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Local-field effects and birefringence in II-IV-V2 chalcopyrite crystals
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We present a new analysis of the birefringence of chalcopyrite crystals, which uses the irreducible components
of the susceptibility and polarizability tensors. This analysis shows that the major part of the crystal .

birefringence is due to local-field anisotropy rather than to the bond optical anisotropy. Contradictions
encountered formerly between the dielectric-theory approach and the molecular-orbital approach are
explained.

INTRODUCTION

Ternary compounds with chalcopyrite structure
have recently received a great deal of interest
because of their applications in nonlinear optics'
and semiconductor physics. Chalcopyrite crystals
belong to the family of tetrahedrally coordinated
compounds. Their structure derives from the
sphalerite structure by the splitting of the cation
sublattice into two different sublattices.

It is a well-known technique in nonlinear optics
to use the birefringence to achieve phase-matched'
frequency mixing. Consequently, and as far as
nonlinear optics is concerned, the most interesting
specific property of chalcopyrite compounds, among
the tetrahedrally coordinated crystals, is their
natural birefringence. "Most of the dielectric
properties of chalcopyrite compounds, including
their average refractive indices' and their second-
and third-order nonlinear optical susceptibilities, e'7

are now rather well understood. But so far, there
has been no correct theory of their birefringence.
The average refractive indices of chalcopyrite
compounds have been correctly accounted for by
the generalization to multibonds tetrahedral crys-
tals~ of Phillips dielectric theory. Using this
generalization, Chemla and I.ind and Grand' have
found in the case of II-IV-V3 compounds some cor-
relations between the birefringence and the crys-
tallographic parameters. However, their analysis
implies that the II-7 bi-atomic bonds must have a
parallel polarizability smaller than the perpendic-
ular polarizability. This result is in absolute
contradiction with the precise calculations of the
bond polarizabilities in these compounds given by
Seholl and Tang. "

In this paper we present a new analysis of the
birefringence of the chalcopyrite crystals, based
on the use of the irreducible components of the

susceptibility and polarizability tensors. This
analysis puts forward the difference of symmetry
of the local-field contribution in the average re-
fractive index and in the birefringence. One of
the consequences of our analysis is to eliminate
the contradiction formerly found between the molec-
ular-orbital approach" and the dielectric-theory
approa, ch. '

I. LOCAL-FIELD EFFECTS ON THE BIREFRINGENCE

The optical anisotropy reflects the structural
anisotropy of chalcopyrite crystals. The differ-
ence of atomic interactions along the optic axis
and perpendicular to it results in a tetragonal com-
pression which can be measured by a dimensionless
quantity v = 2 —c/a, where c and a are the crys
tallographic cell parameters. The chalcopyrite
structure exhibits another anisotropy. The ele-
mentary building block of the structure is a tetra-
hedron formed by the anion C surrounded by two
cations of the A type and two cations of the 8 type
(Fig. 1). The anion is not situated at its center.
It is pulled towards a couple of cations on one type
along a plane perpendicular to the optic axis. This
displacement can be measured by another dimen-
sionless quantity o'=4x —1, where x defines the
coordinate of the anion in the crystallographic cell
in unit a. The relationships among the various geo-
metrical quantities in the chalcopyrite cell are given
in Appendix A.

In the transparency domain of the crystal, the
linear polarizability tensors of the various bonds
are second-rank symmetric tensors, which have
two irreducible components, a scalar which de-
scribes the average polarizability of the bond and
a deviator which represents the optical anisotropy
of the bond. In the case of a system with axial
symmetry, the decomposition of the polariz ability
tensor in irreducible parts is obvious,
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FIG. 1. Elementary building block of the chalcopyrite
structure. An anion C surrounded by two cations A and
two cations B at the vertices of an irregular tetrahedron.

Equation (I) leads us to introduce the two quan-
tities o = 3(o.„+2().,) and &()(= ~(()(„—o. ,). Due to the
special symmetry of the bond, the deviator has
only one independent component which transforms
as the spherical harmonic ~~o.

