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The question of the possible existence of localized canonical Hartree-Fock (HF) eigenfunctions in periodic
systems is more subtle than has generally been recognized. The first analysis of this issue, by Kaplan and Argyres,’
is shown to be incomplete and thus inconclusive. We present a new argument which shows conclusively that
localized canonical HF solutions cannot exist in periodic systems of physical interest. Other arguments, with
varying emphasis on symmetry, intuition, and formal rigor, are also discussed. Consequences of this result for
the understanding of Mott insulators will be discussed elsewhere.

1. INTRODUCTION

The question of the possible existence of local-
ized-orbital solutions of the Hartree-Fock (HF)
equations, for periodic many-electron systems,
is a very fundamental one for solid-state theory.
We are referring to solutions of the HF equations
in which the self-consistent canonical orbitals
would have localization and symmetry properties
of the familiar Wannier type. Conventional wisdom
would have it that HF solutions of this type are
obviously impossible, because the one-electron
eigenfunctions of a periodic system must satisfy
Bloch’s theorem. That argument is unsatisfactory,
however, because the standard proof of Bloch’s
theorem is restricted to local potentials, whereas
the exchange term of the HF potential is nonlocal.
Although it is quite obvious that the standard Bloch
type of solution must always exist, it is#of obvious
whether a Wannier type of solution might exist
under some suitable circumstances. This issue
was raised long ago by Seitz, in his well-known
1940 textbook.! The first serious attempt to settle
this question was by Kaplan and Argyres.?2

This question is a matter of considerable prac-
tical importance, inaddition toits intrinsic academ-
‘ic interest, because of its relevance for the un-
derstanding of Mott insulators. Mott has argued
for many years® that the valence electrons in some
materials (NiO is the prime example) are localized
in a phenomenological sense, and there is a variety
of experimental evidence which supports this con-
tention. * However, the task of d:veloping a satis-
factory theoretical explanation for this phenomenol-
ogy has proven to be very difficult. If the unre-
stricted version of ordinary HF theory could ever
give rise to localized one-electron eigenfunctions,
it is quite plausible that this might lead to a simple
and convenient theoretical description for Mott
insulators. This provides a motivation for ex-
amining the present question very carefiilly. The
outcome is also relevant for the understanding of
quantum crystals such as solid helium, as well as
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for Wigner’s low-density electron solid. In solid

3He, for example, it is customary to regard the

3He atoms as structureless spin-3 fermions inter-
acting via a known two-body potential, and there

is no doubt here that some form of physical localiza-
tion is present.

For all of these reasons, we have devoted some
effort towards settling this existence question, It
has turned out that the problem is considerably more
subtle than one might suppose. The few serious
investigations that have been published have all
concluded that localized HF solutions of the present
type are either impossible or at least highly un-

likely, in agreement with the conventional wisdom.
We shall see, however, that each of the arguments

to date leaves something to be desired, either by
way of rigor, generality, or intuitive understanding.
We shall present a new argument which exhibits
all of these attributes to a reasonable degree.
This finally settles the issue, Nevertheless, we
shall survey the whole problem, including the
previous approaches, since this leads to some
insights which will prove useful elsewhere. In
future papers we shall discuss several different -
localized-orbital descriptions, ® all related to HF
theory, which serve to explain various aspects of
actual Mott insulator materials.

The main goals of this article have just been de-
scribed. A secondary purpose is to respond to a
recent Comment by Kaplan and Argyres.  In two
previous publications™® we mentioned that their
analysis® had serious weaknesses, but we had pro-
vided only a very sketchy argumentB to support this
contention. In their Comment, these authors
rightly point out that the disproof which we offered
in Ref. 8 is incorrect. Nevertheless, we shall
now demonstrate (Sec. III) that their analysis is at
best an incomplete one. It does not constitute a
valid nonexistence proof for the system they con-
sidered.

As mentioned already, the history of this problem
dates back at least 35 years, to Seitz’s textbook.?
Seitz was persuaded that localized HF solutions
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12 NONEXISTENCE OF LOCALIZED HARTREE-FOCK

