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The polaron problem is treated in a self-consistent manner. The treatment is based on Heisenberg' s
equations of motion starting from a trial expression for the electron position which includes only one
real phonon but any number of virtual phonons. Numerical results for the polaron effective mass and

the optical-absorption coefficient are given for electron-LO-phonon coupling strengths ranging from 0 to
4.5. The results are discussed and compared with those obtained by Feynman and by Lee, Low, and Pines.

INTRODUCTION

The static (effective mass, ground-state energy)
and dynamical (optical absorption, mobility, re-
sponse to a magnetic field) properties of free Froh
lich polarons have been studied using a relatively
large number of theoretical methods. At weak
electron-phonon coupling (small c.) energy and
mass were obtained in Refs. 1-4, while Refs. 5-9
treat mobility and other response properties. At
strong coupling (large &) the static polaron proper-
ties were calculated in Refs. 10-12 and dynamical
response was treated in Refs. 13 and 14. For a more
complete list of references and a review on polar-
ons see Refs. 15 and 16.

Until now only one method has been able to bridge
the gap between weak and strong coupling in a natu-
ral way and to treat accurately intermediate cou-
pling. It is the path-integral method as first in-
troduced by Feynman'7 and Feynman and co-work-
ers '" and applied by others. ~ Although the
path-integral formulation of the quadrabc approxi-
mation is a powerful device in polaron theory,
there are different reasons to set up alternative
schemes to treat the polaron at all 0'

(a) The path-integral formalism does not allow
for a treatment of spin. This aspect might be im-
portant for the generalization of polaron theory to
problems in both elementary-particle physics and

solid-state physics (e.g. , magnetism, Raman spin-
flip, etc. ).

(b) Furthermore some approximations have been
made in the path-integral method (to study the po-
laron mobility problem for example) which might
be easier to generalize in other formalisms.

(c) The path-integral formulation represents an
alternative description of quantum mechanics which
is less familiar to solid-state physicists than the
Schrodinger or Heisenberg formalism.

For all these reasons it remains useful to formu-

late a polaron theory valid at all coupling strengths
n in a more conventional language of quantum me-
chanics. 4 In this paper a self-consistent treat-
ment for the polaron problem is presented which
starts from the Heisenberg equations of motion
and which is used here to derive the effective
mass m~ and the optical properties of the polaron
at all n (the weak- and strong-coupling limits are
treated analytically, the intermediate coupling is
treated numerically up to n= 4). In a subsequent
paper" the mobility is derived (with the Boltmmann
equation) using the formalism explained here.

In Sec. I the equations of motion (with elimina-
tion of the phonon variables) for the polaron are
written and the weak-coupling results are reviewed.

In Sec. II a trial form for the force (operator)
dP(t)//dt acting on the electron is derived by iterat-
ing the equation for d p(t)/dt [Eq. (20)] with d p(t)/dt
=0 as starting expression. This trial expression
for d p(t)//dt contains a function f(k), which de-
pends on nz*, the polaron effective mass, and which
can be considered as a generalization to all cou-
pling strengths of the well-known f~ derived by l.ee,
Low, and Pines. '

In Sec. III this function f(k) is determined by the
condition that the polaron equation of motion be
self-consistently satisfied. This leads to an inte-
gral equation for f(k) which is solved formally in
Secs. IV and V. A justification based on contin-
ued-fraction theory is given in favor of the approx-
imation used in this solution.

In Sec. VI m~, and the self-consistency param-
eters A and B are obtained analytically for n- 0
and a -~ and numerically for 0& n & 4. 5. The for-
malism developed in Secs. I-VI is valid at temper-
atures low enough so that the probability of two-
phonon excitation remains negligible.

In Sec. VII the expression for the operator p(t) is
used to calculate the optical-absorption coefficient
1" at zero temperature.

A number of appendixes are added to facilitate

3353



3354 J. T. DEVBEESE, R. EVRARD, AND E. KARTHEUSER 12

Hz =Ho+H

where Ho is the Hamiltonian for the electron and
the longitudinal-optical phonons in the absence of
interaction and H~ is the electron-phonon coupling
Hamiltonian.

Explicitly:

(2)

H, =P ( V a„-e'"'+V*a„-e '"'
)

k

where

V„=i(4m/ V) (&( A(d(f/2m(e&) k (4)

In these expressions, r and p denote the position
and momentum of the particle, V is the volume of
the crystal, ~ is the longitudinal-optical phonon
frequency, while a» and a„- are the phonon annihila-
tion and creation operators whose commutation re-
lation is

[a;, a„'-, ]=5; „-, . (5)

The notation n is used for Frohlich's coupling con-
stant, defined as

@c 2@rd E Eo
(6)

where e is the charge of the electron and Ep and E„
are the static and high-frequency dielectric con-
stants, respectively.

An adiabatic switching will be used from now on.
This means that the electron-phonon coupling is
applied adiabatically from t=to (to- —~) to t=0.
Thus the Frbhlich Hamiltonian H~ is replaced by

H= Ho+ e (7)

where, af ter all calculations are performed, the
positive quantity & tends to zero. This new Ham-
iltonian depends explicitly on time.

The wave function I t) at time t can be related to
the wave function I to) at time to by means of the
evolution operator U(t, to). The Heisenberg opera-
tors

the reading of the present paper. The results for
the effective mass and the optical absorption are
analyzed in the discussion. For 0& a &4 and n- ~,
our results are quite close to those obtained with
the path-integral method.