It was shown in Ref. 5 that Phillips dielectric
theory is equivalent to a microscopic-bond-polariz-
abilities approach for the scalar ~, using the
Kramers-Heisenberg dispersion formula, Vinti ap-
proximation, and assuming that all the local field
effects can be included in the definition of the mean
energy gap E~, i.e. , in n. In the same paper, it:

was noticed thai if the polarizability Rnisotropy &a
could also be defined in a way which include the
local-field effects, then the birefringence of chal-
copyrite crystals ABC2 should be written

this approach is that since all II-IV-V2 compounds
known to date have a positive birefringence (n, &no)
and are all compressed (c& 2a), 5c(" should be
negative. This result is quite surprising and in
contradiction with molecular-orbital calculation,
performed by Scholl and Tang" on the same com-
pounds showing that &n' is Positive.

This contradiction indicates clearly that it is not
possible to define macroscopically a quantity such
as ~o. , or in other words, that the local-field con-
tribution to the birefringence is completely dif-
ferent of that to the average refractive index.

The local field varies very rapidly over the unit
cell. Only very heavy self-consistent quantum-
mechanical calculations» can handle correctly the
problem. In the semiconductors that we consider,
the electrons are only partially localized. During
their motion over the bonds, they probe the average
microscopic field. We can therefore use a sim-
plified approach and assume that the local field is
constant over an elementary (A(2&-C-B(2&) tetrahedron.
Since it is the sum of all the fields radiated by the
dipoles of the crystal when excited by an applied
field, it can be described by a tensor equation
(('"'=I Z, where f is a tensor having at least the
crystal symmetry. For chalcopyrite crystal f has
three nonzero elements which are in the crystal-
lographic axes f» =f~~ and fxz f„r=f,. In o——rder
to calculate the nonzero components of the crystal
susceptibility tensor, it is necessary to sum up
the contributions of all the dipoles induced in the
unit cell. The detail of the calculation is given
in Appendix B. The two invariants associated with
the susceptibility tensor are

x = 3(x. + 2x, )

hn=n~ —no= — [2(3 cos 8
"
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where the AC bond is denoted by (+) and the BC
bond by (-); 8"' is the angle between the bonds
axis Rnd the crystal optic axis.

In the case of the G-IV-V~ compounds, Abrahams
and Bernstein" have shown that the tetrahedra
centered at the IV atoms are regular with a very
good accuracy. To the first order in the structural
quantities, one has —,(3cos 8 ' —I) = ——,(~ +&). The
regularity of the IV-V4 tetrahedra implies that v

and consequently, &n = —64)T ~ &()."/3nV
This expression can be used to establish corre-

lations between crystals involving the same II-V
bonds (nVb, n/r)„~c2=(nV()nq. )~.c . Such a rela-
tionship was applied by Chemlae and also by I.ind
and Brant. »o The numerical values they deduced
from it are rather inacurrate but they give the right
order of magnitude. A more important result of

+(f+&f) ()n(" (3cos'8(" —I)/2]. (3b)

In these equations the superscript (s) is used to
label the different bonds in the unit cell. f= 3(f„
+2f„), and &f= —,'(f„f,) are the invar—iants associated
with the tensor f.

The physical interpretation of Eqs. (3a) and (3b)
are the following. First, because of the bond
anisotropy, the bond dipole is different whether the
Rpplled field is pRrRllel or perpendiculRr to its
a is. In addition, the bonds are arranged in the
crystal in an Rnisotropic fashion Rnd the sum of
the fields radiated by all the bonds in the crystal
results in the field on the unit tetrahedron. This
fieM is different Recording to the direction of the
applied field with respect to the crystal axes. A
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TABLE I. Isotropic- and anisotropic-local-field correction for five chalcopy-
rite II-IV-V2 compounds.

Compound Bond 3&X

CdGeAs2 CdAs
GeAs

8.12
5. 02

1.24
1.05

0.113 0. 94 0. 098 1.77 0. 074

CdGeP2 CdP 7. 02
GeP 4. 59

1.4
1.38 0.123 0. 74 0. 015 l.41 0.023

ZnSiAs, ZnAs 6.02
SiAs 4. 7

0, 62
1o 32

0.057 0.74 0.027 1,48 0. 021

ZnSiP2 ZnP
SiP

5.27
3.68

0. 97
0. 9

0.067 0, 70 0. 059 i. 88

ZnGeP2 ZnP 5. 34
GeP 4. 52

1.03
1.31 0. 038 0. 70 0. 038 1, 42 0. 044

X =(16/I') lf(o'"+o" ') —j& ~~"~f],

&X=(16/I')Ãf( "+ ' ')-' ~ "(f+~fH.
(4a)

