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Local-field effects, x-ray diffraction, and the possibility of observing the optical Borrmann
effect: Solutions to MaxwelVs equations in perfect crystals
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(Received 24 September 1974)

The electromagnetic normal-mode solutions to Maxwell s equations in perfect crystals are investigated includ-
ing local-field effects by means of the dielectric-response matrix. The dynamical theory of x-ray diffraction is
seen to be a special case thereof. At optical frequencies, a perturbation-theory expansion in q, the reduced wave
vector, is solved and used to investigate the possibility that a microscopically varying component of the
normal mode, e' + ' (K is a reciprocal-lattice vector), can transmit into the vacuum. The optimal effciency for this
process is estimated to be 2.6 )& 10 ' for hem = 1.5 eV in diamond. However, this process may be affected by
the intrinsic irregularities, on an atomic scale, of the crystal-vacuum interface.

I. INTRODUCTION

Traditionally, the electromagnetic response of
solids under the action of applied fields of fre-
(luencies less than (say) 30 eV has been discussed
in terms of the wave -vector - and frequency-de-
pendent dielectric tensor c(j, &u) under the assump-
tion that the medium is homogeneous. ' As a clas-
sical counter example, an electric field applied
to a crystal of well-localized atoms induces a
point dipole at each site; the resulting total elec-
tric field varies strongly on an atomic scale
though the applied field does not. In order to
retrieve the isotropic Clausius-Mossotti relation
between the macroscopic dielectric constant and
the (microscopic) atomic polarizability, one must
explicitly include, in some fashion, the aforemen-
tioned small-scale fluctuations of the electric
field. ' It is experimentally known that the Claus-
ius-Mossotti relation is satisfied in certain so-
1ds.

Effects of this nature can be accounted for by
means of the dielectric-response matrix e(Q, Q').
Generally, I consider any situation in which one
takes into account the microscopic variation of the
field and its response to be a "local-field effect."
This article is devoted to normal-mode solutions
to Maxwell's equations in crystals, explicitly tak-
ing into account the spatial inhomogeneity of the
electronic charge. In Sec. II the problem is de-
fined, the equation of motion derived, and a few
general results presented. From this point of
view, the dynamical theory of x-ray diffraction is
seen to be a special case in Sec. III. I have pre-
sented a perturbation theory solution, valid at
optical frequencies, in Sec. IV and have presented
a possible (though difficult) experiment to directly
observe the microscopically varying electric
fields (those Fourier components of the normal

mode whose wavelengths are on the order of an
atomic diameter). Section V summarizes this
paper.

II. MAXWELL'S EQUATIONS IN A NONMAGNETIC

PERFECT CRYSTAL

A. Microscopic Maxwell's equations

Maxwell's equations can always be written as if
in a vacuum,

g =4'„,,
V ~ 8=0

(2.la)

(2.1b)

SVxg =-— (2.1c)

c Vx=4pJ, , + —, (2.1d)

(2.2a)

(2.2b)

VxE =—8B
(2.2c)

Qgc2Vx 8 =4m(J,„+J;„„)+—. (2.2d)

In these equations the conservation of external
and induced charge densities can be assumed
separately. It is convenient to define

(2.3a)

where p„,and J„,(in a crystal) include contribu-
tions from -10'4 particles and their spins. I wish
to consider crystals externally perturbed, e.g. ,
by monochromatic light, and so it is convenient
to define E = g(perturbed) —8 (unperturbed) and
similarly for B;

V ~ E =4m(p +p ),
Ve B-Q
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D =E+4nP, (2.3b)

so that Maxwell's equations reduce to their usual
form

= nE(r'), then it automatically follows that
D(c(r + 7') = nD(r ), which in turn implies [o( and
e(Q, Q') are tensors]

V ~ D =4'
V ~ B=0,

(2.4a)

(2.4b)

n ' ~ e(o(r + 7, nr'+7) o. = e( r, r'),
c( ' &(o.(q+K), o.(q+G)) ue'"t

(2.7a)