I. EQUATIONS OF MOTION FOR THE POLARON

The equations-of-motion method was used to
study the polaron in the classical case 6 and in the
weak-coupling limit for the quantum case. '3 I,et
us reformulate the main features of this method.
It is well known ~' 6 that the polaron Hamiltonian
can be written in the form

A{t) eiHoil h Ut(t t )A(t t ) e (Hot/ h

obey the equation of motion

A(t) = (i/h)[H (t), A(t)], (9)
where H(t) is the Hamiltonian expressed in terms
of the Heisenberg operators.

For the polaron system, one obtains

=-i(da-(t) —ie '"(W/)&t) e i" ' " (10a)dt"'"=p(t)/, (10b)
CP

p( ) ie-el(i+ k(V a ei)7 r(i)
Veau' ei T)r(i&&

(loc)
A formal solution of Eqs. (10a) and (10b) can be

obtained by means of the method of variation of the
constant of integration. The procedure has been
described in previous papers. ' It leads to

a„-(t) = a-„(t())e '"" 'o' —i(Vh/k) e '"'

&( ~ dt ei(ot' 8-el i'I e-i)e r(i'& (11)
o

Now, at t, far in the past, the phonons are de-
coupled from the electron so that

a„-(t())=a.(k) e '"'0, (12)

where a, (k) is an annihilation operator for "in-
coming solutions" as introduced in scattering theo-
ry. This means that, if 1&I) is an eigenstate of the
Hamiltonian H~ with energy E and total momentum
P, the state a~(k) I &I) is also an eigenstate with en-
ergy E+ S(d and total momentum P+ Ak. In par-
ticular, if I &le) is the polaron ground state, then
ai(k) I &I) is a stationary solution describing the col-
lision between a phonon k and the polaron.

In terms of these operators, the formal solution
(11) can be written as (to- —~)

a„-(t) = a, (k) e '"' —i(Vh/tt) e '"'
rt

dg] e~~t' e &It'I e fk'r(t') (13)

where H. c. denotes the Hermitian conjugate of the
first two terms on the right-hand side (rhs) of Eq.
(14). It is easy to show that this relation expresses
the conservation of the total momentum. Indeed, it is
also possible to obtain Eq. (14)by introducing the solu-

Let us now replace a-(t) and a-(t) in Eq. (10c)
by their expressions deduced from Eq. (13). This
leads to the following integro-differential equation:

p( ) ie-el il g kV ei r((t)et&laeefk)-
k

6)tl a ~ "~ i $ (kyar(t)-fist j
k

rt
dt e e-e I i'I e-i L't r(i') ~i' & H c-(14)
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tion (13) for ak(t) [and for am(t)] into the expression xe '"k' e"'"p a, (k)+H. c. ] (23)

—(p(p+2 Irka;( pa ()-() =0. (15)

+Z[kVk{y„-+is) ~e k e'k'apa. (k)+H. c.],
(16)

where Rp = r(t()} —[p(tp)/m] tp and H. c. denotes the
Hermitian conjugate of the first term between
brackets. The notation y„- has been used for

y-= p) —k ~ p(tp)/m+ kk /2m .
I et us expand the second term of the rhs of Eq.

(16) in a power series of P(tp). To first order,
this gives

p(t) = (m/m*) p(t, )+Z [k V„(y„-+i&) '

xe '" e "k e'k'"pa, (k)+H. c.], (18)

II. ITERATIVE SOLUTION

Equation (14) has been solved by iteration start-
ing froxn a free electron in translation, which leads
to introduce

r(t) = r(tp)+ [p(tp)/m)(t —tp)

in the rhs of Eq. (14). The first iteration gives

-26ltl ~
p('} =p{'o}—'

z
~ kI vk I'(y';+ &') '

fy-t

Valet(k)

e tk R'

where 8 is the position of the polaron center at
time t=0, as given by the first iteration

R =r{t,) -(P*/m*) t,

(24)

i~k
[ V e )'k tp e1k'Rp & (k)

k

—V*e~)'k appa', (k) e '"'"p) (25)

This variable H and the polaron momentum P* are
canonically conjugated (cf. Ref. 27) so that

An interesting particular case occurs when there
is no real phonon present in the system. In that
case, the polaron momentum P* is not changed by
scattering with phonons. Equation (23) shows that
the motion of the electron has two components.
The first one is a translation and results from the
motion of the polaron as a whole. The second
component is an oscillation produced by the inter-
action with the real-phonon field.

In the remainder of this secbon we put & =0. The
solubon for the position operator of the electron is
easily obtained from (23) by integration. It is

~jy~gP g ~ ~ g k

r(t) =8+ ~i+ —Zk V„-- p-e'" "a,(k)I

where m~ is defined by
i[PP, it(]=85~) (j, f=+, y, e) (26)

2~0'I v, i' I-k' -' '-'
1 ——Z — p&+ . (19)

Bz 3 DES 28E
k

The integration over k gives

m+/m = {I-&o)-', (20)

is conserved, one can write

p(tp) = P -2 Aka.'(k)a, (k) . (22)

The second term of the rhs in Eq. (22) represents
the momentum of the incoming real phonons. This
contribution is subtracted from the total momen-
tum. Therefore p(tp) not only has the meaning of
the electron momentum at t = to, but it is also the

momentum of the polaron p*in an incident plane

wave {which is scattered by the real phonons) so that

p(t) = ——,— p*+Z [k v, (y„-+ ik)-'
k

which is the mell-known perturbation result for the

polaron effective mass.
As the total momentum

P =p(t)+Z kka„-(t)a„-(t)

Equation (24) will be used in Sec. III to define a
trial expression for r(t) which is the starting ex-
pression for a self -consistent calculation.