should exist, by the following type of reasoning.
For a lattice of widely spaced hydrogen atoms, it
is easily seen that the Hariree approximation can
produce localized-orbital eigenfunctions .° The Har-
tree theory differs from HF theory by the neglect of
“other particle” exchange terms; the self-exchanges
are retained, in effect, to compensate for the
direct self-interaction terms. This cancellation
of the self-interactions means that each particle
experiences a much deeper potential near its own
home site, where its amplitude is large and the
other-particle amplitudes are small, than it does
near other sites, where most of the electron den-
sity comes from other orbitals. The Hartree ap-
proximation thus allows for a direct realization of
the Mott mechanism?® for localization. At low den-
sities the Hartree orbitals must be quite similar
to the atomic orbitals, and the overlaps between
near neighbors must be quite small. Consequently,
if the other-particle exchange terms are now re-
garded as perturbative corrections to the Hartree
theory, it would appear that their effect should be
quite weak. This led Seitz to conclude that these
exchange terms could only cause minor changes in
the orbitals. Of course, the HF orbitals must be
spatially orthogonal for parallel spins, in contrast
to the Hartree orbitals. The “minor changes”
would therefore have to include the formation of
nodes near the neighboring sites (for parallel
spins); thus the resulting HF orbitals shouldbe very
similar to the usual Wannier functions.

These remarks were summarized 15 years later
by Reitz, 1 with one significant difference. Reitz
did not contend that the outcome was obvious; he
noted that the effect of the exchange terms was
problematical. Another 15 years went by before
Kaplan and Argyres2 presented the first serious
attempt to settle this question. It seems remark-
able to us that such a fundamental and long-standing
problem did not stimulate more study, especially
in view of the accelerating interest in Mott insu-
lators during the past decade.

Unaware of these publications, we were indepen-
dently led to Seitz’ s argument during the course
of a study of the theory of solid 3He.” Most calcula
tions for solid *He have been carried out with sim-
ple Gaussian orbitals to represent the motions of
the individual atoms, ¢;~exp[ -3 a®(r; - R;)),
with the localization parameter o being determined
by any one of several variational or self-consis-
tency criteria. The resulting ¢’s turn out to have
very small nearest-neighbor overlaps, <1%, so
this is a system for which the Seitz argument has
strong intuitive appeal. Upon reflection, we be-
came uneasy about Seitz’s conclusion (which we
orginally endorsed), but we were unable to find a
satisfactory analytical argument to settle the issue..
For this reason, we attempted to obtain an actual
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localized HF solution by applying standard numeri-
cal methods to a one-dimensional model system in
which the nonlocal exchange could be handled in an
essentially exact manner.” This model had one
electron per site, and was designed to simulate an
infinite row of hydrogen atoms. A parallel series
of calculations was done using interactions appro-
priate for the solid-helium problem. These two
very different types of interactions led to identical
conclusions. (A test of the validity of our numeri-
cal procedures is described in Sec. V.)

This attempt proved unsuccessful, but the effort
turned out to be quite instructive. First, it clearly
demonstrated the fallacy in the Seitz argument,

In solving the differential equation, a change in the
potential in one region is propagated, via the second
derivative, to significantly change the function
everywhere. That is, the change in the function

is not as localized as the change in the potential.
This has the consequence that, in the following HF
iterations, the once-small perturbation may grow
quite strong, and it may thereby produce a drastic
change in the overall character of the solution. To
provide the initial input for our HF iterations, we
first obtained self-consistent localized Hartree
orbitals and then orthogonalized them in the sym-
metric (Lowdin) manner to generate a “reasonably
good” set of Wannier-like orbitals. A fully aligned
(pure ferromagnetic) spin configuration was as-
sumed. The succeeding HF iterations produced
very different outputs, and it appeared that the
equations were attempting to generate a Bloch-
like solution. A second benefit of this experience
was that the behavior of the output, for various
changes in the input, suggested a physical plausi-
bility argument for the nonexistence result.” We
have now elaborated this experience into two dis-
tinct arguments (Secs. IV and V), focussing re-
spectively on the roles of orthogonality and ex-
change. The first of these arguments is rigorous.

Following our numerical investigation, a mathe-
matical nonexistence proof was developed by
Moyer. "' His argument (outlined in Sec. VI) was
historically the first one with satisfactory rigor.
Unfortunately, however, it is too formal to provide
any physical insight.

It seems to us that a question as basic as the
present one deserves an answer that is simple and
intuitive, reasonably rigorous, and of general
validity. Furthermore, it should not rely too
heavily on symmetry considerations. One knows
that deviations from perfect periodicity (surfaces,
lattice defects, strains, certain kinds of impurities,
etc.) do not drastically alter the physics of Mott
insulators, so the ideal argument ought to reflect
a corresponding insensitivity. Let us emphasize
this point with a different example. Supposing it
is demonstrated that localized HF eigenfunctions
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do not exist for the H, molecule (in its triplet state),

we would like it to follow directly that this result also
applies toalithium-hydride molecule. The proof in
Sec. IV is certainly the most satisfactory one in
terms of these criteria. Nevertheless, the argument
in Sec. V provides additional insightwhichis rele-
vant for the understanding of Mott insulators.

