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A classification scheme is presented for the different entities one might expect to find in phase
diagrams of fluid mixtures (or other systems where the phases do not break the symmetry of the
Hamiltonian) when critical phenomena are present. These include critical points and critical end points
of various sorts, higher-order critical points, and entities coexisting in distinct phases. The classification
scheme employs the topological properties of the phase diagram, in a space of field variables
(temperature, chemical potentials), in the immediate vicinity of the point in question. A graphical
method is given for representing some of the topological information in the phase diagram. The entities
obtained using a Landau model with one order parameter are discussed and some preliminary results
are presented for the case of two order parameters. A phase diagram for a possible fluid analog of the

two-dimensional three-state Potts model is described.

I. INTRODUCTION

This paper deals with two problems. The first
is the classification and description of higher-or-
der critical points of the sort one might expect to
find in ordinary fluid mixtures,® in terms of their
phase diagrams. The second is to find a set of
rules for drawing phase diagrams for complex
thermodynamic systems when critical phenomena
are present. These two problems are intimately
connected, and from the point of view adopted in
this paper they are almost equivalent: an accept-
able phase diagram can contain only a limited
class of elements including points of ordinary m-
phase coexistence together with ordinary and
higher-order critical points. The Gibbs phase
rule places specific constraints on acceptable
phase diagrams (e.g., no more than three phases
can coexist at a single point on the pressure-tem-
perature plane for a pure substance). One might
expect analogous constraints for phase diagrams
involving critical points, and we will present some
suggestions as to what they are.

Higher-order critical points are not limited to
ordinary fluid mixtures but also occur in super-
fluids and magnetic solids.? The latter are out-
side the scope of this paper because the phases
involved break certain symmetries of the Hamil-
tonian, and these symmetries must be taken into
account in constructing phase diagrams. For the
same reason, the Gibbs phase rule requires some
modifications when applied to these “symmetry-
breaking” systems.

The phase diagrams of interest in modern sta-
tistical mechanics are not restricted to the tradi-
tional set of variables available in experiments:
temperature, composition, and the like. It is often
valuable to augment the variable space by adding
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certain parameters which appear in the Hamilto-
nian of the system (e.g., strength of some partic-
ular interparticle potential) or in a suitably aug-
mented Hamiltonian (e.g., a staggered magnetic
field for an antiferromagnet). We expect the phe-
nomenology developed in this paper to apply to
these generalized phase diagrams in the same
way as to phase diagrams using traditional vari-
ables, provided, of course, that symmetry break-
ing plays no essential role. Thus the term “fluid
mixtures” as it appears below is an abbreviation
for the sort of situation exemplified by, but not
restricted to, such mixtures.

We will only discuss phase diagrams in a ther-
modynamic space spanned by “field” variables®:
those which are always the same in two coexisting
phases, such as temperature and chemical poten-
tials. Such diagrams are invariably simpler than
the ones constructed using “densities,” such as
mole fractions, mass density, and entropy. Fur-
ther, the diagrams in a field space contain all the
information about the topological properties of the
other diagrams. Since these are the properties of
interest in this paper, there is no loss in general-
ity if only field-space diagrams are considered.
In connection with the previous paragraph, it may
be noted that when the Hamiltonian of a system de-
pends on a set of real (scalar) parameters, these
will typically appear as field variables in statis-
tical mechanics. )

Previous work dealing with the geometrical form
of phase diagrams near higher-order critical
points is found in Refs. 4—6. The proposal of
Chang, Hankey, and Stanley, * though somewhat
vague and failing to distinguish adequately (in our
opinion) between situations with and without sym-
metry breaking, is similar in spirit to the one
presented below. Zernike® has discussed the num-
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ber of components necessary in a fluid mixture in
order to observe a critical point of the sort dis-
cussed in Sec. IVB below. Schulman® and his col-
laborators have used the theory of catastrophes
for classifying critical points. While we are in-
debted to Ref. 6 for various ideas, our own ap-
proach is different in some important respects.
Catastrophe theory (so far as we understand it)
provides a phenomenological model of phase tran-
sitions with results at critical points which are
very similar, if not identical, to those predicted
by the Landau model (Sec. IV below). (We are not
convinced by the claims®:7 that catastrophe theory
is superior to the Landau model in allowing for
nonclassical exponents.) By contrast, our system
of classifying higher-order critical points in terms
of their phase diagrams is not wedded to any par-
ticular scheme for generating them, although as a
practical matter we must employ phenomenologi-
cal models to produce specific examples.

An outline of the remainder of this paper is as
follows. Section II contains a general discussion
of phase diagrams from the point of view adopted
in this paper. The notions of codimension, char-
acteristic ball, and topological equivalence, as
applied to phase diagrams, are introduced togeth-
er with a graphical representation of certain fea-
tures of phase diagrams. The characteristic balls
and graphs for multiple-phase coexistence, criti-
cal points, and critical end points are the subject
of Sec. III. Section IV contains a discussion of
higher-order critical points as found in Landau
models with one order parameter (treated in de-
tail) and two order parameters (a preliminary
treatment), and certain geometrical notions which
aid one in guessing the forms of possible charac-
teristic balls not given by the Landau models. A
brief summary, together with a list of unanswered
questions, is found in Sec. V.

