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An old effective-medium approximation for the conductivity tensor of a randomly inhomogeneous medium is
generalized to treat, in principle, materials consisting of crystallites of arbitrary shape and conductivity tensors
of arbitrary symmetry. The effective-medium approximation is roughly analogous to the coherent-potential
approximation (CPA) of alloy theory. The analog of the average- t-matrix approximation (ATA) is also
formulated in a general way. The method is fully tractable analytically for ellipsoidal crystallites. Several
applications are discussed. The effective conductivity of a polycrystal consisting of randomly oriented uniaxial
crystallites is calculated as a function of the anisotropy of the grains. For a model polycrystal in an intense
magnetic field, the CPA and ATA are compared, the former giving more accurate results.

L. INTRODUCTION

The transport properties of randomly inhomo-
geneous materials have been of interest since
nearly the time of Maxwell. The reason for this
interest is, of course, the enormous variety of
physical systems in which random inhomogeneities
occur: All polycrystalline and composite ma-
terials, for example, are randomly inhomogeneous
systems, Such materials are described by a spa-
tially varying conductivity tensor F(X) which is
random in some fashion. The basic problem is
then the following: Given the conductivity tensor
of each constituent of the inhomogeneous medium,
and given the statistical laws governing the spatial
variation of the conductivity, how does one calcu-
late the effective conductivity of the medium as a
whole? The problem is one of continuum physics,
and is to be distinguished from the problems as-
sociated with microscopic inhomogeneities, such
as impurities or vacancies, which are usually
studied by scattering-theoretic techniques.

One of the most successful methods of treating
the transport properties of randomly inhomogeneous
materials has been a self-consistent or effective-
medium approach due originally to Bruggeman, !
and studied quantitatively by Landauer.? The virtue
of the method is that it is not limited to low con-
centrations of inhomogeneities or to weakly vary-
ing conductivities., In recent years,® this approach
has been extended to treat the low-field Hall coef-
ficient! and the magnetoresistance® of heteroge-
neous materials, An identical approximation can,
of course, be used to treat heat transport, dielec-
tric properties, magnetic permeability, and dif-
fusion in inhomogeneous materials, since all these
processes are governed by formally identical
equations. In the past two years, the approxima-
tion has been further extended to the somewhat
more complex problem of the elastic constants of
heterogeneous materials by Korringa,® and by
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Zeller and Dederichs.” The latter formulated the
problem in the concise language of scattering theo-
ry and were thus able to derive the effective-med-
ium approach in a rather elegant fashion,

The purpose of the present paper is to generalize
the effective-medium approach to treat inhomoge-
neous media with crystallites of arbitrary shape,
size, and orientation, and conductivity tensors of
arbitrary symmetry. Such a fully generalized ef-
fective-medium approximation has not previously
been explicitly derived. To obtain the generaliza-
tion, we first develop an integral equation for the
electric field within the medium, and then approxi-
mately decouple this equation. The decoupling
procedure serves to make clear the mean-field
character of the effective-medium approach, It
also suggests a connection, previously noted by
Gubernatis and Krumhansl, ® between this scheme
and similar mean-field approximations in the the-
ory9 of electronic propagation in disordered binary
alloys. It is, infact, possible to define an “aver-
age-f-matrix approximation” (ATA)Y and a “co-
herent-potential approximation” (CPA)® in loose
analogy with the alloy problem. The latter is equiv-
alent to the effective-medium approach.

