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Tetrahedron method of zone integration: Inclusion of matrix elements
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The tet'rahedron method of Brillouin-zone integration is examined in comparison to the rectangular approach.

Tetrahedrons are found to be more generally applicable, but they lack the simplicity provided by the

symmetry inherent in the rectangular approach. In some earlier calculations of the magnetic susceptibility

X(q,u) the effect of the variation of the matrix elements throughout the Brillouin zone was not adequately

accounted for. A method is described for incorporating this effect within the framework of the tetrahedron

method. The possible effect of interpolation on the calculation of spectral functions is also discussed.

Very recently there has been interest in accurate
calculations of the dynamical magnetic susceptibility
y(q, v) in metals. Rath and Freeman' computed
y(q, +) for Sc and I indgard~ calculated it for Gd,
Tb, and Dy. In performing these calculations the
so-called tetrahedron method was employed. This
method was recently introduced by Jepson and
Anderson' and independently by Lehman and Taut. '

y(q, &s) is actually one particular case of a whole
domain of spectral properties of solids (e. g. , den-
sity of states, superconducting tunneling, vibronic
transitions, infrared absorption, impurity modes,
incoherent neutron scattering in solids, optical
transitions, etc. ), to which high-resolution methods
of calculation can be applied. These methods have
been recently discussed by one of these authors. '
The tetrahedron method is actually one ramification
of the so-called linear-analytic method. '

One purpose of this article is to assess the use
of tetrahedrons as integration cells, especially
in comparison with cubic and rectangular (orthorhom-
bic) cells. Another objective is to incorporate in
a systematic way the variations of matrix elements
(also known as transition probabilities, coupling
constants, oscillator strengths, etc. ) within the
framework of the tetrahedral approach. This ef-
fect has already been accounted for in the ease of
orthorhombic cells. ~'

The main idea behind the high-resolution method,
first introduced by Gilat and Haubenheimer, 9'~~ is
to approximate a constant-energy surface E„(k) in
reciprocal space by a plane and vary E„(k) linearly
within a small volume (the integration cell) and
then perform analytically the integration inside
each cell. This approximation is known as the
linear-analytic approach. 5'6

There is a large variety of spectral properties
in solids, but they are all closely related to either
the imaginary part I(E) of a spectral function

I(Z)= ', F(k)
"

I~El '

or to its real part R(E),

V - F(f)R(z)=
(2 )g

', ~g) E d k.

In these expressions E(k) represents an energy
band (dispersion relation), E(f) is an appropriate
matrix element that gives rise to the observed spec-
tral property, and dS is a constant-energy-surface
increment. V is the direct space volume (which
can be lumped in the normalization constant). The
magnetic susceptibility g(q, ur) is related to R(~)
and is given by

y(q, (gp)= 3 P
~

d k ~(f+q~M„„.~f)~
tttt

f(E„(f))fl f(z„(f+q))]
z, (f+ q) —E„(f) —h(u

where M„„.is the "matrix element" for Z(q, z)
and f(z„(f)) is the Fermi function, which is 1 or 0
for E„(f)~E~or E„(f)&E~, respectively. A com-
parison of Eq. (3) with Eq. (2) shows the similari-
ties as well as the differences between the functions

y(q, &u) and R(E). The main difference is in the
Fermi functions in Eq. (3) which limit q to scat-
terings between occupied and unoccupied states.
Another difference is the interband transitions in

Eq. (3).
The magnetic susceptibility serves here as a

special example and the computational problem
associated with the Fermi function can be tackled
along the lines described by Hath and Freeman.
We next apply the zone-integration procedure to
Eq. (1), by approximating the surfaces S(E„(f) = E)
by planes S,(E) within each integration cell. We

obtain

I(E) = C Q E(f,.)
I VE k,. I

where g& is a summation over integration cells that
fill the Brillouin zone exactly, and C is an ap-
pr opriate normalization constant. Two problems
emerge at the onset of this procedure: (a) what

shapes to use for the cells and (b) how to account
for E(f)?
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In earlier calculations, cubic and later the more
general orthorhombic cells were chosen. For
these shapes, VE(f) is evaluated at the center point
and integration is performed throughout the cell.
More recently, Jepson and Anderson and I ehman
and Taut' chose tetrahedrons for integration cells.
From data gathered so far' it seems that tetra-
hedrons have advantages as well as disadvantages
in comparison to rectangular cells. The main
advantage of tetrahedrons is that they are directly
applicable to hexagonal and trigonal systems,
whereas rectangular cells cause certain problems
for these systems, which can however, be over-
come. ' Another important advantage of tetra-
hedrons is associated with integration over Fermi
spheres. Whenever the Fermi surface intersects
an integration cell, it divides it into an occupied
and an unoccupied volume. For tetrahedral cells
these volumes are either tetrahedrons them-
selves, or they can be split into tetrahedrons.
This property does not readily apply to rectangular
cells. Tetrahedrons are also somewhat more con-
venient because they have only three different in-
tegration ranges whereas orthorhombic cells have
four. This in itself is a relatively minor advan-
tage.

The disadvantages of tetrahedrons relative to
rectangular cells are associated with their lower
symmetry. It is very easy to attach a Cartesian
system to rectangular cells whereas this very task
causes some complications with tetrahedrons.
This fact simplifies considerably the analytical
integration procedure for rectangular cells.