II. GENERAL PROPERTIES OF PHASE DIAGRAMS

A. Examples and a definition

The phase diagram for a pure substance in the
pressure p, temperature T plane has, typically,
features like those indicated schematically in Fig.
1. The two-dimensional regions «, 8, ¥ occupied
by the different phases are separated by curves
along which two phases coexist. These two-phase
curves terminate at triple or three-phase points
(a, b), or critical points (c), or on the boundaries
of the diagram.

For a binary inixture there are three indepen-
dent fields, e.g., p, T, and the chemical potential
or activity of one of the components. The three-
dimensional regions occupied by different phases

are separated by two-phase surfaces which ter-
minate on three-phase lines or lines of critical
points. In addition, the regions of two- and three-
phase coexistence and critical points can termi-
nate on the boundaries of the diagram,

In general one has a thermodynamic space ¥
which is some region in an s-dimensional real
vector space spanned by the (field) variables y,,
Yos ... ,Ys. Inside Y there will be points of two-
phase, three-phase, etc., coexistence along with
critical and higher-order critical points, critical
end points, and the like. We denote by @ the total-
ity of such points, which we expect will form a
closed set (in the usual topology) relative to Y.
The phase diagram shall be the pair (¥, @), and we
will occasionally refer to Y or @ as the phase di-
agram when the other member of the pair is clear
from context. A subset Y’ of Y is a phase diagram
(Y, v'neQ).

B. Acceptable phase diagrams

Theory and experiment together suggest that @
can have only certain restricted forms and cannot
be an arbitrary subset of ¥. The rules which
specify an “acceptable” phase diagram @ are, at
present, phenomenological principles whose range
of applicability is not known. It is a challenging
theoretical problem to relate them to the funda-
mental principles of statistical mechanics. With
out any attempt at completeness, we may mention
the following as reasonable phenomenological
rules.

Each point in ¥ belongs to one of a limited num-
ber of acceptable types of points, each type (or
“entity”) being determined by the properties of
the phase diagram in the immediate vicinity of
the point. For example, a point in ¥ which is not
in @ corresponds to a single phase (we shall call
it a one-phase point); such a point is characterized
by the fact that it has an open neighborhood which

FIG. 1. Schematic phase diagram for a pure sub-
stance.
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does not intersect Q.

Points of a given type lie on smooth manifolds
(curved hypersurfaces) in Y whose codimension k
is characteristic of the entity in question. By
codimension we mean the dimension of the space
Y minus the dimension of the manifold. For brev-
ity we shall say that an entity “has” a given codi-
mension when we mean that a manifold of points
corresponding to this entity is of that codimension.
For example, two-phase points lie on manifolds of
dimension one less than Y, so x =1, while critical
points have x=2. We prefer to leave undefined
the precise degree of smoothness of a smooth
manifold, since it is unimportant for present pur-
poses. A reasonable assumption is twice continu-
ously differentiable, though the second derivatives
may diverge upon approaching a boundary of the
manifold.

C. Characteristic balls

If the space Y is two-dimensional, a triple or
three-phase point can be easily identified by the
three two-phase lines which come together at this
point. At a triple line in a three-dimensional
space, three two-phase surfaces come together,
but if we take a two-dimensional section of the
space which intersects, and is not parallel to, the
triple line at some point, this section again con-
tains three two-phase lines meeting at the triple
point. Thus this two-dimensional section is char-
acteristic of triple points and can be used to iden-
tify such a point no matter what the dimension of
the space Y.

The following definitions are an attempt to make
the foregoing more precise. Two phase diagrams
(Y, @,) and (Y,, @,) are topologically equivalent
if there is a homeomorphism (one-to-one mapping
which, together with its inverse, is continuous)
from Y, onto Y, which maps @, onto @,. The ball
B,(z) of radius » centered at z, the set of points y
in Y for which |y-z| is less than 7, will be called
a typical ball for the point z if it is topologically
equivalent as a phase diagram to any ball of
smaller radius centered at z. A characteristic
ball is a typical ball whose center is unique in the
sense that any homeomorphism which carries
B,(z) and B,(z)N @ onto themselves must map z on-
to itself. Figure 2 shows examples of typical, non-
typical, and characteristic balls in a two-dimen-
sional phase diagram.

The typical ball labeled 3 in Fig. 2 is an example
of a cylinderof a characteristic ball, or character-
istic cylinder. We define this object more pre-
cisely as follows. Let (B, @) be a characteristic
ball in a space V, and C a unit ball in a space W.
In the product® V XW of ordered pairs (v, w) we
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FIG. 2. Phase diagram with the balls (in this case
disks) surrounding certain points indicated by light
cross hatching. Ball 1 is nontypical while 2, 3, and 4
are typical; 2 and 4 are characteristic while 3 is a
cylinder.

define
B'={(v,w) : ve B,we C},

Q' ={(v,w): ve Q,we C}.

