]=Tr[e 4~ 'Ap f(K " tpI, +o&,I„,t)e '+a 'A'i]. (2.54)

The calculation of this trace involves the solution of the equation of motion of AiP,'(t), namely [see Eq.
(2.49)],

d
A(p)(t) [~(o)z& A(p)(t)] i im& tA(p) a e &oo& t-., Jp)rr gf . (o) rt

(2.55)

which is a difficult task since it requires the
knowledge of the dynamical properties of the spin
system. The problem has some resemblence with
the "classical" line-shape problem in a rigid lat-

tice, and one might try a moment type of expansion
of Eq. (2.54).' Another possible, perhaps more
promising, way might be the application of ortho-
gonal-operator methods which lead to the so-called
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memory-function approach. "'
In this paper, however, we do not attempt to

solve Eqs. (2.54) and (2.55). Instead, we will show
below that the short-time and long-time behavior of
Eq. (2.54) will give us the special cases of weak
and strong collisions, respectively, and that the
intermediate region which covers the range where
the low-field T,p

minimum occurs (v= T ) is sen-
sitive to the specific decay properties of the cor-
relation function (2.54).

As we see from Eq. (2.54), the time variation of
our spin correlation function is governed by rigid-
lattice dipolar spin operators and their transfor-
mation properties with respect to the doubly rota-
ting frame and it should therefore describe pro-
cesses of internal equilibrization of the spin system
in this frame. Since both secular (P, q =0) and

nonsecular dipolar operators (P, qWO) are time
dependent, Eq. (2.54) should describe the establish-
ment of a dipolar spin temperature as well as
thermal mixing, and the correlation function should

decay to zero as the nuclear-spin system achieves
a state of internal equilibrium. Therefore, we

make the following simPlifying assumption:

Tr[A ~j'(t)A,",] =Tr[A ~'A'j]e ' (2.56)

T [A', ,'. (O)A'. ] = T (A",,'A';,') (2.57)

which is in agreement with results derived above
[see, e.g. , Eqs. (2.45) and (2.54)]. For long times
(f»T2') Eq. (2.56) assures the decay of the corre-
lation function to zero for the intuitive reasons
given above. This decay to zero establishes the
main assumption imposed on the theory developed
in this paper. We believe, however, Eq. (2.56)
to be qualitatively correct for all times t even
though the details of the decay of the trace to zero
might be more complicated than simply exponen-
tial, and also, the terms q =0 might have to be
characterized by a decay time 7;"' different from
the decay time T of the nonsecular terms (see
also Sec. IV).

Substituting now Eq. (2.56) into Eq. (2.41) we
obtain for the relaxation rate

where T,"' denotes the rigid-lattice spin-spin re-
laxation time which is a rough measure of the time
required for the spin system to achieve internal
equilibrium in the rotating frame. (For H, =H~&
we have T,"' =T, the time required for thermal
mixing of dipolar and Zeeman heat reservoirs. '

For short times (t=0) Eq. (2.56) predicts

+2 +2 "d
(P) (0) T f A(y)A(qh g(g (f) (1/T~ ( fd(P )t df

p Qt
P=-2 q=-2

(2.58)

Equation (2.58) is valid for arbitrary distance b,

Q)p + from resonance. In the following section
we will limit ourselves to the case of exact reso-

Tr (A(2&A~ -2&) —Tr (A(-3 I ~(+ &&)ij i) ij ij
= ~'h'[I(i+ I))'(»+ I)", (2.60c)

nance.

D. Relaxation at exact resonance

Tr(SF„)= ,'Vy2I(I+1)—
x (H', +H'„)(2I+1)". (2.60d)

a'" =-' a""=02p
a'"' = —-'

2 p

(2.59)

At exact resonance we have 6 =0 and g = —,'g, and
from Eqs. (2.50) and (2.51) we obtain

Since these traces are independent of the individual

spin pair j-j considered we may incorporate the
summations over i and j in Eq. (2.58) into the cor-
relation function G(t) defined by

(2.61)
Q) =0 (d =+ (d (d =6 2'

The remaining traces in Eq. (2.58) are easily
evaluated to be

Tr(A, , ) =-y h [I(I+1)] (2I+1)", (2.60a)

Tr(A "
) =Tr(A " ) =Tr(A" A."')=0, (2.60b)