BVxE=-—
Bt ' (2.4c)

aD
c VxB=47T Je„+ (2.4d)

with the significant difference that Eqs. (2.4) refer
to difference fields which need not at all be
smoothly varying on an atomic scale even if p„„
and J,„arezero; the usual procedure is to con-
sider the space-averaged fields (over a unit cell,
for instance) in order to get equations involving
smoothly varying (macroscopic) quantities, but
this is not at all necessary and, from the point
of view of microscopic response, undesirable for
a patently inhomogeneous collection of atoms.

As I will not be considering contributions to J
of the form V& M, the boundary conditions at a
mathematical plane separation between two differ-
ent media are the continuity of B, normal D, and
tangential E, because all quantities on the right-
hand sides of Eqs. (2.4) are finite. Boundary con-
ditions will be discussed in more detail in Sec. IV.
If one medium is the vacuum then E =8(perturbed)
unless the other is a ferroelectric.

B. Dielectric response

The most general form of linear dielectric re-
sponse can be summarized4 as

t)(r, t) ff t(tt'; t —t=') ~
E, (t"t )tt r'ttt, '

(2 5)

In a crystal, translational symmetry requires
e(r+ R„r'+R,) =e(r, r') so that the Fourier trans-
form e(Q, Q';(u) is nonzero only when Q-Q' is a
reciprocal-lattice vector. I will use the notation
&(Q, Q'; (u) =e(q+K, q+G;(u) =e» e(q, (u), where q
can be taken in the first Brillouin zone and K, G
are reciprocal-lattice vectors, interchangeably.
Fourier transforming Eq. (2.5) gives

= e(q+K, q+ G) . (2.7b)

I am looking for normal-mode solutions to Max-
well's equations in a crystal, i.e., nontrivial solu-
tions to Eqs. (2.4) when p,„andJ,„arezero. Tak-
ing the Fourier transform of Eqs. (2.4) and using
Eq. (2.6) I find'

2 2

—,D(r, (u)= —, e(r, r';(u) ~ E(r', (u) d'r'

= VX VX E(r, (u), (2.8a)

(d 2—
E D»( q, (u) = —,g e» e ( q, (u) ~ EG ( q, (u)

e», G(q, (u) = e(q+K, (u)5;;
=(&(((q+K, (u)e(q+K)e(q+K)

+ &~(q+K, (u)[1 —e(q+ K)e(q+K)]] 5&

(2.9)

for cubic crystals by Eqs. (2.7). [e(Q) is simply
Q/~ Q ~

.] Equation (2.8b) immediately decouples.
The K =0 equation gives two kinds of solutions
whose dispersion relations are as follows:

= -(q+K) x[(q+K) x E»(q, (u)],

(2.8b)

a kind of eigenvector-(Eej-eigenvalue-((u„(q)].
problem whose band structure can always be
plotted in the first Brillouin zone in the absence
of absorption. Note that Eq. (2.7b) implies (u„(q)
has the point symmetry of the crystal [(u„(aq)
=(u„(q)]. For any normal mode (q, n), the energy
flow is normal to the surface of constant co pass-
ing through (u„(q). '

Qrdinarily, one introduces the fiction that the
crystal is homogeneous [i.e., e(r, r') =e(r —r')]
so that

D(q+K, ~) pe=» e(q~) E, (q+G, ~) . (2.6)
transverse (photon),

E(q)&q: (u'ei(q, (u) =c'q'; (2.10a)

I have defined Z~ z in terms of the fields rather
than the potentials so that all elements are bounded
for finite u for all values of q.'