II. FORMAL STATEMENT OF THE PROBLEM

By Hartree-Fock theory we mean the most gen-
eral (unrestricted) equations that result from ap-
plying the stationary variational requirement to a
single-determinant expectation value of the many-
electron Hamiltonian. In practice, it is a very
great convenience to require the spin orbitals of
the determinant to be mutually orthogonal; other-
wise the usual two-body energy expression

1

—2‘ IZ <Zplwm! ‘l)! d)lwm> - Eexchange (2 1)
is replaced by one of the form

;: Cjklm<wjzwbk|vl Z/)ld)m>“Eexchange, (2-2)

jklm

where the expression for the C’s is quite compli-
cated. ® We therefore regard orthogonality (among
same-spin orbitals) as a necessary requirement of
HF theory, since we shall only consider the form
(2.1).

The standard variational derivation?® leads to a
set of equations of the form

Fom =Zl}\lm¢ly (2.3)

where the X's are Lagrange multipliers inserted
to preserve orthonormality of the ¢’s. Here F is
the usual one-body Fock operator, including kinetic,
ionic, direct, and exchange terms. The X elements
are given by

Nim={0| | 0., (2.49)

thanks to the assumed orthogonality of the ¢’s,
Given a particular solution of (2. 3) and (2. 4),
one knows that there exists a canonical transforma-
tion of the ¢’s which diagonalizes the A matrix,
- converting (2. 3) to the familiar eigenvalue form

T =€, . (2.5)

The resulting basis {¢} is defined uniquely by the
solution {db}, to within arbitrary phase factors, ex-
cept in cases of degeneracy. (Recall that for a
closed shell of > 1 orbitals, the quantization axis
Z can be chosen arbitrarily.) These ¥’s are com-
monly referred to as canonical eigenfunctions.
Henceforth, we shall reserve the symbol ¢ for
canonical eigenfunctions.

These HF equations frequently have more than
one physically distinct type of solution. (The sub-
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ject of magnetism provides many examples of this
phenomenon.) For periodic solids, a solution
where the canonical §’s have Bloch symmetry is
always possible. Let us call this the Bloch canoni-
cal solution, {¥£°}. When this solution is expressed
in terms of the corresponding Wannier orbitals,
the HF equations assume the nondiagonal (noncanoni-
cal) form (2.3)-(2.4).' One can easily see
that the A matrix must be nondiagonal in this Wan-
nier representation, because the elements X,,
correspond to Fourier coefficients of the Bloch
eigenvalue spectrum €(k).* (If the X matrix were
diagonal, this would indicate that the Bloch band-
width is strictly zero.)

In casting the Bloch canonical solution into the
off-diagonal Wannier form (2.3)-(2.4), we
have assumed either a filled band or a half-filled
saturated ferromagnetic configuration, so that the
Wannier description of the Bloch canonical solution
still involves only a single determinant. We shall
therefore only consider configuration where, for
each of the spin directions, we have exactly filled
or empty bands. These are the most interesting
cases from the standpoint of Mott insulator theory,
since a partly filled spin subband would lead to
metallic screening of the HF exchange potential,
and this screening would tend to suppress the Mott
localization phenomenon that we are interested in. 3

We are now ready to state the fundamental ques-
tion of this article. Can the HF equations for a
periodic many-electron system ever have a solution
where the canonical orbitals have the symmetry
and localization properties of Wannier orbitals ?

Let us examine the consequences of supposing
that such a “Wannier canonical” solution {$°} does
exist. Since the X matrix for this Wannier basis
is now strictly diagonal (by definition), we see that
these Wannier orbitals are necessarily different
from those corresponding to the Bloch canonical
solution. In terms of the higher Bloch bands de-
fined by the Fock operator 3¢ for the Bloch can-
onical solution {Y£°}, we see that this new solution
involves interband mixing. The set of higher Bloch
bands forms a complete basis, and likewise for the
corresponding Wannier transforms ¢2C, where v
is an index labelling the higher bands from FBC,
The canonical Wannier orbitals w:’ € can therefore
be expanded in this Bloch-canonical Wannier basis,

’\:IC = 31((05 ¢ +Z Cmm' (pfn?)’
vn!
N= (1 +Z {Cmm' ,2)-1/2-
vn?