In addition to describing a generalized effective-
medium approach to inhomogeneous transport
problems, the present paper also gives several
examples designed to illustrate the tractability of
the method in a variety of special cases, and to
show connection with previous work, Both the ATA
and the CPA can be worked out analytically if the
crystallites can be taken to be ellipsoidal in shape,
even for conductivity tensors of arbitrary symme-
try. For the simplest case of a two-phase medium
composed of isotropic crystallites approximately
spherical in shape, the CPA becomes simply a
quadratic equation for ¢,, the effective conductivity,
as obtained originally by Bruggeman.' For a true
polycrystal consisting of anisotropic spherical
crystallites, the method is again tractable, as is
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shown by a numerical application to a polycrystal
of randomly oriented uniaxial crystallites. The
method can also be applied to the magnetoconduc-
tivity tensor of a polycrystalline metal in a mag-
netic field, for which the medium as a whole as
well as its components are anisotropic. In this
case, the CPA is shown to be much more accurate
than the non-self-consistent ATA in the high-field
limit, Finally it is pointed out that the approach is
applicable to ac as well as dc problems provided
the wavelength of the ac field is long compared to
the linear dimensions of the inhomogeneities, Such
an approach could be very useful in treating the
optical properties of composites, which until now
seem to have been studied only by variants of the
ATA such as the well-known Maxwell-Garnett the-
ory. 11

Before proceeding to the derivationand examples,
we point out that the present statistical approach
is designed to treat only one of several difficulties
associated with inhomogeneities. We ignore, for
example, boundary scattering, i.e., actual dis-
sipation of energy at boundaries due to interaction
between current carriers and defects such as dis-
locations. The statistical theory, in fact, takes
account only of local current fluctuations due to
“impedance mismatch” at boundaries. Dissipation
due to scattering at boundaries, if thought impor-

-tant, must be treated by a different approach.

We turn now to the body of the paper. The for-
mal generalization of the effective-medium theory
is described in Sec. II. A number of examples
are then worked out in Sec, IIL

II. FORMALISM

We consider an inhomogeneous medium of vol-
ume V, bounded by surface S, and characterized
by a spatially varying conductivity tensor 0(X). The
conductor is assumed to be a random medium in
the sense that the ensemble average of (%), de-
noted (¥(X)), is independent of X. It is convenient
also to make the “ergodic” hypothesis that a con-
figuration average is equivalent to a volume aver-
age. Thus, for example, (&)= V-1[ &X)d%.
Henceforth we shall evaluate all averages explicit-
ly as volume averages.

The measurable transport properties of the con-
ductor are determined by an effective position-
independent conductivity tensor '5:, o, can be de-
fined most eas11y by imaging that a constant elec~
tric field Eo is applied at the boundary of the con-
ductor, so that the scalar potential on S is ®(X)
=- E0 X, Then ¥, is defined by

Ty =BLE), (2.1)

where J is the current density. Note that (E) = E,,
the applied field.
In order to develop approximations for 7,, we

now expand ¢(X) about a constant reference con-
ductivity %), by writing

FX) =Ty + 001%). (2.2)

G, is for the moment to be viewed as an arbitrary
constant, and may be chosen in any convenient
way. Possible choices will be discussed later.
Substituting (2.2) into (2.1) yields

(3)=F(E) + (65E). (2.3)

Thus the calculation of ‘6’, requires a good approxi-
mation to the quantity (5o ).

We now derive a simple integral equation for
E(X) which may be decoupled in various ways to
yield several approx1mat10ns for @, Oe- The electro-
static equations are v.J= o, VxE= O' these com-
bined with the constitutive relatlon J (%) =3F)EX)
imply that the electrostatic potential ®(X) satisfies

V.9x) Va(x)=0. (2.4)

The substitution (2. 2) then leads to the boundary-
value problem

V-GV (X)== V. 80(X)Vo(X) in V, (2.5)
3(X)=d,(X)=—Eo-X on S.

With the introduction of the Green’s function

G(X, X') defined by
V- GVGE,X) == 6(x -

G(%,%')=0, X" on S,

- .
x') in V, 2.8)

&(X) can be written as

8@ =00+ [ GE,X)F- 0BT SE)dN . (2.7)
v

Integrating by parts and taking the gradient of each

side, one obtains

B(®) - f I®). V' W6E, 7 ), (2.8)

where 83 (X’) = 69(X')E(X’), and we have used the
fact that GX,X')= G(X’,X). Equation (2.8) can be
written in the compact form

B@-Fo+ [ S& R)ORIER),  (2.9)
where the tensor §(X,¥) is defined by
o2 B o=w
S0, %)= - G, X). (2. 10)

An exact formal solution for &, can now be writ-
ten down, From Eq. (2.9),

SBRER) = 09R)E, + 65 [ ' &, )09 B

(. 11 )
or, defining a tensor ¥(X) by
sPRERF) =X F)E,, (2.12)
we have
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K@ = 65 + 05F) [ SETRE).  (2.13)
Comparison of (2.1) and (2.3) with (2,12) indicates
that

3, =5 +(X). (2.14)

The problem thus reduces to the (formidable) task
of computing (X).