Then (B’, @’) and any phase diagram topologically
equivalent to it is by definition a cylinder of the
characteristic ball B.

We can now make the phenomenological rules in
Sec. B above more precise. We assume that for
any yeVY in a phase diagram (Y, @) there is a pos-
itive » such that B,(y) is a typical ball which is
either a characteristic ball or the cylinder of a
characteristic ball. Two points in ¥ are of the
same type, or correspond to the same entity, if the
corresponding characteristic balls are topologi-
cally equivalent. We assume that the totality of
points corresponding to a particular entity (such
as three-phase coexistence) lie on one or more
smooth manifolds with codimension equal to the
dimension of the characteristic ball. In addition,
only typical balls topologically equivalent to one
of a certain catalog of acceptable characteristic
balls, or their cylinders, are permitted in an ac-
ceptable phase diagram. Sections III and IV of
this paper are devoted to devising such a catalog.

Homeomorphisms are probably not the ideal
transformations to use in defining equivalence
classes of points in a phase diagram. They do not
preserve smoothness of the manifold or the geo-
metrical properties embodied in the 180° rule® and
its analogs for m (>3)-phase coexistence. None-
theless, topological equivalence provides a simple
classification scheme which can then be further
refined.

D. Phase-diagram graphs

Since phase diagrams in a space of dimension
greater than 3 are difficult to visualize, it is use-
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ful to construct a graph which contains some of
the topological information in the diagram. Each
separate manifold in the phase diagram is repre-
sented by a vertex, and vertices corresponding to
manifolds of the same codimension are placed in
the same column (or row if one prefers). If one
manifold lies on the boundary of another with one
less codimension, a directed edge is drawn from
the vertex corresponding to the first manifold to
that corresponding to the second. (The arrow on
an edge, in the direction of decreasing codimen-
sion, may be omitted when this direction is obvi-
ous, as in Fig. 5.) Figure 3 is the graph for the
phase diagram in Fig. 1.

The phase graph shows what happens on the
boundaries of different manifolds. Of course a
manifold may terminate on the boundary of a phase
diagram. For this reason such points on the
boundary of the diagram may be considered a sep-
arate “boundary entity” of codimension one more
than that of the original manifold, and a corre-
sponding vertex added to the graph (this has not
been done in Fig. 3).

A chavacteristic graph, or phase-diagram graph
for a characteristic ball, has a unique vertex at
the maximum codimension, and all other vertices
can be reached from it following a chain of edges
in the direction of decreasing codimension. Two
such graphs are equivalent if there is a one-to-
one mapping of the vertices of one onto vertices of
the same codimension in the other which simulta-
neously carries the edges of the first onto those
of the second. This equivalence can be used in
place of the topological equivalence of character-
istic balls discussed previously in order to clas-
sify the different points in a phase diagram. Ob-
viously, equivalence of the characteristic balls
implies equivalence of the corresponding graphs,
but not the reverse. We have not yet discovered
any cases in which two inequivalent acceptable
characteristic balls correspond to equivalent
graphs.

K=2 | o)
FIG. 3. Phase-diagram graph for the diagram in Fig.
1. Codimensions are noted at the bottom of each column.

III. COEXISTENCE OF PHASES AND CRITICAL POINTS

A. Special sections and symmetries

Under certain circumstances, one encounters
apparent violations of the principles set forth in
Sec. II and extended below. An example is the
case of “special sections,” illustrated in a two-
dimensional phase diagram (e.g., the p, T plane
for a pure substance) in Fig. 4. Situation (b) in
this figure, in contrast to (a) and (c), is not per-
mitted by the Gibbs phase rule because all four
phases o, 8,y, and & coexist at the center of the
diagram. Imagine, however, that one could vary
a parameter in the Hamiltonian so that the phase
diagram changed continuously from (a) to (c).
Clearly (b) would occur for some value of the pa-
rameter, and in this sense it is not an unreason-
able diagram. Indeed, if one adds the parameter
just mentioned to the other two field variables
used in Fig. 4, the resulting thermodynamic space
is three-dimensional and the center of Fig. 4(b) is
perfectly acceptable as a point of four-phase co-
existence in this augmented variable space. The
apparent anomaly in Fig. 4(b) arises from taking
a special section of the three-dimensional space
which just happens to pass through the four-phase
point. In this paper we shall always suppose that
situations such as Fig. 4(b) can be taken care of
by suitably augmenting the variable space, and we
shall not discuss the rules which govern the phase
diagram in a special section.

A similar problem is posed by systems whose
Hamiltonians possess special symmetries. In this
situation a diagram as in Fig. 4(b) could be the
result of a symmetry requirement which caused
the parameter to have precisely the right value.
This subject is an interesting one but beyond the
scope of the present paper, in which we will as-
sume that no such symmetries occur.

