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Approximants to the nuclear-spin autocorrelation function. Application to CaFx
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A simple method for generating approximants to the nuclear-spin autocorrelation function from the
known moments is described. Expressions for the two lowest-order approximants are derived and the
numerical results are compared with the ' F experimental free-induction-decay signals in C»2

I. INTRODUCTION

The calculation of the nuclear magnetic reso-
nance (NMR) line shape of a "rigid" lattice of spin-
—,
' nuclei coupled by magnetic dipole-dipole inter-
actions, is one of the fundamental problems of
NMR. Considerable effort has been dedicated to
the solution of this problem using a variety of tech-
niques. Early in the history of NMR, , pan 71eck
calculated the second and fourth moments, M& and

M4, of the absorption line shape. Recently, Jensen
and Hansen have produced closed expressions for
the sixth and eighth moments, M6 and M8, using a
computer to perform the algebraic calculations.
Given the enormous amount of computation involved
in calculating higher moments, it seems unlikely
that exact expressions or values for many higher
moments will be produced in the near future. The
polynomial expansion of the free-induction-decay
signal (fid) converges very slowly, and a large
number of moments must be known if a moment
expansion is to accurately predict the fid over the
first oscillation or two. 3

A number of approximation techniques have been
tried (Refs. 4-8 is a nonexhaustive list) for gener-
ating functions with several adjustable parameters,
to fit the initial part of the fid. These parameters
are chosen so that the function has the correct sec-
ond, or second and fourth moments. However, the
choice of generating functions to fit the fid has
been rather arbitrary.

In this paper, we present a different technique
for generating functions to fit the fid. It has the
advantage of starting with the exact form of the
equation of motion for the spin system in the form
of a set of difference equations whose coefficients
are related to the moments of the line. Solutions
to these equations are generated, using an ap-
proximation that produces a great mathematical
simplification in the equations. The approximation
is not physically justifiable but is reasonable and
has the advantage of introducing higher-order cor-
rections in an unarbitrary way.

In Sec. II, we give a short derivation of the
equations of motion for the correlation function
G(t). In Sec. III, we find the first approximant

based upon the exact knowledge of M2, and the sec-
ond approximant based upon exact knowledge of Mz
and M4. Even the first approximant displays the
damped oscillations that are experimentally ob-
served in solids. The second approximant is com-
pared with recent measurements of the ' F fid
signals in CaF2.

where

I (f) ixt/hr ixt/5-
(2)

A large external field is assumed to be applied
along the z axis. The Hamiltonian R in Eq. (2) is
then the truncated magnetic dipole-dipole interac-
tion energy.

Equations (I) and (2) are the starting point for
many calculations3''0 '2 of the fid signal G(t) or its
Fourier transform g(v), the absorption spect"um.
Several operator expansion techniques have been
used in connection with the calculation of the spin
autocorrelation function defined by Eq. (I).

For our purposes, however, a different ap-
proach will be followed. Defining the Liouville
operator 2 as

Z=(l/n)[X, ],
Eq. (2) can be written as

1„(t)= e" I„.
An expansion of the exponential operator in Eq.
(4) yields

(4)

(5)

If both sides of Eq. (5) are multiplied by I„and then
the trace is taken, one obtains the usual moment
expansion of the autocorrelation function.

II. EQUATIONS OF MOTION

The quantity of interest in a pulsed NMR experi-
ment, where the system of spins is prepared by a
2n pulse in a state described at t = 0 by a density
matrix o (0) = const I„, is the spin autocorrelation
function given by

G(t) = Tr (1„(t)I„)/Tr(I„),
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Since the vector ~ 0) of the orthogonal set is identi-

cal to the vector ~ I„) of the original set, the coef-

fjcjent, Ao(t) can readily be seen to be equal to the

free-induction-decay signal G(t).

Tr(I„(t)I„)
(OI0) Tr(I„')

The coefficients A,.(t) with j~ 1 involve rather com-
plicated traces and need not be explicitly considered
here.