The resulting Slater determinant 11y 1l is clearly
a different function of (r,...ry) than the determinant
1@BCl, so we are now dealing with a physically
different solution. The total HF energy EV° could

(2.6)
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therefore be either higher or lower than that of the
familiar Bloch canonical solution EBC®, This raises
the possibility of a sudden change of phase, if the
lattice parameter were to be varied continuously.
Another consequence is that the canonical transfor-
mation of {$'°} to a Bloch representation gives

rise to a new type of Bloch canonical solution, one
which has a stvictly vanishing bandwidth.

These rather peculiar features make it plausible
that such Wannier canonical solutions cannot exist,
at least not for nonmagnetic filled-band systems.,
On the other band, the physical localization ob-
served in Mott insulators suggests the opposite
conclusion. We see that it is unsafe, as well as
logically improper, to try to settle the mathematical
existence question by appealing to experimental
evidence.

III. ANALYSIS OF KAPLAN AND ARGYRES

Kaplan and Argyres® (hereafter KA) assume the
existence of a Wannier canonical solution and then
try to demonstrate that this leads to a logical con-
tradiction, They consider a lattice of hydrogen
atoms with very large lattice spacing, and they
claim to have considered all the effects which are
formally of first order in the atomic overlap inte-
grals

Srm' =<¢)n| ¢n> (1 - 6nn') s (3- 1)

where the ¢’s are 1s eigenfunctions of atomic hydro-
gen, centered on the sites n, n’. We shall see, how-
ever, that they have overlooked some terms which
are formally of the same order as those considered,
so their analysis is actually incomplete,

These authors work with a “one-band model, ”
which is to say that the various orbitals they con-
sider are all to be approximated by linear combina-
tions of the atomic 1s eigenfunctions ¢,. There is
precisely one electron per site. We assume for
simplicity that all of the spins are parallel (satu-
rated ferromagnetic configuration), and we shall
not consider the generalization of HF theory to fi-
nite temperatures (thermal HF approximation)
which is what they actually worked with.

KA begin by constructing “one-band” Wannier
functions,

w,,=¢,,—§;sm.¢m, (3.2)
which are obviously orthonormal to order S. The
overlap matrix (3.1) is symmetric, thus the most
general set of reasonably well localized one-band
orbital functions, orthonormal to order S, can be
expressed as

=T =g 3 P b, (3.3)
n

where P is an antisymmetric matrix assumed to be
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of order S. If this P matrix should turn out to have
any elements which are of order unity (or larger),
this would contradict the assumption that the ¥,’s
are reasonably localized orbitals which evolve con-
tinuously from the ¢,’s as the atoms are brought
closer together, starting from infinite spacing.

According to (2.5), the canonical Wannier eigen-
functions must satisfy

e | FEED] ) = €10 e

where the self-consistent dependence of F upon the
detailed form of the ¥’s has been emphasized. In-
serting the trial form (3. 3) into (3. 4) for n’ ##,
and retaining only the terms of first order in S, one
readily obtains
LP _(anlg({w})!an»
2 T _c0

nnT el _ el

(3.4)

(3.5)

The €)’s are eigenvalues appropriate for the S=0
case, which means that they are all equal to the
ground-state eigenvalue of an isolated hydrogen
atom. The denominator of (3.5) obviously vanishes,
whereas it can readily be demonstrated by explicit
evaluation® that the numerator is nonvanishing to
order S. KA conclude from this that P,,. must be
far larger than O(S), and therefore the self-con-
sistent ¥,'s cannot be well localized.

The flaw in this argument is that the “one-band”
approximation in (3. 2) and (3. 3) is too crude to be
trusted for such a delicate question. ‘We saw in
Sec. II that if a Wannier canonical solution exists,
it must contain interband contributions of the type
shown in (2.6). The off-diagonal X terms in the
Wannier representation (2. 3) and (2. 4) for the or-
dinary Bloch solution are obviously of order S,
which means that the total interband correction
(¥¥€ — p2°) should also be of order S, Consequently,
it is a priovi implausible that orbitals of the “one-
band” form (3. 3) could possibly satisfy (3. 4) to
order S. The nonvanishing of the numerator in
(38.5), to order S, is to be expected in view of the
crudeness of the assumed form for the orbitals.
These remarks are not a conclusive proof (or dis-
proof, rather), because the basis {¢2° ¢2°} also
differs from the atomic basis by terms of order S,
Nevertheless, it is clear that the possibility of
significant interband contributions must be carefully
investigated before any firm conclusions can be
reached. As it stands, therefore, the analysis of
KA is incomplete.