B. Coexistence of m phases

The Gibbs phase rule states that the coexistence
of m phases in a system composed of ¢ components
has

f=c+2-m (3.1)

Y
3 Y
(a) (b) (c)

FIG. 4. Diagram showing four phases in a plane.
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degrees of freedom. In a field-space phase dia-
gram, f is the dimension of the manifold of m -
phase coexistence. Since there are ¢ +1 indepen-
dent fields, the manifold has a codimension «
equal to ¢ +1~f, or

k=m - 1. (3.2)

While (3.1) and (3.2) are equivalent, the latter is
to be preferred when discussing field-space
phase diagrams because there is no dependence
on the number of components, and the relation-
ship remains valid in the presence of chemical
reactions or when one augments the thermody-
namic space using parameters in the Hamiltonian.

With the same degree of rigor used to derive
(3.1), one can show (Appendix A) that the charac-
teristic ball for m-phase coexistence is unique
(up to topological equivalence) and contains pre-
cisely one manifold of points where a given (non-
empty) subset of the m phases, and no others, co-
exist. The characteristic graph has one vertex
for each nonempty subset of the m phases, and a
directed edge is drawn from one vertex to another
if the former subset is obtained by adding one
phase to the latter. The case m =3 is shown in
Fig. 5.

C. Critical points and critical end points.
Elementary and composite entities

An ordinary critical point with codimension x =2
occurs when two coexisting phases become identi-
cal. The characteristic ball is number 4 in Fig.
2. A critical end point [Fig. 6(a)] with k=3 occurs
when two coexisting phases become identical in
th~ nresence of a third. Figure 7 shows the phase

s:ram near such a point. Two phases may also
become identical in the presence of two [Fig. 6(b)]
or more additional phases. Each additional phase
increases the codimension by one.

The different kinds of critical end points repre-
sent distinct possibilities in terms of phase dia-

aB a
@

K=2 | 0] =1

FIG. 5. Characteristic graph for three-phase co-
existence. Phases are labeled o, B, and y. Dotted
lines and the vertex at k =—1, normally absent, are
added to form the augmented graph (see Appendix B).

(a) (b) (c)

FIG. 6. A schematic diagram of a container with
several fluid phases. Solid lines indicate meniscuses and
broken lines meniscuses which have just disappeared at
a critical point.

grams, but the presence of the additional phases
is not expected to have much influence on the crit-
ical phenomena. Two phases coexist when their
free energies'® are equal, but the properties of one
of the phases are not expected to change signifi-
cantly if the fields are altered slightly so that the
other phase is absent. With enough thermodynamic
degrees of freedom, one can achieve critical phe-
nomena simultaneously in two distinct phases

[Fig. 6(c)], but the mutual influence of the critical
phenomena is probably restricted to their effects
on the free energies of the respective phases.

It is convenient to use a product notation for sit-
uations such as the ones just discussed. If S and
U stand for two entities, SU or US will denote the
entity which corresponds to having S and U pre-
sent simultaneously in two coexisting phases with
distinct properties. Let A stand for a simple sin-
gle phase and B an ordinary critical point. Three-
phase coexistence is AAA or A3 in this notation.
The critical end points in Figs. 6(a) and (b) are

* BA and BA?, respectively, while Fig. 6(c) is B2,

We introduce two hypotheses concerning such

products: (i) The codimension « of SU is given in
terms of those of S and U by

k(SU) = k(S) + k(U') + 1. (3.3)

FIG. 7. Phase diagram in a three-dimensional field

space near a critical end point M at the intersection of
a line of critical points KM and a triple line LM.
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(ii) The characteristic ball for SU is uniquely de-
termined (up to topological equivalence) by the
characteristic balls of S and U.

The first hypothesis seems reasonable in the
light of the usual arguments used to justify the
phase rule. The second is given support by the
technique described in Appendix B for generating
the characteristic ball of SU from those of S and
U. We are not entirely sure, however, that this
technique is correct.

The second hypothesis greatly simplifies the
task of constructing a catalog of acceptable char-
acteristic balls. We define a composite entity as
one which is the product of two (or more) entities
in the sense just discussed. An elementary entity
is one which is not composite. We shall assume
that a composite entity is acceptable if and only if
it is a product of acceptable elementary entities.
Qur task then becomes one of finding all the ac-
ceptable elementary entities. They should all,
with the exception of A, be some sort of critical
point.

As noted previously, the points where the mani-
fold of some entity intersect the boundary of YV
may be thought of as a special boundary entity. A
possible notation is Sa for the boundary entity'* if
S is the entity in the interior of Y. The former
has a codimension one greater than the latter.