For a Hamiltonian involving magnetic dipole-
dipole interactions, all odd-valued moments van-
ish. It is shown in Ref. 13 that under these cir-
cumstances, the coefficients A;(t) satisfy the fol-
lowing simple equations of motion:

—zAo = v o A1 ~

' — 2

—z~, =Ao+ v1A»2

~ 0—iA2 =A, +V2A»2

2=An-1+VnAn. 1 ~
0

(9a)

with the initial conditions

A (0) =1, A;(0) =0, j—1 . (9b)

The parameters v& are related to the moments
M„of the absorption line and are given by1

We will now follow Lado, Memory, and Parker'3
and consider the operators Z'I„as a complete set
of vectors ) 2'I„) in a Hilbert space of operators
defined for the system. In this Hilbert space of
operators, the inner product of two arbitrary vec-
tors A, Bis defined as

(A
I
Ij) = Tr(A'a) = (a IA)*,

where A~ is the Hermitian adjoint of the vector A.
It is convenient to construct from the complete set
) X~I„& an orthogonal set )j) using the Schmidt pro-
cess. In terms of the orthogonal vectors, I j&,
I„(t) in Eq. (5) is given by

Dq ——Ma, Da = Ma(M4 —Ma),

Da ——(M4 —Ma)(MaMo —M4),

2 2 M4 M2 2 M2M6™2 2

"=M,(M, -M,')

(11b)

n=1, 2, 3, . . . (12)

The calculation of the fid signal G(t) is equiva-
lent to solving for Ao(t) in the infinite set of first-
order coupled linear differential equations [Eqs.
(9)). Normally, only a few of the parameters va

are known in practice and some approximations
are necessary in order to obtain a definite answer
fo»o(t)

From Eqs. (9a), it can be seen that if for some
particular value of k, v~=0, then the autocorrela-
tion function Ao(t) becomes independent of all v, 's
with j~k. The values of only the 2nd, 4th, ;.',
2kth moments are then necessary to determine the
line shape. The simplest example of such a case
is provided by a system of isolated pairs of spin- —,

'
nuclei in an external magnetic field, interacting
via their magnetic dipole moments. An application
of Van &leek's formulas for this case yields v1=0,
and the solutions to Eqs. (9) become Ao(t)
= cos(~Mat), which is the exact solution for the
autocorrelation function.

Similarly, for a collection of spin-~ nuclei ar-
ranged in the form of isolated equilateral triangles
in an external magnetic field perpendicular to the
plane of the triangle, the autocorrelation function
has the form Ao(t) = —a'{1+cos($2Ma t)). It is easy
to verify that, in this case, v2 = 0.

In the general one-, two-, or three-dimensional
cases, the spins cannotbe conveniently paired for
computing G(t), and one thus expects that all v&~

are different from zero The .calculation of Ao(t)
does not reduce to the solution of a finite system
of coupled differential equations with only a finite
number of frequencies. We will now make the as-
sumption that all the v&'s are nonzero. For this
case, it will be convenient but not necessary to
transform the A&'s and v; 's in Eq. (9) in the fol-
lowing manner. '

V V ''' V2n -1 2n-3 1

V2 -2 V2n-4
' ' '

Vo

~ ~ ~ Mg

D = M2 ~ ~ ~ My@1

D,. is a determinant of the form

(io)

(iia)

2 2 ~ . . 2
V2nV2n-2" ' ' V2

~2n+1 V2 V2 '' V2 VO
V2n-1 V2n-3 V1

—f &2n 2 2 . , ~ 2I2n- ~- Zi V2n-1 V2n-3

n 1
p 2p 3p ~ ~ ~

—( K2n+1 2 2 „,, 2
Ia~+i = (- t) va va -a " ' ' va

I
vo

I Aa +s ~

where only even-valued moments M„are different
from zero. The first few D's and v's are

With

&o'-&i'= Ivo
I

= MMa Io=Ao~ I~-=-tlvolAi
~ith these definitions, Eqs. (9) can be written in
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a more compact form as

I() = —(I/rp) I(,
0

I, = (I/~, )(I, —I,),
(14)

loops, we assume all the unknown v„'s are equal to
the last known v&. Then Eq. (17) becomes

7 pSIp+I1=7 p,
—Ip+ S7'1 I1+I2= 0,
—I1+S7 2 I2+ I3 = o,

with In-1+S TPIn+ In, 1=0) p s ~

n 1+ 7n In, + In+1=0, 1 fI P (19)

(20)

I (0)=1, I„(0)=0, n —1 .
The first few v''s are given by

(15a) The above infinite set of equations for p ~n can be
solved by using the difference operator' E defined
as

&o =&I(fp =xi"1 -1

~,' = [(~4 —~,')/~,'] M,'",
~,' =f(M,mp -I(f4P)/[(I(f4 —Mp2)']] I,'" .