The symmetry of the crystal is reflected in 7«
as follows: If (n ( vJ is an element of the space
group of the crystal, and if one chooses E(o.r'+ r)

longitudinal (plasmon),

E(q) llq: e(((q, ~(q))=0 (2.10b)

In a real crystal, the normal-mode solutions to
Eqs. (2.8) are more complicated than a single
plane wave but can be written in the Bloch form
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E,(r, t) = QEK(q, u„(q))e'

(2.11)

where n is a band index. The solutions can be
classified group theoretically by observing that if
fo. ( 7'] is a member of the space group of the crys-
tal and if E(r, u) is any solution to Eq. (2.8a.), then
o. 'E(o.r+7, u&) is also a solution with the same
frequency. The set of functions (n 'E(o.r+ v, &u)j

forms a basic for an irreducible representation'
of the space group of the crystal. If the solutions
are of the form (2.11), then the set (o. 'E, (nr + v, u&)],

where aq=q+K, forms a basic for an irreducible
representation of the group of the wave vector, q.
Note that in this case

n 'E, ( ro+)T=P[o. 'E„K(q)e'&''" ']e' ~'

(2.12)

where the time dependence is e ' ~ ~ '. In a cubic
crystal there are solutions of &„A„andZ, sym-
metry which are completely invariant under all
the operations of the group of q. This automatical-
ly i~plies that E,( q) has no transverse component,
i.e., E,(q)(~q. A plasmon in a real crystal may
therefore be rigorously defined as the lowest-fre-
quency solution of &„A„orZ, symmetry. Sim-
ilarly, inspection of the character tables shows
that the twofold-degenerate solutions &„A,have
purely transverse K = 0 components, E,( q) & q, and
correspond to photonlike solutions. The lowest-
frequency solutions of A„&,symmetry will be
discussed in detail in Sec. IV. Note that there is
a double degeneracy only along A and & even for
cubic crystals with an inversion center; the split-
ting between the Z, and Z4 modes has been ob-
served, in Si, by Pastrnak and Vedam. ' Solutions
of A„4,', &„A,', Z, symmetry are such that E,(q)
=—0 and these solutions have no "classical" analog;
they arise from short-wavelength solutions,
e' ' ', folded back into the first Brillouin
zone. For K arbitrary, nothing in general can be
said about the direction of E»(q) for any solution
of any symmetry. Note that in a triclinic crystal
there is no distinction between photons and plas-
mons from this point of view.

One might think that the microscopically vary-
ing fields in Eq. (2.11) are unimportant (the off-
diagonal [e» ~] are small and only 7, , need be re-
tained) for optical properties of most crystals
(I@I«IK~). This is not so; it has been estab-
lished" " that inclusion of off-diagonal response
in calculating the macroscopic dielectric constant
of diamond can change the calculated values of the
static dielectric constant by 10%%uo and can shift
peaks in e, (&o) by 1-2 eV. To make the approxima-

tion Do Ep OE, is equivalent to the Drude approxi-
mation that the polarizing field (the local field) is
in fact equal to the macroscopic average electric
field. " The purpose of this paper is to investi-
gate the true nature of the normal modes with an
eye to the possible observation of the short-wave-
length components EKe' ' '. Since the cumu-
lative effect on the macroscopic dielectric con-
stant is large (as will be discussed, Ex -0.1Eo),
one might expect these fields to be directly ob-
servable in some fashion.

III. DYNAMICAL THEORY OF X-RAY DIFFRACTION

The first quantum-mechanical formulas for eE G.

were derived by Adler and Wiser, essentially
by an extension of the random-phase approxima-
tion (ERPA), in an attempt to provide a quantum-
mechanical extension of the classical Clausius-
Mossotti (or Lorentz-Lorenz) relations at optical
frequencies. (See Ref. 13 for a discussion of this
point. ) It was recently shown" " that the limiting
form of the dielectric-matrix tensor, within the
ERPA of Adler and Wiser, is

lim e» g(q, u))= 5» ~ —— f(K —6) I,
QJ ~ 00 (d

4 2

(3.1)