The nature of the approximations that may be
derived from this formalism depends on some ex-
tent on the precise character of the inhomogeneous
medium under consideration, We consider here
polycrystalline or composite media, i.e., ma-
terials consisting of a random assembly of cells
or crystallites, each of which is individually pure,
with well-characterized transport coefficients.
The crystallites may differ in shape, size, com-
position, and orientation of crystallographic axes,

For such a system, a class of approximations
can be written down as follows. Let X lie in the
ith crystallite, and let that crystallite have vol-
ume v; . Then Eq. (2.13) may be written

@) =0%,+05 [ a §&XTE)
vy

205, [ @ GEF)VR),

V-v;

(2.15)

where 6%, =%, ~5,, G, being the conductivity tensor
of the ith cell. The approximation consists of re-
placing the last integral in (2. 15) by its average.
Thus in (2. 15) we write

5%, l & 8E,F)RE)
-V,
[

~o%, [ P EER RN (2. 16)

V-vi
for X in the ith cell. Equation (2.16) closes the in-
tegral equation for % and enables x(X) to be calcu-
lated in terms of (¥), which can be determined in
turn from ¥ (X).

Approximation (2. 16) is not unique but depends
on the choice of reference conductivity &,. Of
these choices, the “best” is presumably the self-
consistent choice which ensures that

(%=0.
With this choice, and with Eq. (2.14), ¥,=70,.
Equation (2. 17) defines a loose analog of the co-
herent-potential approximation (CPA) which has
been used successfully to treat electron states in
disordered binary alloys. In effect, the actual
medium surrounding each crystallite is replaced
by a self-consistently determined effective me-
dium. The various non-self-consistent approxima-
tion defined by Eq. (2.16) may be viewed collec~
tively as the analogs of the average-f-matrix ap-
proximation (ATA) of alloy theory,

(2.17)

The class of approximations just defined may be
applied, in principle, to composites consisting of
crystallites of arbitrary shape and to conductivity
tensors of arbitrary symmetry. If, however, the
grains are taken to be ellipsoids, approximation
(2. 16) leads to a ¥ (X) which is uniform within each
grain,'® and 5, can be determined in a very com-
pact form, To see this, we substitute (2, 16) into
(2, 15), integrate by parts the two integrals in
(2.15), and use the boundary condition in (2.6) to
obtain

]
x‘,"8=50‘:8"5077( dx’ —-—G(x,x')nQ)
S Sx,

X(x2" = (xDes), (2.18)

where ¥ is the value of ¥(X) for x within the ith
grain, and nj is a component of #’, a unit normal
outward from §’. In Eq. (2.18) Greek subscripts
and superscripts denote Cartesian components,
and repeated indices are summed over. In the
limit of large volume, G(X,X’) goes over to the
free-space Green’s function, satisfying the differ-
ential equation (2, 68) and the boundary condition
GX,X')=0as [X=X'| =, It thus becomes a
function only of X—X', The surface integral is
then a constant, independent of X, and (2, 18) takes
the form

=09+ 65T, (0 — (), (2.19)
where
r‘“’:-f 2 GX~X"npd%’ (2.20)
Se axa
Solving (2. 19) for ] in terms of (§) yields
% =T-8G,F) 160, (T-T(D), (2.21)

where T is the 3x3 unit matrix,

Equation (2.21) may now be averaged and solved
for (¥). The result may be substituted into (2. 14)
to yield

Gp =0y +((T= 80D ) Y(T- 65F)16%),  (2.22)
where
((T- §oT)™) = lim VdZ v,(T- 5‘3{?{ 1,
v ! (2.23)

(T-065D)16%0) = lim V-t }; v,(T=- 6G,T,)16%,.