III. SELF-CONSISTENT APPROACH

The solution (24) obtained above by iteration is
valid for small coupling strengths. If the coupling
strength is increased, it is expected that one or
more resonances show up in the oscillatory part of
the expression of the electron position r(t}. These
resonances are related to the possibility of excita-
tion of the electron in the potential well caused by
the induced polarization.

These excitations have been analyzed by differ-
ent authors. '~' '30 Their effects on the absorption
of electro-magnetic radiation at strong coupling
has been studied in detail by the present authors. '3

As one of the authors (J.D. ) and co-workers'P' P

have shown, a resonance involving lattice relaxa-
tion also appears in the optical spectrum of Feyn-
man's model for polarons.

Although to treat these resonances one has to
include a substantial number of virtual phonons, it
seems sufficient to take into account one real pho-
non to describe them and to obtain the physical
properties of polarons at all coupling. Thus, it
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can be expected that a solution of the type (24),
but in addition allowing for resonances, constitutes
a valid approximation. A supplementary argument
for a one real-phonon approximation can be found
in the calculation of Feynman et al. ~8 (hereafter
referred to as FHIP) which is generally considered
as an accurate polaron description. Indeed, in the
FHIP approach, the real part of the polaron im-
pedance z (0) shows maxima for energies equal to
a multiple of the resonance energy plus one LO
phonon only. This indicates that, in Feynman's
model, polarons interact with one real phonon at
most.

On the other hand, a calculation of the optical-
absorption coefficient has been performed in Ref.
23, starting from Re(z '). The results of this
treatment confirm the dominant role played by the
interaction with one real phonon in the optical spec-
trum.

These considerations lead us to propose the fol-
lowing approach. We start from a trial expression
for the position operator of the electron of the type

-ly"(

r(t) =R+ t+ —Q k~ f» e'"'"a, (k)m* m „- (k y„-

fek at(k) e ()k R-'
+

y y

where f -, y-, and the polaron effective mass m*

are c numbers to be determined by self-consistency.
The corresponding force acting on the electron is

dp(t) (md2r —'Z -k(f" ()") '"'"
(k)dt ' dt

f d e )( at(k) e ()('R] (28)

—fe a.(k') e "'".k.. e'""']) (29)

Then the phonon operators are ordered in such a
way that the creation operators appear at the left
of the annihilation operators. Disentangling the
translation term gives

e()('(Ra(P+/k)+)() (()k P+I)k+)( ()7 R -(())l) /2k)+)( (3P)=e e e

One then obtains

It is assumed now that the translation and oscilla-
tion components of the motion of the electron are
independent and, therefore, that they commute.
This enables us to write

e a, ei e& &;.- .;(„ea a .
(

k ~ k) If„;I=e e e exp
k

2 „-. ( m y'. ,

kP kl
(31)

Another expression that appears in the equation of
motion is a product of exponentials of the type
studied above, but measured at different times.
The factors are written so that the creation opera-
tors for real phonons appear at the left of the an-
nihilation operators. For this purpose, the com-
mutation rule

and

k k fe(e ( g(k~))
(k"R i) -ke ( ~

kl
(33b)

ea eb eb ea ela, b3

is used again. Here

a= —g f.,y (e'" "a,(k') e
gt

(32)

(33a)
After ordering the operators, and introducing

the results of the disentangling Eqs. (31), (32)
with (33), into Eq. (14), one obtains

dp(t . , W ' . k P kk ~-= —ie ' "d/ kV, exp -i ~- + ~t e '"'"' exp 2 f*-y='a'(k') e'"""e
dt

~
a me 2m&

y-1 elk" Rg gt e k' elk'R~ k ~ k 0' ei(k 2 /m*)tW k ~ k' -.." -ty-, z -. & IV I

k
~0xee'" dec"'ex(e / y () —e " )ae(k')e& '"e -)-

4 ae m
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W]

xexp —~ — -.7-. 1 —e " e' '"a, k' e
m

xexp i &u-
*

~ + ~ 7 exp[F(k, ~)-E(k, 0)]e '"' ' "+H.c. , (34)

where 7 =t' —t and

p(i, e ) = E(
'

) /
y;,

]/

e Xe e
' "0'

gt
(36)

em -~ Q'e*"""a.(k') Ill„-& =- e»e'" "IO&+ Il„-&

(36a)

are used. In these relations
In the derivation of Eq. (34) it has been assumed
that R and P* commute with the oscillation terms,
i.e. , the terms containing the field operators a,(k)
and a~(k). From the physical point of view, this
approximation seems reasonable, since a measure
of the polaron position or momentum does probably
not modify its internal oscillations. However the

property seems difficult to prove mathematically.
Indeed, to our knowledge, the relation between R
and the field operators is not known.

The principle of our approach is to require that
the matrix elements of Eq. (34) between states with
zero and one real phonon be identical with the ma-
trix elements obtained from the initial expression
(28) of dp(t)/dt. For instance one can calculate the
matrix element between the ground state (01 and a
state 11„-)containing one real phonon with wave
vector k.