Inserting Eqs. (2.59)-(2.61) into Eq. (2.58) we ob-
tain the following relationship for the spin-lattice
relaxation rate at exact resonance:

1 y OI(I+1) 1 dG 1',t" d G(i), I~& 3 ("d G(t) (~I~& 2;~)gd
Tj p

(2.62)



3602 DIETER WOLF AND PETER JUNG 12

where Re denotes the real part. Integrating Eq. (2.62) by parts yields

1 y'O'I(I+1) 1 ""dG(t),Ir t 3 1 . "dG(t) (,Ir, & „~), (2.63)

So far, no specific assumptions concerning the
form of the correlation function G(t) have been
made except Eqs. (2.40) and (2.42). Therefore
Eqs. (2.62) and (2.63) are valid for any mechanism
that causes relative motions of the nuclei like,
e.g. , self-diffusion or molecular reorientation.

III. STRONG VERSUS WEAK COLLISIONS

Without limiting ourselves to either weak or
strong collisions, in the preceding section we have
reformulated the problem of the calculation of
spin-lattice relaxation in the rotating frame due to
an arbitrary mechanism of internal motions in crys-
tals.

The main result found there is that the relaxation
rate T,p may be expressed in terms of theo time
constants related to the nuclear-spin system:

(i) The correlation time z, entering through the
"lattice correlation function" G(t) describes the
time modulation of the dipolar interactions by in-

ternal motions. 7, is related to the time 7 between
consecutive jumps or reorientations of a molecule
(see Sec. V).

(ii) The spin-spin relaxation time in the absence
of internal motions T,"' and the thermal mixing
time T determine the decay properties of the
"spin correlation functions" of dipolar operators
between nuclear jumps [Eq. (2.56)], by which the
regions of weak and strong collisions are con-
ne.cted.

In the following we will investigate how the rela-
tive magnitude of v, with respect to T,"'= T de-
termines the relaxation behavior in the two extreme
regions.

A. Strong collisions

For T, » T,"' an internal equilibrium is estab-
lished before the correlation function G($) can
change due to relative motions of the nuclei.
Therefore, Eq. (2.63) yields

1 yhI(I+1) 1 dG "
& ~& 3 1 . dGe ' 2 dt- —Re „,-2ico, (3.1)

The integrals in Eq. (3.1) are easily evaluated,
and we have

1 1y II I(I+ 1) dG

Tlp 4 H21+H2Lp dt t=o' (3.2)

Here

which is our result in the strong-collisions region
for exact resonance. The equivalence of Eq. (3.2)
with the basic relationships of the Slichter-Ailion
theory is seen by replacing (dG/dt), 0 by

= +fan;, (0)I'

is proportional to the average energy of a spin,
E„' before a "collision, " while

(3.6)

dG G(O) —G(T.)
dt, o

(3.3) G(~,) = gF; (0)&; (r.) (3.7)

where we have used the fact that on the average
G(i) changes during any time interval r, just once
(this is actually the definition of the correlation
time 7,). From Eqs. (2.13) and (2.60a) the local
field is found to be' H~io & ~„'-Z

2
Tgp Hg +Hip 7 g Eg

(3 8)

is proportional to the average energy E~ after a
"collision. '"' Thus, we can rewrite Eq. (3.5) as
follows:

(3.4)a' = n'y(I+1I)g(F!-[',1

which, inserted together with Eq. (3.3) into Eq.
(3.2), yields

or

a,'. 1-p
2 2

T~ p H~ +Hip
(3.9)

a',. G(0) —G(r, )
Z „a',+a'„G(0)r, (3.5)

with

P =E'/E,
, (3.10)
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which is the mell-known result of Slichter and
Ailion. 7

Actually, as pointed out recently, ' Eqs. (3.8)-
(3.10) are not valid when correlation effects in the
relative motions of the nuclei have to be taken
into account (like, e.g. , when a spin temperature
is established between consecutive encounters with
a point defect, but not between consecutive jz~pz
of the point defect). The correlation time r, then
depends on the relative vector from spin i to j,
and hence, v, =v, (i,j) differs for different spin
pairs. Equation (3.2) derived above nevertheless
holds for an arbitrary type of motion in the strong-
collision region. We only have to modify Eq. (3.3)
similar to the following, using the definition of
G(t) [Eq (2 61)]:

dG 1 dg]q t

t j

1 y fl,'I(1+1) 1
T„H', +H'„16T,"'