= —(q+K)x [(q+K) x E»], (3.2)

which is exactly the governing equation (neglecting
absorption) for the dynamical, as opposed to kine-
matical, theory of x-ray diffraction, a theory pre-
viously derived from general classical-mechanics
arguments. "'" Of course, all the results of that
theory (Pendell'osung, Borrmann effect) are deriv-
able from Eq. (3.2). It is clear that at all frequen-
cies for which e~ G, is nondiagonal, the normal
modes contain fields which vary as e' ~+ ' in
addition to e'"' ', although only if the Bragg con-
dition ([q~=[q+K[ at a zone boundary) is nearly

where n is the average number density of elec-
trons and f (Q) is the Fourier transform of the
density of electrons normalized to f (0) =1, al-
though this result can be shown to be independent
of the ERPA." Equation (3.1) had also historical-
ly been derived' by classical arguments under the
assumption that at high frequencies one is in the
classical regime; not surprisingly, it is a quan-
tum-mechanical result also.

Assuming this approximation is valid in the
x-ray region (h&u& 1000 eV, h&u~&30 eV) one finds

2 2

f(K-C) E,
C K, G
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satisfied will any two fields be of comparable size.
[See, however, Eq. (4.20) and following. ]

In short, Eq. (3.2) represents the first deriva-
tion of x-ray diffraction from an explicit quantum
formula for dielectric response, a formula that
had been derived with an eye to the classical local-
field effect. X-ray diffraction is, therefore, seen
to be a specific example of the more general prob-
lem of the "local-field effect, " Eqs. (2.8); to ne-
glect the off-diagonal response of the system in
this frequency regime is equivalent to the neglect
of x-ray diffraction.

(E(r, t))=E,e'&"' '-"'& (4.1)

and the macroscopic dielectric constant is then
given by D,/E, . Previous authors" have implicit-
ly argued as follows, for cubic crystals: (i) All
fields and responses are longitudinal, E~
=E»e(q+K), D» =D»e(q+K), which implies

IV. NORMAL MODES AT OPTICAL FREQUENCIES

A. Perturbation solution in the long-wavelength limit

Of particular interest is the solution to Eq.
(2.8b) when &o is of the order of optical frequencies
(h ~ & 30 eV at the most) so that I q I

«
I K I . The

macroscopic average of the fields in Eq. (2.10)
over a unit cell is simply"

the transverse modes E,(q) J.q cannot, of course,
be derived from a scalar potential. It is only be-
cause e(0, 0; &) = e(&) I [from (2.7b)] that
e~(q =0 ~) =e,~(q =0, &), and so the dispersion
relation for transverse modes is derivable from
the longitudinal dielectric function in the long-
wavelength limit for homogeneous, isotropic
media. Nonetheless, Eq. (4.3) will be seen to be
the correct result for cubic crystals, a result
which reproduces the Clausius-Mossotti relation
between the macroscopic dielectric constant and
the atomic polarizability in the appropriate limit. "

Are there solutions to Eq. (2.8) of the form

e (+) &(q)'=c'q'

analogous to Eq. (2.10a)~ It is necessary, first,
to make two transformations. Equation (2.8b) can
be written

ld'D = —c'(q+K)x ((j+K)xgÃ '0 D ),
(4 5)

where P»eG'» ~ e» ~=&e ~ I. The nonexistence of
&~'G presumably corresponds to longitudinal plas-
mons and will not be considered in this paper. "
Since D» is transverse, let e(K„),a=1, 2, 3, be
mutually orthogonal unit vectors such that e(K, )
= (q+K)/lq+K I. Then

E IIEG G&

where

(~[[)»,g e(q+K) 'e» g'e(q+G) .

(4.2a)

(4.2b)

and

D, = g Iq+KI V»e(If„) (4.6)

(ii) For a single plane-wave component of p,„,
= ~'D-e'~'', DE =D,6g p Substituting in Eq.
(4.2a) one finds

where

T» G(q, ~) =e(Z„)'e».e e(GB).