Relations of the type,

(0] exp Z pee e[(k') e'0'") =(0[
kt

k o k -f -gy
tl I

Q» = f,y, e
m

(36b)

or

11 ~ Ik ~ k )ye f
Q»e = f ey e(1 —e

m
(36c)

depending on the term considered in Eq., (34).
Because it is assumed that the translations do

not interfere with the oscillations, the factor
exp[ —i (k ~ P*/m*)r] commutes with the oscillatory
part of the equation. This property is used to or-
der the factors in such a way that P~ be applied to
the initial state which is an eigenstate of P*.
Therefore this latter takes the corresponding ei-
genvalue and can be treated as a e number from
here on. The matrix element of the left-hand side
(lhs) of Eq. (34) is easily evaluated using Eq. (28).

With all these considerations, one obtains the
following equation:

exp 2 co—

—exp —i te — e + e e exp[Pe(k', e) —P(k', 0}]
I

.

)
( 0

E(kg 0)/2 k ~ P* @jP ~[ . -& -&~k ~, k ~ k'
1kf-y-e " = V„ke ' exp —i (d — + ]]0 -if-y- e "~k' 1V».k 2m' j k

+
2 ~ r exp[F(k', ~) —E(k', 0)]

dv' (1 —e '"»')

From the time dependence in Eq. (37), it imme-
diately follows that

k ~ P* Aky-= ur — ~ +m* 2m~ ' (38)

which is the first result of our requirement of self-
consistency. In this result for the frequency y„- the
recoil is taken by the polaron (5 0 /2m*) contrary
to the result of perturbation theory [Eq. (17)] where
the bare electron takes the recoil (8 0 /2m). Of
course the main difference between the present
self-consistent treatment and the iteration method
will be reflected in the resonant denominator of f-.

In this paper the calculation is restricted to the

where

~-1
-M( —y»)+M (y»)]

I]
(39)

] ~ QI2) y (2
M(e}= —m "' g(I', y„.+~);

kg m

furthermore

I

case of zero polaron momentum, P*=O.
After symmetry considerations explained in Ap-

pendix A, one obtains from Eq. (37) the following
integral equation, which determines the function f»:

y e-E(k, 0)/2 (
f, = ' I1-~[M(0)-M'(o)

y»
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z(k, ~) = u'c(~) (40c)

p2

c(.)=, , If,, I'y-, ,' e'"" . (40d)

g(k, e) = 'l d~ e-'" e-""exp[a*(k, ~}—F(k, 0)],
(40b)

with

The operator p(t, ) is a constant of the motion and

can be identified with the polaron momentum.
The second term of the rhs of Eq. (44) is sub-
tracted from the polaron momentum to give the
mean electron momentum. Therefore this term
represents the contribution of the cloud of virtual
phonons to the polaron momentum. Comparing Eq.
(44) with (41) gives

(p(t)) = (m/I') p*, (41)

where the brackets ( ) denote the expectation value
taken between states containing no real phonons.

This relation can be used to define the polaron
mass I* in the following way. Let us go back to
Eq. (34), giving the force acting on the electron.
The diagonal matrix element between states with
no real phonons gives

dp(t) Q ~
I V„l,lgl

"
d s~ll~ -el~i

x exp[a(k, ~) —Z{k,O)]+c.c. , (42)

where the adiabatic switching, necessary here, has
been reintroduced. With our notation (40b), this
relation becomes

p( 3~ kz a - elt3l 6It (f y )
d (t) ~- I V I'

k (43)
Integrating Eq. . (43}from a time to, when the in-
teraction is not yet applied, to the time t=O gives

&m 1 v, l'
(p(o)) =p*- —,~ @

R«(&, ya) . (44)

Equation (39) is an integral equation, since the
expression of M(e) contains a sum over the fl, via
Eqs. (40) and (35). It does not seem possible to
solve Eq,. (39) exactly at all n. We rather prefer
to look for approximate solutions. The solution
proposed in this paper is based on an approximate
way of calculating M(e).

Before describing this approximation in Sec. IV,
we give an equation for the mass, the third param-
eter which together with f~ and y~ is to be deter-
mined self -consistently.

The motion of the electron has two components:
a component of translation due to the translation
of the polaron as a whole and a component of oscil-
lation representing the motion of the electron
around the polaron center. Obviously the mean
value of the oscillation component of the electron
momentum is zero and the mean value of p(&) is due
to the polaron translation. In the present work,
the polaron effective mass is defined in such a way
that the polaron velocity is P*/m*. Therefore one
must have

which is the equation needed to determine the po-
laron mass ~*.

IV. APPROXIMATE CALCULATION OF M(z)

In the expression (40d) let us replace the sum by
an integral. Since fl,, is isotropic the integration
over the angles is readily performed. This gives

~p4
c(&) = ~2 d~'

a If'I'y. 'e'"".
m-o m

(46)

Then the frequency y~. is taken as the new integra-
tion variable, leading to

wa

C(~)= '

dy, , e"' W(y, .). (47)

P.o= 8',

p&
—-Wg.

(5Oa)

(50b)

Comparison between the moments of the approx-
imate and self-consistent spectra gives

w= ' dy, , w(y, .)=c(o) (51a)

0 =
c(0 dyl W(y~ ) yl (51b)

Introducing the approximate spectrum (49) into
(46) gives the approximate time dependence of C(7)

This appears as a spectrum of harmonic contribu-
tions with different frequencies 7&.. The weight
W(yl, .) of the mode y~ is

w(ya }=
6 z 3~ If~ I'y~'[&~'/@(y~. —~)]"'.