"dG(t)
dt e

3i(o, "dG(t)
p

(3.14)

0
(3.15)

Introducing the spectral density functions 8~"(v)
of the correlation function G~"(t) in the standard
way by

(3.16)

Neglecting the first term in Eq. (3.14) [proportion-
al to G(0)/T", '] and integrating the second term by
parts, we obtain

1 3 y h l(1 + 1)
TJp 4 Hg+Hgp

1 ~ ~ g;~(0) -g;, (v, ) (3.11) and remembering that G(t) -=G~'="(t) [see Eqs.
(2.33) and (2.61)], we may rewrite Eq. (3.15) as
follows:

From Eq. (3.11) it is easily verified that in the
general case we obtain, instead of Eq. (3.8),

1 II'„1 1

T,p II~+H~p NF.d

&& g g{[E„(i,j) —E~ (i, j)]/w (i,j)), (3.12)

B. Weak collisions

For v, «7',"' the internal equilibration of the spin
system is very slow, and the function e ' 3 in
Eq. (2.63) remains practically unchanged while the
correlation function G(t) and also its first deriva-
tive undergo their major variation with time (dur-
ing a time interval of the order of several r, ).
Therefore, we may take

e-'~ra
( (3.13)

out of the integrals in Eq. (2.63), and we obtain

where E~(i, j) denotes the dipolar-energy contribu-
tion from the spin-pair i-j before a collision (i.e. ,
an encounter, in the general case), and Ef(i, j) is
defined similarly. Equation (3.12) reduces to the
Slichter-Ailion result [Eq. (3.8)] if r, does not de-
pend on the particular spin pair, i.e. , when corre-
lations of successive jumps of atoms or point de-
fects do not effect the relaxation behavior (like,
e.g. , in the case where a spin temperature is
established between consecutive jumps of the point
defect).

1 3 y'e'1(f + 1)-
T,p

8

H
H2 +H2

Equation (3.17) may be rewritten in an alternative
way by introducing the local field in the rotating
frame from Eqs. (2. 13) and (3.4), thus exhibiting
more clearly the field dependence of Typ.

.

(3.17)

(3.18)

Equations (3.17) and (3.18), respectively, repre-
sent our result in the weak-collision region. Ex-
trapolating Eq. (3.17) to the high-field case
(H', »Pz) we obtain

1 3 4 2y'O'I(I + 1)P '"—(2 (u,),T,p
8

(3.19)

which is the well-known result derived by Look
and Lowe' for exact resonance by applying the
Hebel-Slichter equation. ' [The reason why we did
not obtain the nonsecular terms related to fre-
quencies co, and 2e, is the truncation of the rota-
ting-frame dipolar Hamiltonian (see Sec. II A),
neglecting the nonsecular terms. ]

Two interesting results concerning the field de-
pendence of T, ' at temperatures above (v,v, « I)
and below the T,q

minimum (v,w, » 1) are included
in Eqs. (3.17) and (3.18). They will be discussed
in Secs. III 8 1 and GI B2.
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1. Field dependence at temperatures below the T, minimum

For g~,z, »1 the correlation functions describing
microscopic atomic or molecular motions predict
the following form of 8 ' (&s):

8 "(u)) = c,/uPp, , (3.20)

where c, denotes a constant depending on the mi-
croscopic characteristics of the mechanism which
modulates the dipolar interactions. Inserting Eq.
(3.20) into Eq. (3.18) we find (for &u = &a, =yH, )

(3.21)

i.e. , in the weak-collision region we expect a
Slichter-Ailion type of field dependence for
cL)y7» 1. It is to be noted, however, that in a low
relaxation field(H, -Hz~) T, ~ accepts its minimum
value at about w, = T,"', so that the condition

» 1 is equivalent with the strong-collision as-
sumption r, » T",', and hence Eq. (3.21) does not
hold in weak fields, and the strong-collision re-
sult [Eq. (3.12)j applies instead. (The difference
between Eqs. (3.21) and (3.12) lies only in the con-
stant prefactors of the term H~~~/[(H&+H~~)7, ].j As
H, is increased, however, the T„minimum is
shifted into the weak-collision region and Eq.
(3.21) applies under the condition H', »H2~, from
which we obtain the related Look and Lowe formula
for u&,r, » 1 [see Eqs. (3.19) and (3.20)]. This is in
agreement with the fact observed earlier' that the
result of a proper extrapolation" of the strong-
collision result to high fields yields a relationship
which is identical with the high-field weak-collision
predictions.