(4.7a)

(4.7b)

Dp 1

+o (e11 )»=Q =o
(4.3)

for the macroscopic longitudinal dielectric con-
stant in the limit lgl-0. (iii) The macroscopic
longitudinal dielectric constant, as determined by
(4.3), is equal to the macroscopic transverse di-
electric constant, as measured experimentally
(e.g. , ref lectivity) for lql-0 in cubic crystals. .

It is clear that none of the above assumptions is
obviousnorthatthey even make sense; fZ» e] do
not in general possess symmetry beyond Eq. (2.7b)
so that longitudinal components of E(g+G) will
induce transverse components of 5(q+K) and
vice versa even for q =0, so that each E~ has,
in general, both longitudinal and transverse com-
ponents with respect to q+K. Adler" explicitly
showed this to be the case for e»»(0, +). Even in
the homogeneous limit where e» = (eq+eK)56, »

V» —-&» OlI'„+qA»+O(q'),

(d2
—,=vq+ —+O(q').

M

(4.8a)

(4.8b)

The zeroth-order equation is automatically sat-
isfied, the first-order equation gives v =0 and

2

g IGI-~(z-~)",'r8 ~~

G B,y=&

(4.9)

The problem has been reduced from 3 &&3 to
2~ x2~ simply by observing that D~ is transverse.
(This transformation is also useful for treating
homogeneous, but anisotropic, media. ") If q =0,
there are solutions" =0, 'if V~ = &~ pg~. I wish
to examine the long-wavelength (Iq I« IXI) solu-
tion to (4.7a) by means of a perturbation expan-
sion in q =

I q I, as is done in the case of phonon
dispersion curves
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where I" =T restricted to && 0& G and the right-
hand side of Eq. (4.9) is evaluated at ~q ~=0. The
second-order equation determines the proportion-
ality constant e„(&),

g [(T-'),",8—e„(ar)6„~]y8=0;
8=&

(4.11)

i.e., given e«(q =0, ~), invert it, pick out the
transverse components via Eq. (4.7b), and invert
the (reduced) matrix. (T ')0; is the 2&& 2 sub-
matrix so obtained when K =G =0 (it depends on
the direction of q) and its eigenvalues are e„(&).
In a cubic crystal, the only quadratic dispersion
surface compatible with symmetry is spherical,
so that (T ')0 '08 is diagonal and (T '),"0= (T ')', ",
=e„(&)independent of e(q). The dispersion curves
in the limit q-0 are then

~2q (~) c2q2 (4.12)

as in Eq. (2.10a). e„(~)so determined plays the
role of the dielectric constant and, in fact, to low-
est order, EO~~D, (cubic only), so that by Eq.
(2.8b)

D,/E =c„(&u). (4.1 3)

That e»(e) [i.e., (T ')0",] is the same quantity as
given by Eq. (4.3), for cubic crystals, can be seen
as follows. D»(q} is perpendicular to q+K for
each K. Define

q, =jqle(D. ). (4.14)

Each D» is first order or higher in ~q) [see (4.6)
and (4.8a}]. For Ks0, the first-order component
of E»(q) is parallel to K because

(&'/c') D» = ( q +K)' E» ~ (4.15)

and E» is at least third order in ~q(. Along 4 or
A, E,(q) L q to all orders in ) q ( [paragraph follow-
ing (2.12)] so that the (q (-0 limit may be summar-
ized as

(4.10)

which, after some manipulation with the partition-
ing theorem, "gives the dispersion relation in Eq.
(4.4) or (4.8b) via the generalized Fresnel equa-
tion"

Taking the dot product of (4.17) with e(q~ +K), I
obtain

1
E»((0) llm

[ ( }] (4.19)

as mentioned above, e„(&u)is independent of the
direction of q. Equation (4.19) reflects the fact
that in the near zone" of an oscillating set of
charges, the fields are given by their static val-
ues multiplied by e ' '.