IV. HIGHER-ORDER CRITICAL POINTS

A. General remarks

If the ideas in Sec. III are correct, the local
properties of an acceptable phase diagram are
completely specified by a catalog giving all ac-
ceptable elementary characteristic balls. We
know of no method of obtaining these by purely
thermodynamic considerations. Alternative possi-
bilities are experiments on real materials, calcu-
lations using statistical mechanics, and guesses
based on geometrical intuition. The last is un-
likely to prove a reliable guide, though we discuss
one application of it in Sec. IVD. Experiments on
fluid mixtures are potentially a very valuable
source of information, but to date have revealed
nothing more complex than tricritical points.

Thus we must turn to statistical mechanics for
the bulk of our information on higher-order crit-
ical points. Exact model calculations of phase co-
existence are rather rare. Typical approxima-
tion methods, if they yield a consistent thermo-
dynamics, give results qualitatively similar to
mean-field theory. Even though their detailed
predictions for critical phenomena are in error,
such approximations often yield phase diagrams
with correct topological features. Landau'? has
shown how the essential qualitative results of

these approximations can be obtained by simply
expanding a thermodynamic potential as a power
series in an order parameter. Since we are only
concerned with qualitative features of phase dia-
grams, we shall follow Landau’s procedure and
make no direct reference to underlying statistical
models.

Series expansion methods and renormalization
group calculations give better descriptions of
critical phenomena than Landau’s procedure. Nei-
ther method is very effective in locating m ~phase
coexistence surfaces, and thus they have not, to
date, added much to our knowledge of the qualita-
tive features of phase diagrams. In addition there
are a number of exactly soluble models in one and
two dimensions. The resulting phase diagrams
are either in qualitative agreement with Landau’s
approach and the type of diagrams observed in
experiments (on three-dimensional system), or
so completely different!® as to deserve a separate
discussion beyond the scope of this paper. Of
course, it may very well be the case that the class
of acceptable characteristic balls depends on the
class of systems one is willing to consider, and in
particular on the dimensionality.

In what follows we shall discuss the Landau mod-
el with one order parameter in some detail. The
case of two order parameters is much more dif-
ficult and we present only preliminary results.
Additional novelties are to be expected from mod-
els with three, four, etc., order parameters, but
only at higher codimensions, and we do not dis-
cuss them. A characteristic ball which could be
the “fluid equivalent” of the two-dimensional
three-component Potts model is presented in Sec.
IVD.

B. Landau model with one order parameter

Let the thermodynamic potential ¥ be a real poly-
nomial in the order parameter x:

U =qy+a,%+ax° ++ + -+ 229 (4.1)

As the notation indicates, we assume the polyno-
mial is even and the coefficient of the highest pow-
er is 1. (It suffices to assume that it is positive.)
The a’s are thermodynamic field variables spann-
ing a space Y. For a given choice of a’s, the sta-
ble thermodynamic state is identified with the x
which minimizes w. If the minimum occurs for m
distinct values of x, these are identified with m
coexisting phases. Local, as opposed to absolute
or global, minima of ¥ are to be ignored.

Clearly a, has no influence on the thermodynamic
state. Thus, we may without loss of generality
choose it (as a function of the remaining a’s) so
that the minimum value of ¥ is always zero. Such
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a ¥ can be written in the form!*
q
¥ = H[(x—b,)z +dj]’ (4'2)
151

where the »’s and d’s are real, the d’s are non-

negative, and at least one of the d’s is zero. It is
convenient to represent ¥ by a “configuration,” a
set of points (b,, d;) in the b,d plane (see Fig. 8).

If m of the d’s are zero and the corresponding
b’s are distinct we have m-phase coexistence [see
Fig. 8(a), m =2]. As this requires m~ 1 additional
constraints on the d’s (we have already assumed
that one of them is zero), the manifold of m -phase
coexistence in Y has codimension m - 1, as ex-
pected. A critical point occurs if two of the d’s
are zero and the corresponding b’s coincide [ Fig.
8(b)]. The additional constraint on the 5’s means
the codimension k is one more than for two-phase
coexistence; hence x=2.

From plots such as in Fig. 8 it is evident that
all points of m -phase coexistence lie on the same
manifold, since the configuration in the b,d plane
for one of them can be continuously transformed
into the other, while at the same time always
maintaining m d’s equal to zero and the correspon-
ding »’s distinct. Similarly there is only one man-
ifold of critical points. However, there are two
distinct manifolds of critical-end points, since it
is impossible to go continuously from (c) to (d) in
Fig. 8 without having some configuration which is
not a critical end point. We shall label the mani-
folds corresponding to Figs. 8(c) and (d) as BA and
AB, respectively, even though the characteristic
balls are topologically equivalent.

A tricritical point C with codimension 4 arises
in the Landau model when three d’s are zero and
the corresponding b’s coincide. It is evident,
using continuity in the b, d plane, that the manifold

(a) (b)

(c) (d)

FIG. 8. Configurations in the b, d plane representing
(2) A%, (b) B, (c)BA and, (d) AB. Where two points
coincide, one of them is indicated with an open circle.

of tricritical points is on the boundary of two man-
ifolds of critical end points AB and BA. Its char-
acteristic graph is shown in Fig. 9.