(48)
The basic approximation in our method of solving

Eq. (39) consists of replacing the frequency distri-
bution W(y~. ) [Eq. (48)] by a single frequency.
This means that W(y~. ) is approximated by

W(ya ) = W5(ya —&) .
The frequency f and its weight 8'are chosen so
that the first two moments p, o and p, & of the approx-
imate spectrum (49) be equal to those of the self-
consistent spectrum (48). Obviously the moments
of the approximate spectrum are
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C(r) = C(0) e'~'. (52) M(0)-M*(0)+M*(y,) —M(-r )

A further justification of this approximation can be
found in Appendix B.

Using relations (40) and (52}, one has

d(or e '" (1 —e "«'}
3 v "0

xlm([D'((or)]-"' e'"'j (60)

g(k, x)= dre '"e "' exp[k C(0)(e ' ' —1)] (53)
"o

1
M(x) = — dr e '"e 'i'i

~g

x " e "»'exp[a'C(0)(e '"-1)].
(s4}

After integration over k this becomes

dec 'i') e ~(z+'1")

~ 00

x(fl) =
3 7f "o

due ""'(1—e'"")im([D*(u)] o oe'"].
(61)

Using Eqs. (39), (57), and (60), it then follows
that

At this point we remark that the integrand on the
rhs of Eq. (60) has the same analytical structure
as the integrand of the function X(v) defined by
Feynman et al. "[see Eqs. (35a) and (36) in this
reference].

Therefore we define

with

x[c'(I —e '~ )+ i&r] (ssa)

Tr e-F (1 to)!2"»r»
r» ~'x(r»/~) '

One now easily obtains,

and

c' = c(o)r-,'m+/m (55b) ~"" dx I f(x) l x i

(1+x)' (63a)

ro (I/2——m(u)~i»

In the subsequent analytical and numerical work
it is convenient to introduce the following notations: with

l" dxl f(x) lox'i'
Jo (1+x)o (63b)

Vi2

@orozco = C' h'ro ~, (56a)
V m* y m*

2 @2(m)5/8
B=(Pg —~Po) y ro ~ llm«) (56b)

so that

f =(o(l B+A i) . (56c)

~[C'(1-e '" ')+ i&or]=D(&ur), (sa)

V. SIMPLIFICATION OF f(x) AND THE EXPRESSIONS
FOR A, 8, m* IN TERMS OF f(x)

At this point the self-consistent determination of

f„y„and m* is reduced to the self-consistent de-
termination of A, B, and m*. Our next purpose is
to write f» in a form which is more compact and

suitable for numerical treatment. Therefore the

different terms in the denominator of f» [Eq. (39)]
will be combined. This denominator is

1 —(i/y )[M(0) —M (0)+M (y ) —M(- y„)]. (57)

Vfith the notation

(4vn/y)(~)o(@/2m(g)oi (1+x) e c "(m/m*)
&o'x&[(I + x)' -Re X(1+x)]'+[lmX(I + x)] ].

(64)
where r, =(1+x)&.

To determine f(x) in a self-consistent manner,
one needs not only 4 and I3, but also the effective
mass m*. Using Eq. (45}one obtains the following

expression for m*:

m+ a m+ "' "" dxx2e-"

3~v m ., [C'(1 e '"'")+x—]'"-,
(65)

The details of the derivation of Eq. (65) are given
in Appendix C.

Equations (63a), (63b), and (65) allow one, in
principle, to determine A., B, and m*.

VI. NUMERICAL AND ANALYTICAL EVALUATION

OF THE PARAMETERS A, B, m*

It is relatively straightforward to determine A,
B, and m* analytically for weak and strong cou-
pling. Let us first consider the case of weak cou-
pling. If n othen C'-, ImX(Q) and ReX(Q) tend to
zero like n. This gives (to order n)

one has A=B=n«v (rot /V) . (66)

M*(y») —M(- y») =+ i &o dre ' e "»'
3Am -o

xlm[e'"'[D~(a)r)] ' '). (59)

To obtain the expression for the mass, it is suffi-
cient to consider the term n =0 in Eq. (C5), leading
immediately to

It follows that m/m*=1-)n, (67)
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4n m+ '"
=8.
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y, =(l/C')(m~/m) n-~
With Eqs. (68) and (72) it f 1i ollows that

C'=(9./4 ')( */ )

(74)

(75)

)
2n m* "' 1

(n ) (68

Furt&hermore from Rt ef, 23~

Imp(A) = (g I)1/2 e c'(0-1&e
' (n- ~).

One needs also th
(69)
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VII. OPTICAL ABSORPTION

The formalism developed here is suitable to cal-
culate the optical absorption coefficient K of polar-
ons in the independent particle approximation,
which can easily be expressed once P(t}, the elec-
tron momentum operator, which follows easily
from E&l. (78), is known. '"

4gN e~
(81a)

with

I'(0) = Re df e """"(P
l p, (0)p,(t)l P*),

(81b)
where I P~) stands for the ground state of the po-
laron with total momentum P* at t = t0.

In what follows P*=O is chosen. E&luation (81b)
is identified as the T=0 Kubo formula and can eas-
ily be related to the Fermi golden rule.