Let us now suppose that the hydrogen lattice is
sufficiently regular so that every site posesses in-
version symmetry. In this case the task of esti-
mating the off-diagonal elements of P now amounts
to asking the question “just how unsymmetrical
should the symmetrical eigenfunctions ¢, be ?” Of
course, KA did not require their canonical ¥, s to
be symmetrical, but it is obvious that the symmetry
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requirement is reasonable to impose here. We
conclude that, rather than tampering with the sym-
metry of the ¥¥ <’s, attention should have been
focussed on interband terms which are consistent
with the symmetry.

IV. ORTHOGONALITY PROBLEM

We now present a rigorous argument which
emerged from the numerical study” mentioned in the
Introduction, but which has not been published pre-
viously. This argument centers around the problem
of obtaining orthogonal orbitals from the HF equa-
tions. We begin with a periodic hydrogen-atom
lattice in which all sites are equivalent and every
site is a center of inversion symmetry (a Bravais
lattice), and we consider the saturated ferromag-
netic spin configuration,

When one sets out to obtain a Bloch canonical
solution, the orthogonality requirement can be

satisfied in an essentially trivial manner. One can
simply construct the Bloch sums
.= -1/2
Zpl_{B.S =l\]"l/z <1 +Zezk=Rn Son)
n
Xy e T g (F - R,), (4.1)
n

where the function ¢ need have only a very gross
resemblance to the Wannier functions of the desired
self-consistent solution, It is not necessary, for
example, for the overlaps

Sume #(SE=R,)| $F = Rpe)) (1 = 0,,.) 4.2)

to vanish, In this case we see that the orthogonality
feature is completely independent of self-consis-
tency. This means that the numerical effort can

be focussed entirely on the achievement of self-
consistency.

The situation is quite different for the Wannier
canonical case, Given a Hermitian Fock operator
F, with the full lattice symmetry but not necessarily
self-consistent, let us consider the set of ca-
nonical eigenfunctions which are centered on
site n. Each of these orbitals will exhibit either
the desired inversion symmetry, or else its op-
posite-parity counterpart. The site-n orbitals with
a given parity will all be mutually orthogonal,
thanks to the Hermiticity of §. There must be a
similar set of inversion-symmetrical and mutually
orthogonal orbitals centered on a neighboring site
n', and these two sets of orbitals must be identical
except for a lattice translation. The difficulty
comes in attempting to establish orthogonality be-
tween these two corresponding sets of orbitals,

The standard orthogonality proof fails here because
the equivalent orbitals on sites # and »’ have identi-
cal eigenvalues. The inversion symmetries of the
orbitals are of no help either because these sym-
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metries refer to different sites. We found by
numerical experience’ that self-consistent Wannier
canonical solutions with inversion symmetry can be
obtained, but only by sacrificing the orthogonality.

This last statement deserves some explanation,
since self-consistency and orthogonality are usually
regarded as synonymous in HF theory. In the nu-
merical work referred to, the direct and exchange
potential terms in & were always given by the famil-
iar expressions obtained from variation of (2. 1).
The subtlety here is that (2. 1) itself is only valid,
in the sense of being derivable from a single Slater
determinant, when the input orbitals are all orthog-
onal; otherwise, (2.2) must be used. Even though
our self-consistent solutions retained the form of
HF theory, they violated the spirit (relation to a
single determinant) when the orthogonality was lost.

One might suppose that the presence of the Lag-
range multiplier terms in (2. 3)~(2.5) should some-
how suffice to ensure orthogonality, but this is not
so. The purpose of introducing the Lagrange multi-
pliers is to preserve orthonormality during the
vaviation, assuming that the orbitals are orthogonal
before the variation. If the latter assumption is
not satisfied, the Lagrange multiplier technique
need not produce an orthogonal output.

The lesson to be learned from these observations
is the following. In the Bloch canonical case,
where orthogonality can be satisfied from the out-
set by virtue of the translational symmetry, the
attainment of self-consistency exhausts all of the
available freedom. By this we mean that the 1s-
band solution is unique. (We do not know of a
rigorous proof for this statment, but this is cer-
tainly consistent with general experience. At any
rate, there is no continuous degree of freedom left.)
Similarly, one may expect that the self-consistency
requirement will also specify a unique Wannier
canonical solution. In this case, however, orthog-
onality amounts to a nontrivial additional require-
ment—the orthogonality is now a matter of dynamics
instead of symmetry. After attaining self-con-
sistency, the orbitals do not have any freedom left
by which to satisfy orthogonality, so a solution
possessing both of these properties is generally not
possible.