(4b)

As expected, the deviator part of 8 ' ' does not
appear because of its special orientation. But the
IV-V bonds contribute to the birefringence not only
through their contribution to the local-field tensor,
but also by their average polarizability n' ', which
is multiplied by &f. Equation (4b) therefore ex-
plains why there is no simple correlation among
the birefringence of different compounds involving
the same II-V bonds, conversely to what could be
deduced from Eq. (2}. For most of these com-
pounds, the tetragonal compression is small (0
~"~0. IV) and the deviator bn is small (but not
negligible) in front of the scalar. . It is therefore
possible to write with a good accuracy

x =(16/V)f(n'&+&&-&). (5)

very important consequence is to be noted. Even
if the bonds were all isotropie (b~'" =0}, the erys
tal would. be still 'birefringent as a whole because
of the anisotropic ordering of the bonds (bf c0).

From the point of view of irreducible tensors,
the form of Eq. (6) can be explained as follows.
Each of the three tensors X, H, f is the sum of two
irreducible components, a scalar whose weight is
J=o and a deviator whose weight is J=2. ln the
product of two irreducible tensors of weight J, and

J~ appear tensors of weight I J, —Jal, I J, —J2+1I,
I J', + J'z I. So that y comes from nf and bnbf,

while by comes from obf, fbn, and bnbf. The
angular factors are explained as follows: The
tensor g and f are expressed in the crystal axis;
only n has to be transformed from the microscopic
frame to the macroscopic one. In this transforma- '

tion, the scalar n is invariant and the deviator 5n
is just multiplied by the Legendre polynomial Pz(&).

Let us particularize Eqs. (5) to the case of II-
IV-V3.

This shows that as far as average refractive in-
dices are concerned, it is possible to define macro-
scopically an average polarizability n~ =fn which
automatically includes the local-field effects. This
result justifies a Posterio&i our generalization of
Phillip's theory to chalcopyrite crystals. 5 Con-
versely, for the birefringence it is impossible to
include the whole local-field effects in the defini-
tion of some bond optical anisotropy.

In order to evaluate the anisotropy of local field
which can explain the observed II-TV-V2 crystals
birefingence, we consider now five compounds
whose refractive indices have been experimentally
measured. We use Scholl and Tang" bond polariz-
abilities to calculate the two local field contributions

f and &f from the experimental refractive indices.
The numerical values are displayed in Table I.
The average local-field factors are of the order of
1.5; if we were dealing with completely delocalized
electrons, f should be equal to one, and for com-
pletely ionic compounds it should be close to the
Lorentz correction fz, = 3(n +2) =4. The value we
obtain shows the covalent character of the bonding
in these crystals. As for the &f, a very small an-
isotropy of the local fields (&f/f& 5& 10 2) is suf-
ficient to account for the positive birefringence.
This is due to the fact that the local field aniso-tropy
contribution is multiPlied by the sum of the bonds

.average polav izabilities and represents the major
part of the birefringence of the cry«at The bon.d
polarizability anisotropy has a small contribution
since it is always multipl. ied by the geometrical
factor P2(e). Theformer contradictionamong the
signs of 4g and 6n is eliminated. Even in com-
pressed crystals (e&2a), a very small local-field
anisotropy can overcome the bond anisotropy con-
tribution and produce a positive birefringence.

It is, however, interesting to understand why a
slightly compressed geometry exhibit a posltlve
local-field anisotropy (i.e. , &f &0). Suchatendency
ls easily explained from elementary electrostatics
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f.-=fi= (n'+ 2)/3,

bf, „=(n —1)Y/15.