In general, a critical point of order » with codi-
mension 27 —2 comes about if » d’s are zero and
the corresponding b’s coincide. A possible nota-
tion is D, E, etc., for » =4, 5, etc. The character-
istic graph for such a point is easily constructed
by separating the coincident points into clusters
on the b axis, with the codimension decreasing by
1 for each separate cluster produced. If a cluster
consists of only one point, the corresponding d
may be made positive, again decreasing the codi-
mension by 1. By repeating in every possible way
these two processes of separation (along the &
axis) and “evaporation” (off the b axis), one ob-
tains all the manifolds in the characteristic ball.
Manifolds of composite entities are conveniently
labeled by giving the symbols of the different ele-
mentary entities in the order in which they occur
on the b axis. Two manifolds are distinct if the
elementary entities occur in a different order.
Figure 10 shows the characteristic graph of D.

It should be possible to construct the character-
istic ball, as well as the characteristic graph, by
means of continuous variation of configurations in
the b, d plane. Thus far we have not found an ef-
fective method of doing so. One special feature of
this model may be noted, however. Due to the fact
that the order parameter is one dimensional, it is
never possible to continuously interchange two
phases while remaining on a manifold of two-phase
coexistence. More generally, the order of m co-
existing phases is always preserved under contin-
uous variations which take place on the m-phase
manifold. It seems unlikely that this feature will
always be true in Landau models with two or more
order parameters.

C. Landau model with two order parameters

Let ¥ be a real polynomial in the variables x
and y,

= Z zk: a, xlyk, (4.3)

BA B
C
A2 A
AB A3
K=4 3 2 1 0

FIG. 9. Characteristic graph for a tricritical point C.
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K=6 5 4 3 2 { 0

FIG. 10. Characteristic graph for a fourth-order
critical point D. .

with the coefficients of the highest powers chosen
so that as x2+y% becomes infinite, ¥ diverges to
+o, The stable thermodynamic phase is the pair
(x,v) for which ¥ is a minimum, and multiple
minima imply multiple-phase coexistence. The
coefficients a;, span a thermodynamic space ¥ and
the codimension of a manifold in this space is de-
termined by the number of equations involving the
coefficients which are needed to insure the exis-
tence of the entity (e.g., a critical point) in ques-
tion. The coefficients must also satisfy certain
inequalities, but these determine the boundary of
the manifold(s) and not the codimension.

We may without loss of generality suppose that
a particular elementary entity of interest to us
occurs at the origin x=y =0. Such a requirement
adds two constraints to the coefficients, so that
in calculating the codimension of an entity we
should subtract two from the number of equations.

In order that the origin be a minimum we must
have

a0 a5,=0 (4.4)
and
4ay0aq, — a? =0, (4.5)

If (4.5) is a strict inequality, the origin is a local
minimum, and additional inequalities on the coef-
ficients will ensure it is a global minimum corre-
sponding to a one-phase point. The codimension

k =0 is found by subtracting two from the number '

of constraints, two, in (4.4). For a critical point
to occur at the origin, (4.5) must be an equality.
We distinguish two cases: (i) Either a,, or ay, or
both are positive. (ii) All quadratic terms vanish:
30 = a3y =dgz =0.

In case (i) there is a unique straight line through
the origin along which the curvature of ¥ at the
origin vanishes. Without loss of generality we
may assume that this line coincides with the x ax-
is, or

Ay =05, =0, (4.6)

while a,, is positive. Let the equation

oV _
oy (4.7)

define a function y,(x). Using the conditions just
given, one can show that in a sufficiently small
neighborhood of the origin, y,(x) is single valued
and can be written as a power series in x starting
with x2 or a higher power. Replacing y by y,(x) in
(4.3) yields a power series in x for ¥ along the
curve defined by (4.7). We can now utilize the re-
sults of Sec. IV B above: to obtain an rth-order
critical point all derivatives of ¥ with respect to
x along v,(x), of order less than or equal to 2» -1,
vanish. Of course certain inequalities on the ay,
are needed to insure that ¥ does not have a mini-
mum value away from the origin which is less
than its value at the origin.

Strictly speaking, we must relax the constraints
(4.4) and (4.6) to obtain a complete analogy with
the one-order-parameter Landau model previ-
ously discussed. However, as long as these co-
efficients are sufficiently small, the curve yy(x)
is single valued with a power-series expansion in
the neighborhood of the origin, and ¥ along this
curve is a power series in x. We must assume
that a,, has a fixed positive value.

In case (ii) all the quadratic coefficients vanish,
and therefore if the origin is to be a minimum all
the cubic terms must also be zero:

a;,=0 for all j+k <3. (4.8)

There are nine equations in (4.8), which means the
corresponding entity has codimension 7. We shall
provisionally label it D,. It appears to be the en-
tity of lowest codimension which arises in the two-
parameter but not in the one-parameter Landau
model.