One will observe that this argument does not rule
out the possibility that there may be some special
(perhaps pathological) choices of the basic one-
body (“ionic”) and two-body interactions for which
an orthogonal and self-consistent solution can exist,
However, such choices would necessarily constitute
“a set of measure zero” in the parameter space
of the basic interactions. These special cases
would thus have a vanishing probability of being
relevant for systems of physical interest. We
therefore conclude that Wannier canonical solutions
are not possible for systems of physical interest.
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This argument hinges on the discreteness of the
various possible Wannier canonical solutions, a
feature which can be rigorously verified as follows.
Let each of the desired Wannier orbitals be rep-
resented by a linear combination of a finite number
of localized orthogonal basis functions. It is then
easily seen that the Hartree-Fock formalism leads
to exactly as many independent equations as there
are independent free parameters to be determined.
(This follows immediately from the variational
formulation of HF theory.) It follows that there
is no continuous degree of freedom left, after ob-
taining self-consistency, so the remarks of the
preceding paragraphs are rigorously justified.
Since these results are valid for any finite number
of basis functions (per Wannier orbital), they must
continue to hold as the basis is extended towards
completeness.

Effect of symmetry breaking

The distinguishing characteristic of the Wannier
canonical case is the precise eigenvalue degeneracy;
this is what permits self-consistency to be achieved
without orthogonality. This suggest that an arbi-
trarily weak perturbation which breaks the equiva-
lence of all sites would now lead to an orthogonal
solution. We believe that this suggestion is cor-
rect, but that the resulting orthogonal self-consis-
tent solution would be Bloch-like instead of Wan-
nier-like, Our numerical experience revealed that
the self-consistent Wannier canonical solution was
extremely unstable. There is no doubt that a few
iterations with this perturbation present would
serve to strongly modify an initial Wannier input,
and it is at least very plausible that the modifica-
tions would go in the direction of a Bloch-like
canonical solution. Consequently, it appears that
a weak perturbation would not enable one to evade
the conclusion of the preceding paragraphs.

This conclusion follows more rigorously from
the notion of physical continuity. If Bloch canoni-
cal solutions are the only orthogonal ones possible
in the fully symmetrical case, a continuous defor-
mation of the system can only lead to a continous
deformation of these Bloch solutions, apart per-

. haps from exceptional cases constituting a set of
- measure zero.

It may be of interest to mention a connection with
the analysis of Kaplan and Argyres. In the fully
symmetrical case, we have seen that the diagonal
assumption (3.4) is invalid. That is, the eigen-
value degeneracy makes it impossible to establish
that the left-hand side of (3. 4) is zero for »’ #x.
(The nonorthogonality of our self-consistent orbi-
tals turned out to be of order S, for a reason ex-

plained in Sec. V.) Inplace of (3. 5), therefore,
we would find
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%Pn'n =<$'l [ 5({5}] 5’1’> — <lpn | iF({zp} I ¢n'> .

d-¢f,

(4.3)

where the ¥’s and €”s now represent our self-

consistent but nonorthogonal solution, and the ’s
represent some hypothetical (also not necessarily
orthogonal) solution related to the ¥’s by (3. 3) to
lowest order in S. We see that P =0 is not incon-

.sistent with (4. 3), since the right-hand side reduces

to the indeterminate form (zero/zero) for this
case. Consider, however, the effect of a weak
symmetry-breaking perturbation. This perturba-
tion enters into the “ionic potential” term in

@, 15{¥D 1 ¥,y, and thus the numerator of (4. 3) no
longer vanishes. This indicates that an arbitrarily
weak symmetry breaking would lead to a P matrix
with large elements. This result supports the con-
clusion of the preceding paragraphs, since P matrix
elements of order unity are required in order to
express Bloch-like orbitals in a form like (3. 3),
that is, as localized orbitals plus corrections.

V. EFFECT OF THE EXCHANGE POTENTIAL

We have not yet dealt explicitly with the role of
the exchange potential, although Seitz’s argument
indicates that this should be examined. The Hartree
potential includes “self-exchange” terms (these
are needed to cancel the “self-direct” terms), so
all differences between the Hartree and HF theories
must be due to the “other-particle” exchange
terms. We now offer some qualitative observations
about the effects of these exchange terms.”