Xop =yH, I, +K (3.26)

since when many jumps occur during the relaxation
process K',"(t) may become much smaller than
X,' "' so that 3C, (t) may increase towards 3Cl~""'

while $C„remains unaffected. On the other side,
our calculations are based upon the assumption
that H, is strong enough to saturate the resonance
line (see Sec. IIB), so that in Eq. (3.26) there will
always be at least a small Zeeman term.

(ii) The assumption of a spin temperature in the
rotating frame [see Sec. II B, Eq. (2.22)] implies
in the high-temperature approximation that

d dP
dt o~ df op
—(3C ) =-—Tr(3C' )

(3.24)

It is easily verified from Eq. (3.24) that for
H y» Hg the relaxation time T, z be comes indepen-
dent of H, in agreement with the prediction of I ook
and Lowe' [see Eqs. (3.19) and (3.22)j. For small
values of the H„however, a rather strong field
dependence is expected (T,~'-H', ).

To our knowledge, this effect has never been
observed experimentally. For the reasons given
below we are somewhat doubtful about the applica-
bility of our weak-collision result (3.18) to low re-
laxation fields:

(i) The perturbation [see Eq. (2.19)]

(3.25)

might not be much smaller than the unperturbed
Hamiltonian at exact resonance [see Eq. (2.18) with
g =0]

&i&io
2 ~~ (F(o&j2H2+H2 (3.23)

i.e. , a field dependence of Typ on the high-tempera-
ture side of the T» minimum is predicted. The
character of this effect is exhibited more clearly
by rewriting Eq. (3.23) as follows:

2. Field dependence at temperatures above the T, minimum

The condition &&&r, «1 imposed on Eqs. (3.17)
and (3.18) implies that even in a low field (H, ~ Hzz)
we are at the h lgh te mpe rature s ide of the T y p
minimum.

Similarly to Eq. (3.20) we may write for the spec-
tral density function in this temperature region

8 "((u) =c,7, , (3.22)

where c, is another constant depending on the mi-
croscopic features of the internal motions. Insert-
ing Eq. (3.22) into Eq. (3.18) we obtain the inter-
esting relationship

(3.27)

As a consequence of Eq. (3.27) the total spin-lattice
relaxation rate T, ~

consits of a weighted average
of the related partial relaxation rates, which re-
sults in the field dependence of Typ The assump-
tion of a spin temperature for both 3C~ and K„""'
might not hold anymore in the motionally narrowed
region, although no motion-dependent parameters
enter into these two constants of the motion.

Despite the two arguments given above the validi-
ty range of Eqs. (3.17) and (3.18) is not quite clear.
Systematic experimental investigations in the cor-
responding field and temperature region are de-
sirable to clarify the arguments involved.

IV. INTERMEDIATE REGION

It is well-known that for P, «H~~ the relaxation
time 7',

~ passes through its minimum at tempera-
tures for which r, = T2' (see also Sec. III). Without
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using a specific correlation function G(t) the solu-
tion of Eqs. (2.62) and (2.63) is not possible in this
temperature region, where neither of the condi-
tions 7,» T",' and v.,«T," holds. Nevertheless,
some of the qualitative features of this low-field
7', minimum may be understood along the follow-
ing lines.

I.et us go back to Sec. IIC where the spin corre-
lation function (2.54) was simplified by the phe-
nomenological assumption (2.56). Reformulating
this assumption in a more general fashion, we
mrite

between Zeeman and dipolar thermal reservoirs].
The initial conditions imposed on k(~'(t) are ob-
tained by comparing Eqs. (4.1) and (2.54). They
are

k(e,q)(P) —1

We assume k'~ "(t) to be normalized, so that

(4.2)

(4.3)

and that k(' ')(t) decays to zero as t goes to infinity,
l.e. ,

Tr[A(,.~,'. (t)A(,", ] = Tr(A(,~,'A~,", )k(~ "(f), (4.1) k() .e)( ) —P (4 4)

where the "reduced" spin correlation function
k(~ "(f) may be qualitatively different for different
values of q and P [i.e. , the decay of k(''(t) may be
characterized, e.g. , by the establishment of a
dipolar spin temperature, while the terms k(~ '(f)
for P, qc0 may describe, e.g. , thermal mixing

where T~~ denotes a time constant characterizing
the establishment of internal spin equilibrium
(e.g. , T(o T,"'-, T,'„" .T) b-etween jumps.