Our investigations of D, have not progressedvery
far. We have not even been able to show that it is
a single entity. [As well as (4.8) there must be
inequalities for higher-order coefficients, and it
is conceivable that different sets of inequalities
give rise to distinct characteristic balls.] The
objects which Fisher and Nelson'® have termed
“bicritical” and “tetracritical” points occur as
(different) special sections of D,. It is clear that
four-phase points occur in the vicinity of D, (hence
the symbol D), and it seems unlikely that a larger
number of phases coexist in its vicinity. A pre-
liminary study indicates four manifolds of D in the
characteristic ball of D,, but we have been unable
to construct the complete characteristic graph.

Of course, there will be additional higher-order
critical points in the model with two order para-
meters, but at present we have no idea what they
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are. Models with more than two order parame-
ters should lead to still more possibilities. How-
ever, the higher codimensions of these exotic
points imply that they may be ignored in simple
phase diagrams. For example, the point analogous
to D, in a model with three order parameters,
where the linear, quadratic, and cubic coefficients
of the polynomial all vanish, should have codimen-
sion 16.

D. Geometrical principles for constructing characteristic balls

It would be interesting if one could express nec-
essary and sufficient conditions for an acceptable
characteristic ball in purely geometrical form
without reference to a particular model of a phase
transition. OQOur efforts in this direction have not
had much success. If the class of acceptable
characteristic balls depends on the class of Ham-
iltonians considered, then purely geometrical
principles will obviously not suffice. Nonetheless,
geometrical intuition may play a useful role when
combined with other information.

All characteristic balls we have examined sat-
isfy the following three principles, where « is the
dimension of the ball, or equivalently, the codi-
mension of the entity at its center: (i) All entities
occuring in a characteristic ball at points other
than the center must themselves be acceptable.
(ii) There is at least one manifold of an entity of
codimension x — 1 in the characteristic ball. (iii)
Every pair of manifolds of codimension k-1 in the
characteristic ball is connected by a manifold of
codimension k —2. An equivalent statement is that
for any pair of vertices of codimension k-1 in the
characteristic graph there is a vertex of codimen-
sion k -2 joined by single edges to each vertex of
the pair.

We explored the implications of these rules in
connection with an “erasure” procedure for pro-
ducing characteristic balls for elementary enti-
ties. One starts with the characteristic ball of
m-phase coexistence and then “erases” (removes
from @) certain of the two-phase manifolds, so
that the phases on either side are no longer dis-
tinct but from a single phase, as illustrated in
Fig. 11 for m =3. We examined all the possibil-
ities for m =3, 4, and 5, and a large number of
possibilities for m =6. For m <5 the only elemen-
tary entities produced by erasure which survived
the three rules were one-phase (A), critical (B),
and tricritical (C) points. We were unable to gen-
erate D, with » =8, which probably means that the
erasure procedure (rather than the rules) is too
restrictive.

The procedure did yield one interesting possi-
bility for m =6, codimension 5: a characteristic

_/ .

(a) (b) (c)

FIG. 11. Erasure procedure: (a) three-phase co-
existence where three two-phase manifolds (lines) meet.
The result of erasing one or two of the two-phase mani-
folds is shown in (b) and (c), respectively.

ball which could be the fluid analog of the three-
state Potts model in two dimensions.**'" The ball
is easiest to describe in terms of an erasure pro-
cedure which is slightly different from the one
discussed above. A two-dimensional space X con-
tains a three-phase characteristic ball, as in Fig.
11(a). Let T be a three-dimensional space of
“times” ¢=(¢,,%,,¢;). A phase diagram in the
space® XxT is constructed as follows. For ¢,<0,
the jth two-phase line is present in X, but it is
erased when ¢,=0 and remains absent for ¢,>0.
The ordered pairs (x, ¢) such that x is in one of
the two-phase lines which has not yet been erased
for this ¢t constitute a set @* whose closure is Q.
By setting ¢, =¢, =t, one obtains a special section
topologically equivalent to Fig. 2 in Ref. 16. This
proposal for the characteristic ball is, of course,
nothing more than an educated guess in the ab-
sence of more detailed calculations on, or a bet-
ter theoretical insight into, the corresponding
Potts model. It has one topological feature worth
mentioning: It is possible, in the immediate vicin-
ity of the critical point, to interchange two phases
while they are coexisting with each other by fol-
lowing a suitable path on the two-phase manifold,
a process not possible near critical points de-
scribed by the one-parameter Landau model.

V. SUMMARY AND REMAINING PROBLEMS

Our scheme for describing acceptable phase di-
agrams and classifying higher-order critical
points consists of the following principal items.

(i) Each point in an acceptable phase diagram in
field space must be at the center of an acceptable
characteristic ball or cylinder.

(ii) Two characteristic balls correspond to the
same entity (e.g., two-phase coexistence) if they
are topologically equivalent.