Let I„(s), defined by

1„(S)=j e ~ '1„(1)de, 0 S,

(15b)

SI„=(I/v„)(I„—I„„).
Because of the initial conditions on I„(t), the initial
value theorem yields the following properties of
T„(S):

limSIp(s)=1, limSI„(S) =0, n~ 1.
g w(O

III. SOLUTION OF THE EQUATION OF MOTION

A formal solution to find Ip(s) is easy to carry
out if one knows all of the r, 's (which one does not).
We have thus looked for a judicious approximation
to make here, and ere have tried to introduce a
certain amount of physical intuition. Equation (14)
resembles the equations for a lumped-element-
transmission line P (however, with negative resis-
tances and inductances), and we have chosen to
view it as such. For such a model, Ip(t) can be
viewed as the current in the zeroth loop. Because
of the finite propagation speed of signals, the
short-time behavior of Ip(t) is mainly determined
by the parameters 7 J describing the loops im-
mediately adjacent to the zeroth loop. The wn's

for the far away loops are unknown but also are
not as important as the near loops in determining
the short-time behavior of Ip(t). For the far away

be the Laplace transform of I„(t). Then, taking in-
to account the initial conditions listed in Eq. (15),
Eq. (14) can be transformed into the following
form:

SIp
= 1 —(I/r p) I(,

SI, = (I/r~)(Ip —Ip),
(17)

ET„(S)=T„.,(S) .
In terms of E, Eq. (20) can be rewritten as

(21)

(-E ~+S7p+E)I„=O, P~n .
Since I„(s) is different from zero for some values
of S and n, then

(22)

E+Sg p
—E =0,

which is satisfied by

E= X, = —2S w(, + [1+(2sv(, ) ]

Thus the general solution is

I„(S)=C,~",+C~", p n,

(28)

(24)

x.=(s~~) ', x = —(s~~),

I„(s)=c.~,"s"+c(-~,)"s" .
(28)

(27)

The second term in Eq. (27) goes to infinity when

lim~ „SI„(S)is taken, thus violating Eq. (18).
W'e thus have to set C = 0, and C, must be different
from zero to have a nontrivial solution. Then,

I„, /I„=I /I =X„p n, -
and Eq. (19) can be rewritten a.s

(28)

T'pS Ip+I1 = 7'p, —Ip+ S71I1+I2 ——0,
—I1+S72I2+I3 = 0,

(29)

—IP ~+S7P 1IP1+IP =0,
—Ip q + (Srp+ X,) Ip 0. ——

This set of equations can be solved for Ip using
Cramers rules.

A. Case of p=1

The simplest case to solve is where P =1, and
thus all w„=vp. Then Eq. (29) reduces to

rpsTp+I~=vp) Ip+(STp+X )I~=0 ~

where the constants C, and C are chosen to satisfy
boundary conditions. For —,

' S7~» 1,
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Solving for To(S) and simplifying the results yields ~, Ims

I,(S) = —,'7', (- S+ [S'+ (2/~, )']'"] .
The inverse transform of Io(S) can be found in a
table. P The result is

(31)

Io(t) = Z(2(M, )'"f)/(M )'"t = G'"(t) (32)

where G" (t) is the first-order approximant to the
desired autocorrelation function, and J, is a Bessel~
function of order 1.

Since G '(f) and G(t) both have values of 1 for
f =0 a.nd the same second moment, so G '(f) is a
good approximation to G(t) for short times, as is
to be expected. For the case of the ' F fid in CaF2,
G'"(t) seems to approximate G(t) reasonably well
to about the time t~ of the first zero value of G(t),
as can be seen from Table I. Both G'"(f) and the
G(t) for CaF3 have an infinite number of zeros for
which the time between the zeros tend to approach
a limit from above for increa, sing t, but the values
are not too close. Another important difference
in the long-time region is that the envelope of
G"'(t) goes to zero as f 3 ~, while for CaFz, it is
experimentally found that the envelope of G(t) goes
to zero as e '.

~ p

lp

&r
4 ~

tifr

= Res

FIG. 1. Path of integration for the inverse Laplace
transformation indicated by Eq. (35).

B. Case of p=2

The second approximant is found by setting P= 2,
which implies all w„=rz for 2~n. Then Eq. (29)
reduces to

By setting the denominator in Eq. (34) equal to
zero, we find it has four roots S&, S2, Sz, and S4.