The lowest-order components of E and D have
all been determined. Each D»(q) is orthogonal to
q+ K; the first-order terms are given by Eqs.
(4.6), (4.8a), and (4.9) in terms of D,. The longi-
tudinal component of E» is first order in (q ( and
can be obtained from Eq. (4.18) (for cubic crystals),

(4.20)

t

as has been reported" but not rigorously proven.
In diamond, typical values" "of E» are (0.1-
0.2)E„which are by no means negligible.

For a crystal with symmetry less than cubic,
the eigenmodes must be determined by solving
Eqs. (4.6), (4.8a), (4.9), and (4.11). Since the
size of the off-diagonal response is, roughly
speaking, related to the degree of localization of
the valence charge, " it is desirable to have a
Fresnel equation for anisotropic media, whose
polarizable valence charge can be more highly
localized than in cubic materials; e.g., trigonal
selenium's "lone pair" valence band makes the
dominant contribution to the polarization. '

In the presence of absorption (at optical frequen-
cies) it is permissible to put q =0, &o real when
calculating (T ')", ,8 and solve for the complex q
in Eq. (4.12) (so that the mode decays spatially)
rather than attribute a complex + to a lifetime
effect with q real (so that the mode decays tem-
porally). In either case the fields in adjacent unit
cells are nearly identical (~ q ~ «[X[) and e» o(0, ~)
can be assumed.

D,5» 0
= g e( q ~ + K) E~» g (0 (d) ~ e( q + G)EO,

(4.18)

which is exactly of the form (4.2) ff. Equation
(4.3) (the Adler-Wiser result) automatically fol-
lows with q ~ taking the place of q, i.e.,

Iim (E»(q) =E»e(qi +K)] .
o

Equation (2.6) becomes, in this limit,

D» = Q e» o(0, (o) ~ e(q +G)EG .

(4.16)

(4.17)

B. Boundary conditions

Consider an interface between a vacuum and a
perfect crystal which, for convenience, I will take
to be a perfect mathematical plane. Since all
quantities on the right-hand sides of Eqs. (2.4) are
finite (nonmagnetic crystal), the boundary con-
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VACUUM CRYSTAL

q =~/C
VSC q = ~ (~) w /c

ditions are the usual B, normal D, and tangential
E, continuous. Consider an incident monochro-
matic beam from the vacuum impinging on the
surface. The boundary conditions can be satisfied
by matching onto the primary wave e' ' ' inside
the crystal and a single reflected plane wave out-
side the crystal. The existence of boundary con-
ditions independent of position and time means
that the tangential components of the three wave
vectors must be equal; the normal components
are determined by requiring c p =+ c~. In this
way Snell's law is rederived with n = (e„)'~'play-
ing the role of the complex index of refraction.
Moreover, the intensities of the reflected and re-
fracted beams are given by the usual formulas"
in terms of the same n(&u). What happens to the
microscopic fields e' ~' "V At the interface
the situation is schematized in Fig. 1; the direc-
tion of q+K may be either into or out of the physi-

cal surface. The mere existence of boundary con-
ditions at the surface, independent of position,
implies that the plane-wave component e'~

couples to a single plane wave transmitted into
the vacuum and a single plane-wave component
(arbitrarily taken to be the primary wave of an-
other normal mode) reflected back into the cryst-
al, such that the tangential components of all
three wave vectors are equal. The normal com-
ponents are determined by the dispersion rela-
tions indicated in Fig. 1. Note that the mode (q„)
has secondary waves which induce, at the surface,
yet more normal modes in the crystal and in the
vacuum. In general, q+K is not normal to the
surface; since [K[»~ q[ its tangential component
is much larger than ~/c or ne/c so that the nor-
mal components of the reflected and transmitted
rays are pure imaginary, i.e., they are evane-
scent waves carrying no power. '4 Moreover, the
normal components are of the order - i( K ) so that
the decay length is of the order of an atomic dia-
meter, thus casting the assumption of a mathe-
matical plane interface into serious jeopardy,
even for a perfect crystal. Nonetheless, this ap-
proximation, the neglect of surface local fields,
is made successfully for x-ray phenomena. " In
the absence of a better theory I will continue to
make this assumption as its consequences must
surely have approximate validity.