Equation (2, 22) is the desired ATA solution for G,
in the special case of ellipsoidal grains. The CPA
is defined by

(T-89T)167) = 0. (2.24)

From a practical point of view, the ATA is easily
executed. Once a convenient & has been chosen,
the tensors 60, and ?, become readily calculated
properties of the various individual crystallites



and the evaluation of the averages in (2.23) is only
a matter of straightforward matrix algebra. The
self-consistency required by the CPA normally en-
tails only a slight degree of additional computation.
It may be objected that space cannot be filled by
an assembly of ellipsoidal grains and hence the ap-
proximation just described is inapplicable to any
realistic composite, The counterargument to this
objection is that many crystallites may, in fact, be
reasonably approximated by ellipsoids. The sim-
plification can be viewed as spiritually akin to the
Wigner-Seitz approximation in band theory, where-
in the Wigner-Seitz cell is approximated for com-
putational reasons by a sphere of equal volume,
If the grains are predominantly snakelike or spider-
like in shape, a different approach might be desir-
able. Rodlike grains, however, should be reason-
ably approximated by ellipsoids, If the grains are
known to be of some specific, nonellipsoidal
shape—for example, cubes—then it might be ap-
propriate to apply the ATA or CPA, but with the
actual shapes of the grains, rather than ellipsoidal
estimates of them.

III. EXAMPLES

In this section we discuss several simple appli-
cations of the formalism just developed. The pur-
pose of the discussion is to illustrate the useful-
ness of the effective-medium approximation in a
variety of circumstances, and to compare the
method with previous work in several cases, De-
tailed numerical studies of real systems will be
deferred to a subsequent publication.

A. Two-phase medium, spherical isotropic crystallites

We begin with the simplest example, namely, a
two-phase medium composed of a fraction ¢, by
volume, of material A, and a fraction 1-c of ma-
terial B, The two constituents are assumed to
have scalar conductivities %, =0,1 and G =0,1,
where T is again the 3x 3 unit tensor, and both are
taken to be present in the form of approximately
spherical crystallites. Then @, will also be a
scalar, §,=0,1, and the elements of the tensor I’
(which is the same for each crystallite, since all
crystallites are by hypothesis the same shape) will
be given by the surface integral (2,20). The
Green’s function G(X,X') that enters the surface in-
tegral is the free-space solution to the differential
equation (2. 6):

CF-F) =+ i e

“t4no, [X-%1° 8.1

This surface integral can be evaluated using (3.1)
to yield
Top=—045/30,. 3.2)

The self-consistency condition (2. 23) takes the
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form
c[1-(@F,-8) TG -5)
+(1=0)1- (& -8) T 5, -5,) =0, (3.3)

which, upon substitution of (3.2), simplifies to a
quadratic equation for o,:

cZa=le +(1—c)——3—-‘-0 ~% .9

o4+ 20, op+20, (3.4)

Equation (3. 4) has previously been obtained by sev-
eral workers,!? It has been extensively investi-
gated by Landauer,? who finds that it adequately
describes the effective conductivity of a two-phase
medium even if the conductivities of the components
differ by a factor of 100,

B. Polycrystalline medium, anisotropic crystallites

The effective-medium approximation is easily
generalized to the discussion of truly polycrys-
talline materials., We consider as an example a
polycrystalline material consisting of approximate-
ly spherical crystallites of identical composition
but anisotropic conductivity tensor, and we assume
that the principal axes of the crystallites are ran-
domly oriented, that is, they have equal probabil-
ity of pointing in any direction, The effective con-
ductivity of the medium will be a scalar, 7, = o1,
and the tensor I will again be given by Eq. (3.2).
The self-consistency condition determining o, takes
the form

([1+(1/30,)(E=0,1) (&~ 0,T)) =0,

where the brackets denote an average over possible
crystallite orientations.