From (27) it follows

by starting from the weak-coupling value of A, B,
and m* and extrapolating these to larger ~ after
self-consistency is achieved for smaller &2. )

In Fig. 1 the mass m* as obtained from the pres-
ent theory is plotted and compared with the results
obtained by Feynman. ' lt is seen that for n rang-
ing from 0 to about 3. 5 the effective mass m* ob-
tained here is very close to the value obtained by
Feynman. Furthermore for large ~ our result has
the correct asymptotic behavior.

Once the parameters A. , B, and m* are obtained
it is possible to derive other physical quantities
like the self-energy of the polaron and the transi-
tion probabilities determining optical absorption
or mobility. In Sec. VII the optical absorption
will be discussed.

—', n(A/(d)))' 0/v —1 e
[(n/(d)' —ReX(n/(d}]'+[Imp(n/(u)]'

' (84)

This expression is very similar to that obtained by
one of us (J.D. ) and co-workers'2'22 using the
FHIP impedance function. The analytical struc-
ture of the denominator is even identical to that
found in Ref. 23, E&l. (lla). The numerator of
E&l. (84) has only the leading term of that of E&I.

(lla}, Ref. 23. This is due to the one-real-phonon
approximation in the present work but it does not
alter the absorption curves considerably from those
obtained in Ref. 23 in the n region of physical in-
terest (0& n &4. 5) or for large n.

It should be remarked that the resonant struc-
ture introduced by the denominator of E&l. (84) is
obtained here without any ad hoc approximation.

The results for the optical absorption I'(A) ob-
tained by numerical computation are shown in Fig.
2 for a=1, 3, and 4. 5. As can be seen from
these curves, our results for & & 3. 5 are very
close to those obtained in Ref. 23 with the FHIP
approach. The main difference is the more rapid
decrease of the absorption at high frequency in the
case of the present treatment. This could be due
to the fact that interactions with two or more real
phonons are neglected here. For larger values of
n, the disagreement between the two methods be-
comes considerable. However, the asymptotic
limit a- ~ results and those of Ref. 23 coincide
again.

y„=&t)+ kk /2m

therefore it is easy to express the optical-absorp-
tion coefficient of a free polaron in terms of the f»
calculated here.

With the expression (64) for I f» I in (83) one is
then led to

p(f)=g kf»e &r»&t t()) e '&t) e'"-'-a +H. c.
k

(82) CONCLUSION

With E&l. (82) in (81b}, one obtains

(d
F(&7) Re l df e &&0+&6)t

rnhQ

x(0l g k,f„e'"»'oe'"'a,

~txg kif 4 eir»i&t t&)) e tk' ~ r t -l 0)-

0
R

1 dte t«)'t '»)t k2I y l2
mhQ

(83)

with

The method due to Lee, Low, and pines is
known to give satisfactory results at intermediate
coupling strengths (&2&3) for the static properties
of the polaron ground state, like the energy. The
results are far less satisfactory for dynamical
properties like the effective mass or the optical-
absorption constant.

On the contrary, Feynman's method leads to ap-
parently good results for these latter quantities.
However, the path-integral formalism used in this
method is rather involved and not so universally
known as the Schrodinger or Heisenberg formal-
lsms ~

There are probably two reasons for the success
of Feynman's approach to the polaron problem.
First, he is able to eliminate the phonon variables.
Second, his model which is related to a harmonic
oscillator, allows for internal excitations.
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In this paper a different method is proposed

which shares with Feynman's approach the two in-
teresting features cited above. This method is
based on the study of Heisenberg's equations, the
concepts of which are probably familiar to more
pbysicists than the path-integral formalism.

The results for the polaron effective mass and
the optical absorption by free polarons as obtained
here, are very close to those obtained with Feyn-
man's method for values of the coupling constant
up to n of the order of 4. Practically all the
ionic crystals fall in this range of values of n.

For Q. «4. 5 the equation giving the polaron ef-
fective mass has no longer a physically meaningful
solution. This is probably due to the fact that our
approach takes account of interactions with one
real phonon only (but with any number of virtual
phonons).

At tbe limit n- ~ an asymptotic solution is found.
This seems to be accidental and is due to a change
in the meaning of the annihilation and creation op-
erators a, (k) and a,"(k). At very strong coupling,
these operators become associated with a coherent
mode which now represents an internal oscillation
of the electron in the potential well caused by the
induced static polarization.

FHIP'8 and Thornber, 32 working in the path-in-
tegral formalism, have formulated a self-consis-
tent scheme to calculate the response of polarons
to external fields. As stated by Thornber, 32 the
self-consistency in their work arises from ex-
pressing the response of the polaron system as a
function of the effective electron-phonon interac-
tion (via an "admittancelike" relation) and by si-
multaneously expressing the electron-pbonon in-
teraction as a function of the response (via an im-
pedance-like expression). At different intermedi-
ate stages mathematical expressions occur in the
present paper which are similar to those obtained
by FHIP, Thornber, and in Ref. 23. It would cer-
tainly require an extensive study to obtain the pre-
cise relation between the present approximation
and the Feynman-type self-consistency.

It seems to be relatively easy to generalize our
method to study other properties of the polarons
such as the mobility which will be treated in a
forthcoming paper.

ACKNOWI. EDGMENTS

I =2k'(k k')I'(u'- u") (Al)
gl

where F(k', k' ) is a rather complicated expression
which has no angular dependence. Using compo-
nents for the vectors k and k' gives for the compo-
nents of I

3

f, =-gP a,'uy, r(u', v') . (A2)
l=l

Since F(lP, k") is isotropic in k' space, the terms
with /o j in the E sum are zero. Indeed, in the
summation over k, it is always possible to associ-
ate the contributions of two vectors k' having op-
posite values (k& and - k&) for their j component so
that the sum is zero.