C. Optical Borrmann effect

NORlN

~q~ qx~

etc.

If, however, there is an exit surface exactly
perpendicular to some q+K (KO 0), all three wave
vectors have zero tangential components, and the
vacuum wave vector is purely real and should
transmit power. A specific experimental arrange-
ment is depicted in Fig. 2. This gedanken pheno-
menon is exactly equivalent in every respect to
the x-ray Borrmann effect." Using the boundary
conditions it is not difficult to calculate the inten-
sity of the transmitted Borrmann beam by observ-
ing that the tangential component of E& is simply
Eq. (4.15) and by using Eqs. (4.6), (4.8a), and
(4.9). I find, for cubic crystals, that the intensity
of the Borrmann beam relative to the incident in-
tensity is g„',(yg(', where, to lowest order,

FIG. 1. Boundary conditions at a surface are satisfied
if the secondary plane-wave components, e'~&+

of the electromagnetic normal mode in the crystal, each
match onto a single plane wave in the vacuum plus the
primary plane-wave component of another normal mode
in the crystal. Since the tangential components of all
three wave vectors must be equal, the normal compo-
nents of the latter two are, in general, imaginary.

2(d ~ T j fy, , e
(n+ 1)'ciK i

8=1
(4.21)

and Ig zJ is the unit polarization vector of D, [see
Eqs. (4.6) and (4.8a)].

In a previous paper, "Ipresented a simple model
for the longitudinal response matrix which, slight-
ly generalized, gives
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The electric field inside the material is a Bloch
function (in the x direction —parallel to the aver-
age surface) and is given by the sum of the incident
wave plus the back diffracted waves, each of which
is a solution to Maxwell's equations:

E„,„,=E,e' ' ' + E", e' &

' ', (4.23a)

Q, = ( q„+G„—[(n~/c)' —(q„+G,)']'~', o),

(4.23b)

be observable. The attenuation by {nu&/cK)' is
directly traceable to the unphysical assumption
that there is a component of the electric field
which varies as e'~"' ' at each point of the
sharp dashed-line boundary of Fig. 3, i.e., over
atomic dimensions. In reality, the polarizable
valence charge of the outside-corner atoms dif-
fuses into the region of the inner-corner atoms
and also into the vacuum; the effective surface is
much more nearly planar than indicated by the
dashed lines of Fig. 3, and one may well expect
that there is a component of the Borrmann beam
given roughly by Eq. (4.21). If, for example, one
assumes that the polarizability of the surface
atoms decreases linearly from its bulk value at
the inner corners of the steps to zero at the outer
corners, then the same Kirchoff-integral calcula-
tion shows that the amplitude of the Borrmann
beam is reduced by only I/2w from Eq. (4.21) and
still has a uP dependence. A more thorough treat-
ment of the effect of the surface local fields on
the Borrmann beam in which one explicitly takes
into account a realistic behavior of the surface
atoms is beyond the scope of this paper.

In addition to its effect on the Borrmann beam,
the surface grating partially diffracts the primary
wave e'~' ' into the same direction as the Borr-
mann beam (see below). Although this effect is
small, its intensity must be demonstrated to be
smaller than that of the Borrmann beam or the
latter will be obscured. One is now in the long-
wavelength/small-aperature diffraction limit,
however, and one is not justified in using standard
Kirchoff-type diffraction theories. " I will, for the
present purpose, assume that the medium is every-
where homogeneous and describable by the bulk
index of refraction n within the echelle boundaries
of Fig. 3. As before, this approximation will
clearly overestimate the effect of the diffraction.

Let the periodic diffraction surface (dashed line
of Fig. 3) be described by y(x) =P,A, e'~~*, where
G, =2vl/a and a, the periodicity of the echelle
grating, is

and similarly for the fields in the vacuum:

Z =~s~e
vac (4.24a)

Q,
' =( q„+G,, + [(&u/c)' —(q„+G,)']' ', 0) .