This difficulty can be overcome for tetrahedrons
by dispensing with the energy gradient VE(f) and

using instead the tetrahedron corner values of
E(k) to obtain expressions' 4 for S,(E) in Eq. (4).
The computational meaning of this is that one is
using interpolation to determine E„(k) throughout
the tetrahedron rather than extrapolation. This
may cause acertain systematic error in the calcu-
lated I(v) due to band crossings. ~~ In a recent arti-
cle, Cooke et al. computed the density of states
N(E) for Nb and showed that interpolationdid cause a
spurious peak in N(E). To rectify this, Cooke et
al. proposed to employ the Hellman-Feynman
theorem to obtain VE„(k) in an accurate and con-
venient manner. An equivalent approach was also
used by Gilat and Boiling~4 in the case of the phonon
spectrum of Na. Incidentally, it is still possible
to apply extrapolation to tetrahedrons as well by
using VE„(f) at the center to obtain corner values
of E„(R). This procedure, however, is rather
inefficient.

In view of all this, the use of the corner values
of E„(k) for a tetrahedron should be considered
more as a handicap rather than an advantage. In
comparison, for rectangular cells it is a simple

S(E) = (3V/D, )X',
f(E) =-,' e, X,

(6)

(7)

where D, =44, 4»», ,&=E, —Ez, E&=E»+c»
+ &4g I &)g= (&;—&g)/&(J, X= E —Eg, f = &- &g, and
t/' is the volume of the tetrahedron.

For the second range (&3,~ X~ 4„)we obtain

S(E) = (3V/Di)X —(3V/Da) (X hz i)

f(E)s(E) = ' x' ' (x- a„)'
D) D~

(x g )2
D2

where Da—- 44 43~ » and pa= q»+ q3~+ q43.
In the third range (&„~X~ b,«), S and f are

given by

S(E) = (3V/D, )(X- ~«)',
f(E) = —,

' b 4 (X—44)) + E4 —Eq,

(10)

matter to use either the corner values of E„(k) or
VE„(f) for spectral calculations, so that one has
an option to choose between interpolation and ex-
trapolation.

A second drawback of the tetrahedron method is
associated with the incorporation of the variations
of the matrix element E(k) in the Brillouin zone.
For rectangular cells, a Cartesian system is
readily available, which enables application of
Dalton's methods ' to obtain all the expressions that
account for the matrix-element variations. More-
over, owing to the high degree of symmetry of
rectangular cells, many terms in these expres-
sions, in particular for the real part R(~), cancel
out. '

Nevertheless, it is possible to incorporate varia-
tions in E(k) within the tetrahedron version. The
way we do this is first by making the observation
that within the linear approximation E(k,.) in Eq.
(4) must be calculated at the center of area of the
constant-energy plane within each cell. This
property can be used to derive the energy depen-
dence of E(k, ) within each tetrahedron, where the
corner values of E(f) are assumed given. It is
interesting to point out that contrary to the case
of E„(k), interpolation for E(k) could be a better
procedure than extrapolation. The reason for this
is that within the Hellman-Feynman scheme, eigen-
vectors are assumed to be constants throughout
the cell, which may cause E(k) to be constant.
The use of corner values for F(k) can override this
assumption.

Let E, and E, (i =1, 2, 3, 4) be the corner values
of E(k) and E(k) respectively. We follow Lindgard's
convention, ' as well as most of his notation,

mj[n E1 2 E3 E4 Emax

and obtain for the first range (0 (X(A2~)
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where D4 = ~41 ~42 ~43 and 64 ~41+ ~42+ 43

The expressions for S(E) were derived earlier, '-'
but f(E) is given here for the first time.

The expression for R(&) can be found by applying
the Kramers-Kronig relations to each tetrahedron.
The total R(~) which is closely related to the cal-
culation of y(q, ur) is given by

R(~) g Q r. 1+f;(E)]~;(~)dE (12)+ —(d

where i runs over all the tetrahedrons and C' is
an appropriate normalization factor. E, is con-

stant for each cell and the variations of E(k) are
accounted for by f(E) in Eqs. (6)-(11). It should be
pointed out that Eqs. (6)—(11) constitute the expres
sions for I(&u) for each cell, so that

f(E) = &'Z I.&~+f;(E)]5'g(E) . (1S)

The expressions for R(&u) for a single tetrahedron
are now given

R;((u) =R,o((o)+R;,((o),

where

SVE~
( )2 E~ —(o SVE~ ~ E4 (15)

3 2 2 2Rn(»=
I

~Bi- (Ei —&)~3~+ (E~ —&) ~8~-(E~- &)» — -~sp--. (E2 —~)&32D, ( E1 —m D2

2 E3 —V 3U&2, 42 2 E3 —(d
+ (E, —(u) &„-(E, -(o) ln 32

—(E2 —R)432+ (E2 —fd) lR )E2 D2 E2 —(d

«4 2 2 3+ r~43+ 2(E&- &u)~43+ (E,—~) &„—(E4 —~) ln
D4

E4- (d—(E4- (u) ln

E3- CO D4

(16)

The expression for R, , (a&) of Eq. (16) which ac-
counts for the linear variations in F(k) is con-
siderably lengthier and more complicated than
the equivalent case for a rectangular cell [Eq.
(12) of Gilat and Bohlin']. This is another out-
come of the less convenient shape of the tetra-
hedron.

Incidentally, it is possible to avoid altogether
the direct calculation of R(&o) via Eqs. (15) and
(16) and instead compute I(&u) from Eqs. (6)-(11)
and then apply the Kramers-Kronig relations to
f(&u) to obtain R(v).

In conclusion, we have derived here the expres-
sions necessary for the inclusion of matrix ele-
ments in the tetrahedron methods. These expres-
sions should be helpful in evaluating spectral prop-
erties in solids, such as dynamical susceptibilities.
We have also assessed the tetrahedron against the
rectangular cell and found advantages as well as
disadvantages for either cell.
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