Inserting Eq. (4.1) into Eq. (2.53) we arrive at a
relationship similar to Eq. (2.62):

(4.5)

where it was assumed that k ' ~'(t) is equal to k( ~ "(I) From E. q. (4.5) the relationships (3.2) and (3.17)
deduced in Sec. III for the extreme cases of strong collisions and weak collisions, respectively, may be
obtained without specifying the functions k ~ "(f) in more detail than by Eqs. (4.2)-(4.4).

Thus, we obtain under the strong-collision assumption that k(~' (t) decays much faster than the lattice
correlation function G(t)

1 y'If'I(i +1) dG d'G "[ (0 o)(f) 3k(, ,)(f) „~ g]df
Tip +x++Lp 4 dt t=o 16 dt t=o 0

(4.6)

and under the weak-collision assumption that G(t) decays much faster than any of the reduced spin corre-
lation functions k(~'(I)

1 y AI(I+1) 1 dG 1

T, p Hi+Hip 4 dt, o 16

d2
dt —-'k('' "(P)Re 2't t(I) t2e ~ dt (4.7)

With Eqs. (4.2)-(4.4) it is easily confirmed that
the above relationships reproduce the general re-
sults found in Sec. III, namely, that the relaxation
rate in the weak-collision region is characterized
by the Fourier transform of G(t), and the short-
time behavior of k(~ ')(t) [Eq. (4.2)], while in the
strong-collision region the relaxation process is
governed by the first time derivative of G(t) and
the integral decay properties of k~ "(f) [Eq. (4.3)].

It is interesting to note that in these two extreme
cases the explicit time variation of the spin corre-
lation function does not enter at all. Therefore,
spin-lattice relaxation (orientation dependence of
T y p

shape and width of the high-f iel d T,p
minimum

as a function of temperature, etc. ) is governed by
the internal motions alone.

In the low-field intermediate region, i.e. , if

G(t) and k~' (f) decay about equally fast, the ob-
servable relaxation phenomena are a product of
both internal motions and spin dynamics. This is
demonstrated by the third term on the right-hand
side of Eq. (4.5), which indicates that the low-field
Ty p

minimum is properly des cribed by the Four ier
transform of the product of lattice and spin corre-
lation function.

V. APPLICATION TO RANDOM-WALK SELF-DIFFUSION

So far in this paper the conclusions arrived at
mere valid for an arbitrary mechanism of internal.
movements which modulate the dipolar interactions
between the nuclear spins in a crystal lattice con-
taining one sort of spin only. In the following we

apply the results of Secs. II-IV to the simple case
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of self-diffusion by the uncorrelated random mo-
tions of the nuclei. Although in many cases this
mechanism is somewhat unrealistic in its descrip-
tion of the relative motions of the nuclei in cry-
stals, ' it will demonstrate all the important fea-
tures pointed out in rather general terms in the
preceding sections.

G(t) =e c Q—sI 7,S=O

(5.1)

where s denotes the number of random jumps of
an atom, and j3, corresponds to the lattice sums

a, = F~~ r& W, r&, r* Z',-J' r&+r* .
r

(5.2)

A. General relationships

The correlation function G(t) for random-walk
diffusion in a crystal lattice was first calculated
by Torrey. " Recently, this approach was gen-
eralized by Wolf" in a way that lends itself to the
application to point-defect diffusion mechanisms. '
The main result found there" is that G(t) has the
following form:

1
T c 2 7 p (5.3)

since the dipolar interaction between a randomly
migrating pair of spins changes whenever either
one of the two spins jumps.