(iii) Acceptable entities are either composite
or elementary. The characteristic ball of a com-
posite entity is uniquely determined by the char-
acteristic balls of the elementary entities of which
it consists. Hence a catalog of characteristic
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balls for all acceptable elementary entities deter-
mines all acceptable characteristic balls. These
elementary entities, apart from the one-phase
point, are some sort of critical point.

(iv) Some of the topological information present
in a phase diagram, and in particular in a char-
acteristic ball, may be conveniently represented
in terms of a graph.

(v) The Landau model with one order parameter
yields rth-order critical points with codimension
2y =2 for »=2,3,4,....

(vi) The Landau model with two order param-
eters yields all the critical points of the model
with one-order parameter, and additional points
starting with one at codimension 7.

There may very well be serious flaws in the
proposals in this paper which vitiate its scheme
for describing phase diagrams. Assuming that
this is not the case, the following questions re-
main open.

(i) What are the rules for phase diagrams which
are special sectiongs?

(ii) What are the rules for phase diagrams in
which symmetry breaking plays a role?

(iii) Should the equivalence of different features
in a phase diagram be discussed in terms of a
more restricted class of transformations than
homeomorphisms?

(iv) The assertion that the characteristic ball for
a compound entity is uniquely determined in terms
of its constituents needs to be placed on a firmer
basis (assuming it is correct).

(v) What is the complete catalog of higher-order
critical points which can be produced by a Landau
model with » order parameters, n=2?

(vi) Are there necessary and/or sufficient geom-
etrical conditions for an acceptable characteristic
ball?
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APPENDIX A: CHARACTERISTIC BALLS FOR
m-PHASE COEXISTENCE

Let the thermodynamic space Y have dimension
m — 1 and let f;(y) be the free energy'® of phase j
as a function of y e Y. We assume that the point of
m-phase coexistence where all the f’s are equal is
the origin, y =0, and that their common value at
this point is zero. Then to a first approximation,
assuming the f’s are smooth functions, each f; can
be replaced by a linear functional:

fi)==[¢;v], (A1)

where ¢, is an element of the dual space!® v*.
We assume the ¢’s form an (m~ 1) simplex in
Y*, so that the quantities

ij=¢j_¢m (Az)

for j=1,2,... ,m—-1 are linearly independent and
a basis for Y*. This assumption is typical of
those always made in deriving the phase rule.
Were the §’s linearly dependent, this would imply
an accidental and unexpected relationship among
the f’s. The essence of the phase rule is that such
accidents do not occur.’® We can, therefore,
choose a basis y,, k=1,2,..., m-1, in ¥ such

that

[lpj; Ve ] =0 (A3)
Consequently, if

y= 2:‘ Leyr, (A4)
with the ¢’s real numbers, we have

f,(Y)=—l‘, +fm(3’), (AS)

an equation which is also valid for j=m if we adopt
the convention

t,=0. (A6)

The region in Y occupied by phase j is that in
which f; < f, for all k#j, or

ty> t, (AT)

for all £#j. Similarly phases j and % coexist
where f; and f, are identical and smaller than all
other free energies, or

ty=ty>t (a8)

for all /#j or k. Similar expressions can be writ-
ten down for coexistence of more phases than two.

One quickly verifies that the regions (A7), (A8),
and their analogs are convex cones in Y. A dif-
ferent choice of f’s leads to a different set of y’s
and thus a phase diagram related to the one just
discussed by a nonsingular linear transformation
[in the approximation represented by (A1)]. Thus
all characteristic balls of m-phase coexistence
are topologically equivalent.

APPENDIX B: CHARACTERISTIC BALLS AND GRAPHS
FOR TWO COEXISTING ENTITIES

Let S and I/ be two (elementary or compound)
entities with characteristic balls (¥, @,) and
(Z,Qz). Let X be the interval —1<x<1. LetW =
XX YXZ consist of ordered triples®

w=(x,9,2), (B1)

with x, v, and z in X, Y, and Z, respectively. The
set @ C W consists of (i) all w for which x=0, (ii)
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all w for which x<0 and y € @y, and (iii) all w for
which x>0 and z € Q.
The phase diagram (W, Q) is (we believe) topolog-
ically equivalent to the characteristic ball for SU.
Should U be a one-phase point A, the above pre-
scription must be modified so that W =XxY con~
sists of ordered pairs (x,y) and (iii) is to be ig-
nored. An analogous modification occurs if S=A.
In order to obtain the characteristic graph of
SU, it is convenient to first construct augmented
characteristic graphs Gg and G, for S and U by
adding in each case an artificial “ghost” vertex at

codimension — 1 connected by edges to all vertices
of codimension 0 (see Fig. 5). The augmented
graph Gy, of SU has a vertex (sy,u,) for every ver-
tex s; in G¢ and u, in G, with codimension given

by

K((sgy1,)) = k(sy) +k(t) +1. (B2)

There is an edge in G4, between (s;,u,) and (s;,u,)
if and only if either (i) j =i and there is an edge in
Gy between u, and u,, or (ii) =1 and there is an
edge in G4 between s; and s;.
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