(4.24b)

Note that the expansions are in terms of complete
sets, including evanescent waves. Since q„=2m/a,
the diffracted wave with l = —1 in Eq. (4.24a) trans-
mits in a direction exactly normal to the average
surface; i.e., it is coincident with the emergent
Borrmann beam. In fact, for any orientation of
the average surface, or of q, the Borrmann beam
and the / = —1 surface diffracted primary wave
are coincident because 6, is always equal to the
tangential component of the pertinent bulk recipro-
cal-lattice vector. It is now a straightforward, if
tedious, process to apply the continuity boundary
conditions over the surface; in doing so it is per-
missible to expand e'~ & = 1+ i@, ,f(x), since
the step height is S10 ' times the step length. By
equating the coefficients of the various e.' ~" that
occur in the resultant equation, one can solve ex-
actly (in the long-wavelength/small-aperature lim-
it) for the coefficients E'„E",. The final result for
the intensity of the L= —1 diffracted ray, relative
to the incident beam, is

4

I.=16, = 7.2x 10-'4
(n+ 1)' cK

for s-polarized light, and

(4.25a)

(4.25b)

for P-polarized light. The numerical values cor-
respond to ke =1.5 eV in diamond. Equations
(4.25) are valid whenever [qi/)Ki=n&u/c)Ki«1
and are to be compared with the square of Eq.
(4.21) (2.6x10 ")which, as discussed above, re-
presents a reasonable upper bound for the inten-
sity of the Borrmann beam. It is therefore prob-
ably reasonable to conclude that it is technically
possible, if difficult, to observe and unambiguous-
ly identify (at least by its frequency dependence)
the optical Borrmann effect, although other geome-
tries and materials may be far more suitable for
this purpose.

There is one other experiment which attempts
to observe the microscopic fields directly but it
has to date proven unsuccessful. " If one illumin-
ates a crystal with monochromatic light, one in-
duces-charge densities which vary as p~(r, t)-e ~~ ~+ " '~. In principle, one can Bragg scat-
ter x-rays off the induced charge density accord-
ing to &k = q +K, in addition to static Bragg scat-



3436 DAVID LINTON JOHNSON 12

tering LA=K; the former process is Doppler
shifted by e, the frequency of the pumping laser.
There are two important differences between the
present experiment and the Doppler-shifted Bragg-
scattered one: (i) The former is strictly a linear
response mechanism whereas the latter involves
the interference between two external sources.
(ii) The latter experiment involves the longitudin-
al component of E» [p»-(q+K) E»] whereas the
former involves the tangential component, a much
smaller quantity [see Eqs. (4.15) ff.].

V. SUMMARY

Maxwell's equations in crystals have been ex-
amined explicitly including local-field effects by
means of the nondiagonal dielectric-response ma-
trix. The dynamical theory of x-ray diffraction is
a special case thereof. At optical frequencies,
the long-wavelength expansion has been used to
solve exactly (in the long-wavelength limit, when-
ever q/It = ne/cK«— 1) modes and estimate the effi-
ciency with which a microscopic compone& of the
normal-mode electromagnetic field, e'«+'~',
transmits into the vacuum. This efficiency is,

however, an upper limit due to the intrinsic ir-
regularities of a crystalline-vacuum interface on
an atomic scale. Unlike incoherent scattering,
and unlike the diffraction effect on the main Snell
beam, whose intensities vary as u4, the intensity
of the undiffracted Borrmann beam is highly direc-
tional and its relative intensity varies as +'. The
efficiency of the optical Borrmann effect (the co-
efficient of u& ) is sensitive to the microscopic pro-
perties of the surface atoms and cannot, therefore,
be used to directly deduce the values of the bulk
fields; this effect, however, will not be present
at all unless E~c 0 in the bulk.
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