These considerations lead to

I~ k~Z kg Y——(k, k' ) (As)

but, because of symmetry

I= —,

'krak'

F(k k' )
k'

and the product k'(k ~ k') in Eq. (37) is simply re-
placed by 3kk'3, leading to Eg. (39) with (40).

A similar reasoning can be applied to obtain

(A4)

E(k T) = k fy~ pg, i e (A5)

APPENDIX 8

In this appendix it is shown that the approxima-
tion used in the evaluation of g(» z) [cf. relation
(45)] is equivalent to an expansion in a continued
fraction limited to the first step. Moreover, it is
proved that the choice of the coefficients of the
continued fraction can be justified by a variational
principle, at least when s is real and positive.
These results give a further justification of our
approximation.

Let us recall that [cf. Eg. (40)]

APPENDIX A

In this appendix the symmetry considerations
leading to Eq. (39) are given. When P~ =0, the
second term of the rhs of the integral Eq. (35) has
the form

Two of the authors (Z. D. and R.E. ) would like
to thank the International Center for Theoretical
Physics (Trieste) for hospitality during the sum-
xner of 19VS and 19V4 when part of this work was
performed. The authors also thank Dr. J. De
Sitter for very valuable computer assistance, and
Or. Z. Thomchick for a careful reading of the
manuscript.

g(» &) = d& e'"«p[ —&'C(0)] exp[&'C(~)], (»)

(s2)

Expanding the last exponential of Eci. (Bl) in a
power series leads to
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-k2C (0)
r0 1 2''' n &kg ~k2 ''' &kn ~ kg+~k2+'"+~kn ~k'k' ~ ~ ~ k''~ P'~ I' ~" if P

QSf 352Jfg ~ ~ ~ f &kn

f s-k~c(0& Q (8~ )

n=Q t

k'k' k'
If I'

I f
2 2 2

kgb ~ ooskn ~k ~k ~k1 2 n

f~n 1

4 +~k +''' + 42 n

&n='4~+'42+' ' ' +'4„~ (B4)

Then the multiple sum which appea, rs in the last
term of Etl. (BS) is of the following I;ype:

The multiple sum over the 0's is in fact an integral
with Sn variables. It is possible to change the vari-
ables in order that one of the new variables is

I

term Z(z, x) in Eq. (all). As this term is positive
[cf. (B6)] the best approximation is obtained when
it is minimum. Therefore let us use the freedom
in the choice of x to minimize its expression (B12),

ttz(z, x) z(z, x)
Bx z+x

Z(z) = — " dx„,L(x„)
"no) &n+ Z

(B6)

r oo

—2
(z+ x)

which gives

(x„-x)L(x„)dx„
z+x

I.(x„) o
—+1 " L(x„)dx„=O8+x ~zz 8+x z + x (B14)

z &-ne . (B6)

is the result of the integration over the n-1 other
variables. An expansion of integrals of the type
(B5) into Stieltjes continued fractions is known to
give good results when z is real and not located on
the cut of Z(z), i.e. , when

r QO

(x„-x)L(x„)dx„=O .z + xt
(B16)

This provides us with the best value of the varia-
tional parame ter;

The first nontrivial step in the continued fraction
expansion ls

f„"„x„L,(x„)dx„
f„„L(x„)dx„ (al6)

Z(z) = ao/(a, + z),

aQ = I. X„dX„,

f„"„x„i.(x„)dx„
f„"„L(x„)dx„* (B9)

( )
~ L(x„)dx„.'„„(x„—x) + (z+ x)

(alo)

Performing two steps of the division, this relation
becomes

Z(z) = L(x„)dx„z + x ngj

with

r 00

(z+ x)'.„„(x„-x)L(x„)dx„+Z(z, x), (all)

1z(x, x) = (x„—x) L(x„)dx„
z+xn (B12)

A variational principle can be established, which
gives a rather strong argument in favor of the ap-
proximation (B7). Let us introduce a variational
parameter & writing

)
f„"„L(x„)dx„a,

z+x Qg+ z (B17)

which is the first step (B7) of a Stieltjes continued
fraction.

To prove that this value of x gives a minimum
of Z(z, x) let us calculate the second derivative

e'Z(z, x) 6
sx' (z+ x)' .„„(x„—x)L(x„)dx„

2+, ,3 I L(x„)dx„.(z+ x) (B18)

Now the parameter 7 is replaced by its expression
(B16). The relation (B18)becomes

s'z(x, x) 2
L(x„)dx„,Bx (z+ ag)

(818')

which is positive if z~ —n~, since it follows from
relation (B16) that a& & n&o.