TpSIp+Iq =Tp, -Ip+ STpI j +I2 = 0,

-T, +(Sr~+A, )I~=0 . (33)

1 1 3~ i/2 1/2
Sg = -S3=——-1+i

Tp 2 1 —+

Solving for Ip and simplifying the results yields (35)
—() Sv'+X,

1 +Sr ~(S r 0 + h.,) ) (34)

f+ $00

I (f) = G "'(f)= e"I (S)dS ~

1
27/ S

(35)

TABLE I. Time of occurrence of the first zero t& of
the F free-induction-decay signal in CaF& at 4. 2 K.

Direction of
Bo

[100]
[111]
[110]

t~ (@sec)
Expe ri mental

21.38 + 0. 01
55. 22 +0. 08
37. 07 + 0. 05

t& (IL(sec)

Theoretical"

21.1
50. 5
34. 7

Take n from H, ef. 9.
"Computed from Eq. (32) using experimental M&

values of Hef. 9.

This expression for Io(S) is more complicated than
the first case, and we must take the inverse La-
place transform of Eq. (34) to find the second ap-
proximant G' (t),

For the applied magnetic field Bo along the [100],
[110], and [ill] crystal axes of a CaFz crystal,
M4&2M~. For this case, o. &1 and (3+o)/(1 —o, )
is positive. The integral in Eq. (35) for G'~ (f) lies
on the first sheet of the Riemann surface defined
for the function To(S) which contains a square-root
function. With a little work it can be shown that
S„S2, S„and S4 all lie on the second sheet. Thus,
as long as we carry out any contour integrations
on the first sheet only, we will not enclose any
poles of Io(S). The path of integration for the in-
tegral in Eq. (35) is closed in a, large semicircle,
as indicated in Fig. 1, and we use Eq. (34) to a,n-
alytically continue Io(S) for ReS &0. Since no poles
are enclosed, the only contribution to the integral
comes from the part along the branch cut shown
in Fig. 1.

The final result for the second-order approxi-
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mant G '(t) to the desired autocorrelation function
is

G(2)(f)

where

2/v2

g (&d) cos((dt) dc'd
2/v2

(2) 1 (1 —4 T2(d )(~) =
ZT O(7'O —T2) ((d —(d+) ((d '—~ )

FIG. 2. Comparison of the second-order approximants
G (t) to the autocorrelation function. Solid lines repre-
sent the calculated values of 6 (t) from Eq. (37) using
experimental M& and M4 vat. ues from Ref. 9. Dots are
the experimental fid signals for 9F in CaF2 at 4, 2 K for
three different orientations, relative to the crystal axes,
of the appliet' magnetic field. (a) Bol) I100], (b) Boll [111],
(c) Ho~i t110

v'0 and r2 are defined in Ecf. (15b), and o is defined
in Eq. (36). We have obtained in Eels. (38) and
(39) a simple closed expression for g ((u), the ab-
sorption spectrum corresponding to G'(t).

The case of p=1 can be reproduced by setting
7'2=7o, thus providing a check on the consistency
of the results. The expression for g' '(Id) sim-
plifies greatly, and the integral of Eq. (37) can be
evaluated in closed form, yielding the same result
as Eq. (32). That is, G 2'(t) reduces for this
special case to the first-order approximant G"'(t)
as it should. When 7247O, the evaluation of Eq.
(3V) in closed form is more difficult. Using the
experimental M2 and M4 values for the ' F fid
signals in CaF2 at 4. 2 K, we have carried out the
Fourier transform of g 2'(&) by numerical integra-
tion of Eq. (37). The results are shown in Fig. 2
for the applied field Bo along the [100], [110], and
[111]crystal axes, along with the experimental
fid's from Ref. 9.

The agreement of G'2'(t) with the experimental
fid's is extremely good from the origin to the min-
imum following the first crossing point. While
G 2 (t) is not a good approximation pa.st that point,
it is a well-behaved function that does not diverge
for long times. All of the approximants display
the damped oscillatory characteristics of the auto-
correlation function, the damping being slower
than what is observed in the experimental fid sig-
nals. A more sophisticated guess as to the de-
pendence of v„upon n could probably improve this
part of the result considerably. However, in view
of the extremely simplified formulation of the
problem implicit in the equations of motion listed
in Eq. (29) and the minimum amount of numerical
computation involved in solving them, the results
are rewarding. Further, the procedure can be
easily and systematically generalized to include
higher moments.
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