Equation (3. 5) is particularly easy to evaluate
when the crystallites are uniaxial. If the coordi-
nate axes are parallel to the principal axes of the
crystallite, & will then be of the form

38.5)

1 00
=0l 0 1 0 }. (3.6)
0 0 «

In other coordinate systems, T will be related to
(3.6) by a similarity transformation. It may readi-
ly be shown in this case that Eq. (3.3) reduces to
a quadratic equation for ¢, which can be solved to
yield simply

x=%5[-3+(9+8¢)!72]. 3.7)

Here, x=0,/0y—~1, and e=a~1, For small ¢, the
solution of Eq. (3.7) is x = 3¢ —& €%, in agreement
with the result obtained from the second-order
perturbation approach of Herring.® Note that at
large €, x~(a/2)'/2, whereas in the limit e~ -1,
x—==3o0r 0,/0g~+%. It is amusing to observe that
o, as determined by Eq. (3.7) is the same, within
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the CPA, as that of a composite of isotropic spher-
ical crystallites, two-thirds having conductivity
0o and one-third aay. 4

C. Polycrystalline metal in an applied magnetic field

We turn next to a more complex example of con~-
siderable practical interest, namely, the effective
conductivity of a polycrystalline metal in an applied
magnetic field H=HZ. In such a material, &, is
not a scalar but instead takes the form?'?

oy of O
«>
G,=| -0 oF 0

0 0 ofF

(3.8)

In spite of the added complexity, the differential
equation (2.8) can still be solved for G(x-x') by
means of a scale transformation with the result

> > 1
Y —
G(X’X )_+4170.:x(0,52)1/2
(x_xr)z (y_yr)z (Z_z;)z -1/2
X O‘:x + O':x + O'iz .

(3.9)
The surface integral (2.20) can be evaluated for
the elements of ‘ff’, For example, 1£ the crystallites
are spherical, it yields a diagonal T', with nonzero
matrix elements
el
r 1 (1_(1_6)1,2__s1:1/f2> ,
€

2z O_gﬂe

(3.10)

1 1 sin™Ve
Ty=Tyy=- §<Pnz+ (0”;"0':2)1/2 Ve )

Here € =1-0%/0%%, and we have assumed ¢ >0, as
is usually the case. Equations (3.10) can then be
substituted into the self-consistency condition

(2. 23) to yield a set of three equations which can
be solved for ¢}*, 0¥, and ¢%%,

To illustrate the utility of the method, we apply
Eq. (3.10) to a simplified version of a model which
has been proposed!* to account for the galvanomag-
netic properties of polycrystalline Cu, We imagine
a metal composed of a fraction 1 - ¢ of spherical
crystallites of free-electron metal, and a fraction
c of spherical crystallites with open orbitals. The
free-electron crystallites have conductivity tensor.

(1-£3)1  E1+£%)7 0
Tre=0p | —E(1+£5T Q1+ 0 ), (3.11)
0 0 1

where {=w,7, Tis a relaxation time characteristic
of the metal, and w,=eH/mc is the cyclotron fre-
quency. The open-orbit crystallites have, in ad~
dition to a free-electron conductivity, an additional
contribution arising from the ability of the open or-
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bits to carry current in a direction perpendicular
to the open-orbit direction and to the magnetic
field, We shall simply approximate these open
orbits by transverse short circuits, i,e., by in-
finite conductivities in the two directions perpen-
dicular to the field,

The effective-medium theory may now be applied
to this model. The self-consistency condition
(2.18) takes the form

(1-c)1=(5~2)T1(3,-5,)

+e[1= (G0 ~F) T (8, -, =0, 3.12)

where @, is the diagonal conductivity tensor of the
open-orbit crystallites, with elements given by

(3.13)

Since T is a diagonal tensor, ¢%* is evidently equal
to og (there being no randomness in the z compo-
nent of the conductivity tensor), while ¢}* and ¢¥*
are determined by the condition

(1=c)1 = (&, -5, P&, ~F,) - c () =0,
(3.14)
where now Eq. (3. 14) is to be interpreted as a
“2x2” matrix equation consisting of the projection
of Egs. (3.12) on the xy subspace.
Equation (3. 14) may be solved analytically in the
high-field limit (¢ >>1), In that regime, I',,, de-
termined by Egs. (3.10), becomes

L 1
Pe= Ty = =3 oo 72

XX _ yy _ 2z _
00070 00= %y T oo=0g.