A set of orthogonal Wannier canonical orbitals
would have to differ from the nonorthogonal Hartree
orbitals by the presence of nodes. We therefore
expect that the Wannier orbitals should have more
kinetic energy than the Hartree orbitals. (This
orthogonality kinetic energy is a localized-orbital
analog of the Fermi kinetic energy of a free-elec-
tron gas.) Since the exchange potential terms all
have negative expectation values, it is not unrea-
sonable to suppose that these terms could provide
sufficient attraction to support the additional kinetic
energy. We shall see, however, that the detailed
form of the nonlocality makes this very unlikely.

Suppose that a Wannier canonical solution exists,
and consider the wave equation for the orbital ¥,
which is centered on “site zero.” Just at the posi-
tion of its first node, close to a nearest-neighbor
site (call this “site one”), all local terms in the
wave equation for §, will vanish. The exchange-
potential term will be dominated by ¥,, since this
should be the only orbital which is large near site
one, so the curvature of J, af its node is given by
the approximate equation

2 42
- _2%%5%0 ~ w1(x)fwi"(x')z/)0(x’)y (x—x"ydx',
(5.1)
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where we have simplified to the case of one dimen-
sion. We shall try to determine the sign of the
curvature ¥g’.

" The product ${¥o in the integrand has a sign re-
versal at the node, so we must determine which
region dominates within the integral. If we insist
on orthogonality and symmetry, we have

Jotvoan= [+ +[ <[ +2f =0,
I II III II III

where the integration regions I, II, and I are in-
dicated schematically in Fig. 1. (We are assuming
the localization to be sufficiently strong that only
the regions near and between the two sites contrib-
ute significantly to the integral. This is akin to
the “lowest-order-in-S” assumption of Kaplan and
Argyres.) This argument indicates that region II,
with positive overlap, is far more important than
-region III, where zp"{tpn is negative. This strongly
suggests that region IT will also be the dominant
one for the integral in (5.1), from which it follows
that ¥, should have a downwards curvature at its
node. It is intuitively fairly obvious, however, that
any reasonable orthogonal Wannier-like orbital
should have positive curvature at the node, or per-
haps a near-vanishing curvature, but at any rate
not a strong negative curvature. This argument
strongly suggests that the spatial structure of the
exchange potential is incompatable with the exis-
tence of a proper Wannier canonical solution, at
least for “reasonable” two-body interactions.

This plausibility argument is strengthened by
comparison with the Bloch canonical solution.
When this solution is expressed in its Wannier rep-
resentation, one obtains an equation similar to
(5.1) but with the additional term X, ¢,(x) on the
right-hand side. One knows from tight-binding
theory that Ay, the nearest-neighbor hopping inte-
gral defined by (2. 4), is a negative definite quanti-
ty. We see, therefore, that this term provides an
upwards curvature tendency for ¢,, offsetting the
excessive downwards influence of the exchange po-
tential, so that the usual Wannier orbitals can now
be self-consistent in the sense of (2. 3)-(2. 4).

(5.2)

—_———
I ; pis : i1
FIG. 1, Hypothetical Wannier canonical orbitals show-

ing the regions of integration for Eqs. (5.1), (5.2). The
x’s represent two nearest-neighbor lattice sites.

[This usual Wannier solution must exist, since the
equations (2. 3) and (2. 4) are formally equivalent
to the conventional Bloch solution. Calculations
including the off-diagonal A terms are reported in
Refs. 5 and 7, where localized orbitals were ob-
tained with good orthogonality and convergence.
This confirmed the validity of our numerical pro-
cedures. The orbitals in Fig. 1 are taken from
one of these orthogonal solutions. ]

In the numerical study mentioned in Sec. IV,
the form of the self-consistent but nonorthogoral
canonical orbitals also confirmed the essential
soundness of this argument. These orbtials had
an exaggerated negative undershoot near the neigh-
boring sites, and correspondingly, the two nodes
seen in Fig. 1 were moved closer together. This
had the effect of enhancing regions I and III at the
expense of region II, so that the overlap {);19o)
became negative. This distortion of the orbitals
has the beneficial effect, via (5. 1), of eliminating
the excessively negative curvature of Y, near its
node, an effect which is qualitatively similar to
that of A,,@,(x) in the Bloch canonical case. (This
relation to ,, confirms that the nonorthogonality
is of order S, as asserted in Sec. IV.)

The present argument is obviously not rigorous.
Nevertheless, it is noteworthy that it does not de-
pend on symmetry. [In (5.2), for example, the
only important thing is that region II must dominate
region III; the equivalence of regions I and III is

not at all essential, ] The argument can therefore
be applied, separately and in succession, to each

near-neighbor pair of orbitals with parallel spins,
even in highly unsymmetrical situations such as
impure or amorphous materials, It is also appli-
cable to the types of relatively disordered spin con-
figurations considered in Refs. 5 and 7, which we
shall discuss more fully elsewhere.