Since we plan to treat the low-field T, minimum
as well as the extreme cases (see Sec. IV) we have
to select a specific spin-operator correlation func-
tion k~ "(t). Like in Sec. II [Eq. (2.56)] we choose
the same simple exponential decay function for all
values of P and q, i.e. , we insert

Here, r/0 denotes the vector from spin i (assumed
to be located at the origin) to spin j before a. jump,
while W, (r&, r*) denotes the probability that the
xelafive displacement vector after s jumps of the
two spins is equal to r*. The factors j9, have been
computed numerically for s =0 to s =20 for an arbi-
trary orientation of the strong constant external
fiel.d Ho, and it was shown" that the sum over s in
Eq. (5.1) converges fairly well so that it suffices
to include the first 20 terms only.

The correlation time z, is related to the mean
time z of stay of an atom at a given lattice site
by 14,15

k (si s)(t) —e s/ T"i-
(5.4)

into Eq. (4.5), from which we obtain Eq. (2.62):

1 1dG 1 "d2G -tr l-- -=C -- ——,e ' "'dq- „Re
71p - 4 d~ t 0 16 0

~A2m
-(1/r2rr -2& ~,)t d2 (5.5)

y'h f(t +1)
H1 +Hi p

From Eq. (5.1) the first two time derivatives of G(t) are readily calculated:

(5.6)

(5.7)

(5.8)

Inserting Eqs. (5.7) and (5.8) into Eq. (5.5) and defining an "effective" correlation time 7 „according to

1 1 1
+ r1jeff ~C ~2

we see that the integral may be easily evaluated and we arrive at the relationship

1 B, —R, (y —1)'",, &
" 4x' —(y —1)' 4x(y —1)

T,
C

4 w 16m
Hs y +

16r Its s hs(2X) + s ls(2 )
1p — c G S=2 C S—

(5.9)

———[8, —B,(2 —y)] ———B,h, (2x) +——'[2h, (2x) —h, (2x)]
C C C

(,5. 10)
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Here, the following abbreviations have been intro-
duced:

reff/f e r x ~l~eff r

y" '/(I- tx)"' =h, (x) +t I,(x),

(5.11)

(5.12)

and the following recursion formulas which are
easily derived from the definition (5.12) have been
used:

h, ,(x) = (I/y)h, (x) + (x/y) f,(x),

l, ,(x) = (1/y) l, (x) —(x/y)h, (x) .

(5.13)

(5.14)

eff= 2 r y= 2 e lr x=fdfT2 ~ (5.15)

Equation (5.10) relates T, ' in the entire tempera-
ture region to the quantities v, and B, charac-
terizing the diffusion mechanism, and to T,"' char-
acterizing (in our rough approximation) the spin
dynamics. In the following we will discuss Eq.
(5.10) in some detail.

B. Strong -collision approach for random -walk diffusion

For w, » T,"' it is found from Eqs. (5.9} and (5.11)
that

C. Weak-collision approach for random-walk diffusion

For v, «T,"' the following relationships are de-
rived from Eqs. (5.9) and (5.11):

~elf ~C& ~ & 1 C

which, inserted into Eq. (5.10), yield

1 3 80 —gl=C —
6

' + ', (d',v, +-B,h, (2x')
lp C 8 2

(5.19)

—he, h, (hx)+ —x(eh„(hx) —h, (ex))) .3 B
C

recently' the correlation function describing point-
defect mechanisms of self-diffusion in crystals
has a mathematical structure similar to Eq. (5.1).
It is interesting to note that in this case we obtain
complete agreement with the related Slichter-Ai-
lion approach, ' too, which is another strong argu-
ment in support of correlation functions of the type
of Eq, (5.1) for describing the effect of (correlated
or uncorrelated) relative motions of nuclear spins
on the magnetic relaxation properties in crystals.

Inserting these relationships into Eq. (5.10) it is
readily verified that all terms proportional to
y'(s ~ 0) including the terms multiplied by h, (x)
and l, (x) are negligible in comparison to the leading
term on the right of Eq. (5.10), so that we end up
with

%ith

[see Eq. (5.12)] we obtain finally

(5.20)

(5.21)

C BO —Bl
T, p

4
(5.16) 3 y'h 'I(I+1)H', 7e

4 SP+H L

which may be rewritten, using Eqs. (5.2), (5.3),
(5.6), and (3.4) as

1 II', 2(1 -P)
Tl p Hl+HLP

with

(5.17)

G

p= —Q QFl"(r')&"'(r —r ) +IF,''f'(rf}l'.
j j

(5.18)

Here, in applying Eq. (5.2) we used the properties
W, (r, , r,*)=1/G for the G nearest-neighbor positions
r,* = r, around spin i, and W, (rof, re) = 0 except
We(~r, , 0) =1 (where 0 denotes the zero vector).