T__ 1
2 (0%0)"/%

Substitution of (3.15) and (3.11) into (3. 14) yields

1 7\
0:":-1-1—50'0[c+ <02+'£—5) z],

o3 = "0,

Thus in the field limit (£ = ), 0** o c?, This re-
sult corresponds to a saturating transverse mag-
netoresistance, p¥ = (&)~ const as £~, a be-
havior which differs from the linear magnetoresis-
tance observed in actual samples of polycrystalline
Cu.'® Nevertheless, there is little doubt that Eq.
(3.16) does indeed represent the correct asymp-
totic behavior of the model. This is strongly sug-
gested by consideration of the expected high-field
current pattern of the polycrystal. In this regime,
the free-electron portion of the medium carries
current only in the direction parallel to the applied
field, The current can make progress in the trans-
verse direction only by “hopping” from one open-
orbit crystallite to another. A simple scaling
argument, based on a network analog, can be used
to suggest that the transverse conductivity asso-
ciated with this mechanism is indeed proportional

(3.15)

(3.16)
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to c?,

It is interesting to compare the predictions of
the seli-consistent or effective-medium approxi-
mation with those of the non-self-consistent or
average-f-matrix approach. In the present, highly
anisotropic regime, they give qualitatively differ-
ent results, We consider the ATA, as defined by
Eq. (2.22), using as a reference medium the pure
free-electron metal, The effective conductivity
in the ATA is given by

%,=3,,+c(T+ctT)T, 3.17)
where

nd s < “

t=[T—(0oo ‘ae)r]-l((&;o_cte)' (3° 18)

In 2 manner similar to that used to find G, in the
self-consistent approximation, it may be shown that
that in the high-field regime ¢ }* is given by

(3.19)

This prediction differs qualitatively from that of
the self-consistent approximation and moreover is
evidently incorrect, since in the high-field limit

o 5¥ must become field independent. Thus, in this
instance at least, it is evident that self-consistency
makes an important difference in the calculation of
effective conductivity.

(03 )a1a = const(c/&) .

D. Optical properties

We conclude this discussion of examples by not-
ing that both the CPA and the ATA can be used to
discuss ac as well as dc effects in heterogeneous
materials, provided that the wavelength of the ac
signal is large compared to a typical linear dimen-
sion of the crystallites, For such effects it is
often more convenient to talk in terms of frequency-
dependent dielectric functions than in terms of con-
ductivities. In a two-phase medium, for example,
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the relevant CPA self-consistency condition deter-
mining €,(w) is Eq. (3.4) with all o’s replaced by
€’s. Thus €,(w) satisfies
Ezﬂ(&g_e(_w__)_+ (1-c) £a@)=l@) o
€alw)+2¢,(w) €p(w) +2¢,(w) (3. 20)
If there are absorptive processes, €,, €5, and €,
may have both real and imaginary parts.
It is instructive to compare Eq. (3.20) with the
analogous ATA equation. If we take material B as
the reference medium, Eq. (2.22) reduces to

€,(@) =fe (@) + cBe(w)/[1 + (1 = ¢)be(w)/3e 5(@)] T,
(3.21)
where de(w)=¢€,(w)=ez(w). Equation (3.21) is
identical to the equation originally derived by Max-
well-Garnett!! to describe the optical properties of
a composite medium, and since used extensively
by a number of workers'® to describe the optical
properties of assorted composites, Equation
(3. 21) is not necessarily limited to small concen-
trations ¢, although it does not treat A and B on
the same footing. It would be most interesting to
compare the predictions of the ATA equation (3.21)
with the self-consistent equation (3.20), which ap-
parently has not been used previously to describe
optical properties of inhomogeneous media. 1t is
hoped to present such a comparison in a subsequent
publication,
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