Our approximation is related to that used by
Feynman" which is based on the following inequal-
ity:

which is a, [cf. Etl. (B9)].
With this value of x and neglecting Z(z, x) the ex-

pression (Bll) of the calculated quantity g(z) be-
comes

The approximation consists of neglecting the (e-ge) ~ e-s&x ) (al9)
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where the brackets denote the expectation value of
the random variable x. For instance

L(x) dx f,
"

L(x) dx ao
x+e &x)+z

=
a~+a (B22)

f,"L(x)e "dx
f,"I.(x) dx (B20)

This last inequality shows the relation with our
procedure.

me

p

e "(e '")ds ~
"0

e-aug e-s4 & d~ t (B21)

which after integration becomes

where L(x) is the non-normalized probability den-
sity of x. The Laplace transform of E&I. (B19)
gives

APPENDIX C

This appendix is devoted to the evaluation of Eq.
(65}determining m . The starting point is E&I.
(45). It is supposed that the terms describing the
internal oscillations of the electron do not contrib-
ute to the effective mass. Therefore it is sufficient
to calculate the e component of the rhs of Eq. (45)

-Re Z keg(k, yn) = rot—(do —Re d8sin8cos8 dkkg(k, yn)
~)0

A 1 d8sin8cos8, dkk dv'e ' l'e"""ee v' -C lP

"0 "0

n 21 "'
= —yp@(d2 — d8 sin8 cos 8

7f &~p "0
dkke c&o&PRe .=o nt "o

d eee[e—((y +eK —ie)e] }
(Cl)

Let us first consider

P C"(0)
n=o

dv exp[ —i(y, + ng —i~)~]
~/p Now

& e-(g+u )x x I u2n e-nC'xlx

n=o n.t (cv)

g C"(0}k" ( —1)
„() n! ( —i)(y, +n&dt' —ia)

' (c2) Mo e-n&'u/(e) exp(C i+2 e-& /
)

n-0
(c6)

2 g C "(0)k'" ekPucos8
n! m*(y, +n&dt)' . (cs)

Going back to E&ls. (45) and (Cl), it follows that

8Q sz 2'

Developing this expression in powers of P* and re-
taining the linear terms,

Subsequently
)m (&0

J=
(3)

dxx e" duu

xexp( —u'[x+ C'(1 —e-'"/")]] . (c9)

The integral over u, which is Gaussian, is easily
performed now:

C(0)n da&&o&n && e-c'u

n! .() (I + u'+ n!;/(d)o (c4) so that

x' e-"dx
41'(3) [C'(I —e ]."")+x]

(C10)

Now consider

( C)
inc'm dammne1& e c'uo

n=o n! "o (1+ no+ nf/(d)o

where the notation C' is used; with

n-& -a.x e dsa" I'(n) .()

one obtains

2 -C.2 C'u2J= -- duu e " dxxI'(3) "o 'o

(C5)

(c6)

=1-
m e/e ( m } e [C'(( —e e )+x]ee

(C11}
APPENDIX D

In this appendix a number of relatively straight-
forward analytical calculations are presented which
facilitate the reading of the material in Sec. VI.
First, the asymptotic behavior of Re(!&) for &).-~
is given. One has

Bey(n) =
( ) de
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nazInI = "( ")"'Z c"„,c'"I- I"

""du(l —cosAu) 8"' " "'"
)n+3/2 (D2)

Putting +=Au and with a further series expansion,
one obtains

lQ

( ) (I '( — """)- ]' )'
(Dl)

Using a series expansion for the denominator, it
follows that

dy (y I)1/2 e-C'( 3-1)

.l1 [(s —s3)(y+~3)] +[imx(y}]'

where the denominator is expanded around y = yp.
For strong coupling, the I orentzian tends to a 5
function a,nd

~, "A6(y-y3)(y-I)'"e' ""
(~+ y3) lmX. (X)

(Da)or

~(y I )1/2 e-c'(33-1)

6&1m X.(y, )

Then using Eq. (D9), one finds
3/2 ~ ( )n

ReX(~) ~ ~ ~-3/2 g(g I)3/2
sm

n ~)
4o.y3(m*/m)~ (Dlo)

P 00

SX) e4 (1+nU«»n/&

3 X
X 1+8 pl+2 +~ o ~ ~

which is Eq. (71).
In the derivations of m*, A, and 8 [from Eqs.

(63) and (65)] one still needs the asymptotic behav-
ior for large ~ of

For large n, the dominant contribution to the imag-
inary part of the integral is (introducing a conver-
gence factor e "")equal to Q. Therefore

2a m* "' 1
Beg(Q) =

&3/2 (0 ~)
3 1r m

dxx~ e"
[g I (1 e-Kn/ru) ]3/2

Using a series expansion, one has
"" dxx'e-" 3 C'e-'"'"

(C'+ x}' 2 C'+ x

(Dll)

(D12)

/n 00
QXX g/42 e c'x

3 [(1+x)' —Bey(I+ x)]'+[Imp(I+ x)]' ' (D6)

I.et y3 be a solution of y20 =Bey(y3) (an equation
which has solutions only if a is sufficiently large
n ~6). (D6) becomes

Now consider the imaginary part of y(Q) [cf. Eq.
(61}]. The asymptotic expansion for large n fol-
lows immediately from Ref. 23, Eq. (A13},

2n m* '"
1)1/2 e c'(c 1& (& ~)

(»)
Furthermore one needs the asymptotic behavior

for large a of

The second term in the brackets of (D12) is of low-
er order in I/u compared with the first term. At
this point one can employ Eq. (6), Bef. 31,

Z = 2(C')'"(e')"' W (C')

or asymptotically

(D14)

2(ct)l/4(ec')1/2(e-c')1/2(ct)-7/4 2(gt)- / 32'
(D16)

dxx" (x+p) 'e
Jp

p(v-p-1)/2 (p v 1)/2 eBp/2 p(1/) II/ (p )
(D13)

where 8', „ is aWhittaker function. In Eq. (D12)
one has v=3, p. =1, P =C', p= —,', and therefore
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