(Va)

(Vb)

theory. The local-field factor inside an ellipsoidal
cavity whose semiaxes are a~, a2, a3 may be found
from consideration of boundary-value problems
in electrostatics; these are~ f~= 1+(n -1)Az,
where

~a2a3 ds
(s+a3z) [(sya, ) (s+a33) (s+a3)] ~

(8)
For a spheroidal cavity (a, =a3=a3=a) well suited

to describe a cubic crystal, one has Ag 3p and

fr =3(n +2) is the Lorentz local-field correction.
The chalcopyrite geometry may be approximated
by an oblate ellipsoidal cavity whose semiaxes are
chosen to reproduce the tetragonal compression,
a~=a3-a, a3=a(1 —Y/2). An elementary calcula-
tion gives to the firstorder in 7., A~=A2 —3

and Aq = 3+~~, 2~. The two invariants associated
with the local-field tensor f are

ordering of the bonds in the structure. Conversely
to what was formerly stressed, the bond anisotropy
has a small influence on the birefringence. In the
case of II-IV-V~ compounds where numerical cal-
culations are possible, a local-field anisotropy as
low as 5% is sufficient to explain the positive bire-
fringence and to eliminate the contradiction en-
countered formerly. The compression of a cubic
structure has on the birefringence turbo effects op-
posite; one is postive on the local-field anisotropy
and the other is negative on the bond orientations.
The birefringence results from a delicate balance
between two competing factors, and it is very likely
that only a very sophisticate theory can account for
it.

APPENDIX A

The elementary building block of chalcopyrite
structure is an irregular tetrahedron A(2)-C-.B(»
(Fig. 1). The coordinates of the atoms are given
in the following table.

The scalar remains exactly equal to the cubic
Lorentz correction, whereas the anisotropy of the
local-field tensor is positive and proportional to T

This simplified model shows that a slight compres-
sion on a cubic crystal tends to increase the local
field along the direction of compression and de-
crease the local field perpendicular to it. Although
the Lorentx correction only applies in the case of
ionic comPounds and does not give correct results
in the case of the semiconductors that we consider,
it is interesting to see how the local-field anisot-
ropy deduced from Eq. (Vb) compare with the,
values of Table I. We find f5, ,„( dCeGAs)3=0. 09,
f,5,„( CdGeP)=3.0O, Vfb, „( ZniSAs)3= .003,55f, „

&& (ZnSiP3) = 0.038, 5f, „(ZnGeP3) = 0.022. These
values are of course different from those calculated
from the birefringence; however, they agree sur-
prisingly within 60%, indicating that this approach
ls quite sensible.

It is worth noting that the correlation among the
birefringence of the II-IV-V2 crystals involving
the same II-7 bonds although inaccurate is not
accidental. '~0 It is very likely that the local-field
anisotropy is proportional to Y, as in Eq. (Vb).
The birefringence can then be written &n =KY/nV
[see Eq. (4b)]; where K is some quantity which
should not vary too much for a family of related
compounds. Therefore, Y/nV is a useful scanning
factor for a rough estimate.

CONCLUSION

We have given a new analysis of chalcopyrite
crystals birefringence, which shows that the major
part of the crystal-optical anisotropy is due to the
anisotropy of the local field which reflects the

A(, )

A(2)
&(i)
~ (2)
C

0
a/2
a/2

0
a/2
0

a/2
a/4

0
c/4
c/4
0

c/8

The interatomic distances are

d "=%&a [1+(1——.Y)'+(1+a) ]

=~3a (3 —Y +2o').

The cosines of the angles between the bonds axes
and the crystal optic axis are co's"8'=(Z"' d/'"),
so that the Legendre polynomials are

P3(8 ) = 3(3 cos'8"" —1)= 3(7 Ro),

APPENDIX 8

Let us label the crystallographich axes XFZ and
the bond axes x'"y'"z'", where the superscript
(&) covers all the bonds in the unit cell. The sus-
ceptibility tensor and the local field are defined
according to

XIX 1 i I ~fit ~g

The irreducible invariant of any symmetric second-
rank tensor t are

1
3( ZS + YY+ XX)i 3 (2 XZ tYY XX) '

In the microscopic axes the bond dipole is P,'"
=n';&)8&' . The only nonvanishing elements of 0. ")
are

(s) (s) (s). (s) (s)Q ))
= Qgg, Qg = Q~g = Q3i3t

The transformation from the microscopic axes
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to the crystal axes of the bond dipole can be written

+I = cos8li cosog& Big fJE~K'~

where 8~' is the angle between the I crystal axis
and the s"' bond axis.

Since the tensors f and g are diagonal, the only

nonvanishing elements of g are of the following
form:

2 (s) (s)pe' icos Sxs &sr fxx~
S

which results in Egs. (3a) and (31).
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