Equations (5.17) and (5.18) are identical with the
results derived recently' from a generalized Slich-
ter-Ailion type of theory applied to random-walk
self-diffusion. This supports strongly the general
form of the correlation function G(t) [Eq. (5.1)],
since it is obvious thai, e.g. , a simple exponential
correlation function [term s =0 in Eq. (5.1)] would
not have given us an answer compatible with the
Slichter-Ailion approach (5.17). As pointed out

x g B,h, (2+,T,) .
s=o

(5.22)

h, (x) =Re[(I -tx)- -']. (5.24)

Comparing Eq. (5.23) with the predictions of the
high-field random-walk perturbation approach"
we find that the two results are identical. As found
there" for ro,v» 1 Eq. (5.23) is identical with
Torrey's calculation of random walks on a lattice. "

The problems that may arise in the low-field
region included in Eq. (5.22) have been discussed
in Sec. IIIB2.

D. Intermediate region in terms of random-walk diffusion

Equation (5.10) also includes the temperature
and field region in which neither a strong- nor a

In the high-field ease (H, »Hf, ~) this yields (with
7', =-,' V'}

1 3;y'h'I(I+1}7 Q —B,h, ((d,T), (5.23)
lp S

where, from Eq. (5.12) with y =1, h, (x) is given by
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weak-collision approach applies. Owing to the
rather crude assumption (5.4) and our reservations
concerning the field dependence in the low-field
weak-collision region we will not discuss this re-
gion in any detail. In principle, however, Eq.
(5.10) describes the shape of the low-field T, min-
imum as a function of temperature and the field
H~.

More thought about the spin correlation functions
involved is necessary before the basic properties
of the spin dynamics underlying the internal
equilibration processes may be deduced from the
characteristics of the low-field T&p minimum.

VI. SUMMARY AND CONCLUSIONS

A comprehensive perturbation formalism has
been proposed which applies to strong collisions
as well as to weak collisions and the temperature
region between the two extreme cases. Where our
results can be compared with predictions from
other theoretical approaches (mainly, in the low-
field strong-collision region and the high-field
weak-collision region') complete agreement is
found. The transition from the Slichter-Ail ion
type of theory" to the approaches applying in the
motionally narrowed region" is represented in
terms of a correlation function of dipolar spin
operators describing processes related to the
establishment of internal equilibrium inside the
spin system. The decay properties of this spin
correlation function are not fully understood.

The main conclusions of our method may be
briefly summarized as follows:

(i) While the high-field T,q
minimum is governed

by the microscopic features of the related self -dif-
fusion mechanism, in a low rotating field both self-
diffusion and equilibration processes inside the
nuclear-spin system govern shape and width of the
T,~

minimum. Therefore, we think that there is

more to be learned about the spin system itself
than about the diffusion mechanism(s) involved by
carefully investigating the temperature region
where the low-field T,q

minimum occurs (see Sec.
IV).

(ii) The field dependence of T, in the transition
region from the Slichter-Ailion type of field depen-
dence in the low-field strong-collision region to
the high-field frequency dependence in the weak-
collision region is described uniquely in terms of
a dipolar spin-operator correlation function. This
field range has been studied experimentally" and
a quantitative comparison with these results is
desirable (see Secs. III and IV).

(iii) In the low-field weak- collision region T„is
predicted to depend on the rotating field amplitude H, .
This has to our knowledge never been observed ex-
perimentally, and some arguments are discussed
indicating that our treatment in this region should
be applied with great caution. Systematic experi-
mental investigations in this field and temperature
range appear highly desirable (see Sec. II B).

(iv) From the applications of the general ideas to
random-walk diffusion (Sec. V) it is concluded
that the mathematical form of the "lattice" corre-
lation functions presented recently for random-
walk" and for point-defect mechanisms of self-
diffusion (consisting of an exponential part multi-
plied by a power series in t/r, ) is crucial for their
applicability to the correlation function approach
in the strong-collision region (see Sec. VB).
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