VI. FORMAL NONEXISTENCE PROOF

For the sake of completeness, we shall also
summarize a recent nonexistence proof by Moyer.!!
This proof also focusses on the effect of the ex-
change potential. It is significant because of its
logical rigor. On the debit side, however, (i) it
does not offer any intuitive understanding; (ii) it
seems to require a high degree of symmetry; and
(iii) it assumes a non-negative two-body interaction
of finite range, and with an upper bound on its
strength as a function of particle separation, so it
is not strictly applicable for Coulomb or screened
Coulomb interactions.

Moyer considers a one-dimensional closed-ring
system with an even number 2N of equally spaced
sites. He argues that if a Wannier canonical solu-
tion {zp}”c} exists, then the particular orbital super-
position
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must also satisfy the HF orbital equation, Taking

the origin for x at one of the sites, this A(x) is
easily seen to have certain symmetry properties,
namely, A(0)=A’(0)=0, and A(-x)=A(x). These
properties are exploited to transform the integro-
differential equation for A into a Volterra integral
equation. By means of a series of inequalities,
Moyer then demonstrates that A =0 is the only pos-
sible solution unless the maximum strength of the
two-body interaction within the exchange potential
exceeds some threshold. That is, if

Umazmax[v(x‘x’)]<vc, (6.2)

then A=0. The expression for v, turns out to be
quite independent of the lattice spacing, provided
this spacing is more than twice the range of
v(x-x").

Intuitively, one expects that as the lattice spacing
increases, it should become easier and easier for
localization to occur, but this is not what the anal-
ysis indicates. In the limit of asymptotically large
lattice spacing, Mott’s argument® suggests that an
arbitrarily weak v(x — x') could still produce the
sort of bound state involved in a Wannier canonical
solution. (The strength of the one-body “ionic”
potential term is assumed to remain finite.) In
this case, however, Moyer’s necessary threshold
strength v, will exceed any intuitively plausible
value by an arbitrarily large factor. He therefore
concludes that Wannier canonical solutions are not
possible in the low-density regime.

1t is noteworthy that this argument rules out the
possibility of a “set of measure zero” of exceptional
cases which was mentioned in Sec. IV, for inter-
actions which satisfy Moyer’s criteria, at least
for the low-density regime. Outside of this regime,
however, it is difficult to reach any conclusion at
all because the formal mathematics does not corre-
spond to any clear physical picture.

VII. SUMMARY AND CONCLUSIONS

A new and rigorous argument for the nonexistence
of localized canonical HF eigenfunctions has been
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presented, and all previously published arguments
which we are aware of have been reviewed. In
contrast to the generally prevailing opinion, no
sound argument for this nonexistence result has
been available until quite recently.

The pioneering analysis of Kaplan and Argyres
was shown in Sec. II to have some serious weak-
nesses. Most importantly, it overlooks some terms
which are formally of the same order as those con-
sidered explicitly. It also focusses on a possible
lack of inversion symmetry, even in situations
where it is entirely reasonable to impose this sym-
metry from the outset. Nevertheless, a modified
version of their argument was found to be useful
(end of Sec. IV).

Sections IV and V discussed the nonorthogonal
but self-consistent localized solutions which we
had previously obtained numerically for a highly
symmetrical (and precisely degenerate) model
system. It was proven (Sec. IV) that orthogonal
solutions with otherwise similar features cannot
exist, except perhaps for parameter choices con-
stituting a set of measure zero. Even if they exist
(which is not clear), such exceptional cases would
have vanishing probability of being physically rele-
vant., Furthermore, it was shown that an arbitrarily
weak degeneracy-breaking perturbation would suf-
fice to destroy our special nonorthogonal solution.

Section V focussed on the effect of the exchange
interaction between neighboring localized orbitals.
A plausibility argument suggests that the spatial
structure of the HF exchange potential is inherently
unsuited to support a Wannier canonical solution,
This argument is noteworthy because it can readily
be applied to unsymmetrical situations.

Moyer’s argument, historically the first one with
an acceptable degree of rigor, was discussed in
Sec. VI. Unfortunately, his proof is too formal
to provide any physical insight, and the Coulomb

‘potential does not satisfy the conditions assumed for

the interaction.
In later papers we shall draw upon this experience

as we discuss several different localized-orbital
descriptions which are useful for explaining the
behavior of Mott insulators.
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