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In this paper we use detailed-steady-state conditions in the drifted Maxwellian approximation to determine

separate drift velocities and electron temperatures for each Landau level, rather than using an over-all-steady-

state (OSS) condition with a single-drift velocity and temperature. We find that the drift velocities and

temperatures differ from level to level and from the results obtained when the OSS approach is used. We also
find that the two approaches give different results for the electrical conductivity.

I. INTRODUCTION

The problem of calculating the electrical con-
ductivity of a semiconductor with parallel electric
and magnetic fields has been tackled by many peo-
ple using many different methods in recent years. ~
One usually assumes either negligible electron-
electron scattering, or the other limit of enough
electron-electron scattering so that the drifted
Maxwellian approximation is valid. Previous work
with the drifted Maxwellian has assumed one elec-
tron temperature and drift velocity for the entire
electron system. ' ' However, when optical-phonon
scattering is considered, the situation for the low-
e;..t level is quite different from that of the upper
levels. For all levels the most important optical-
pho;;on scattering process is the emission of a pho-
non and the consequent scattering of the electron
to a ', ow'.-. energy state. In the lowest level this
can happy=~ only for e1ectrons with energies greater
than the optical-phonon energy S~,. In order for
the rate of momentum 1oss by scatte '..ng to balance
the rate of momentum gain from the ield, a large
number of electrons are necessary v. ith kinetic
energies above Scuo. Therefore, a 1;.rge drift ve-
locity would be necessary for the lowest level.
For the upper levels all electrons are able to emit
phonons and scatter to a lower level if the magnetic
field is large enough so that the spacing of the
Landau levels, S~„ is greater than 5~,. We might
expect that the drift velocities of the upper levels
need not be as large as that of the lowest level and
still have sufficient scattering to achieve a momen-
tum balance with the field. Because of this basic
difference between the lowest level and the upper
levels, we consider the drifted Maxwellian distri-
bution with different drift velocities and electron
temperatures for each I andau level.

To find out if different drift velocities and tem-
peratures are indeed necessary, we solve the en-
ergy and momentum steady-state equations for

each Landau level considered. We consider the
case where electrons are scattered by both polar
optical phonons and deformation-potential acoustic
phonons. We also include the possibility of a dis-
tortion of the optical-phonon distribution. Ionized-
impurity scattering and other types of phonon scat-
tering are not included in this paper. The absence
of ionized-impurity scattering limits the discus-
sion to relatively pure materials at not too low a
temperature.

Although we have used the physical parameters
for InSb in our calculations we do not claim that
the numerical results exactly describe the real
material. By using different drift velocities and
temperatures for each Landau level rather than a
single drift velocity and temperature for all the
levels, we hope to provide some insight into the
electronic behavior in the intermediate quantum
case, where several, but not many Landau levels
are occupied.

II. THEORY

We consider an electron gas under steady-state
conditions in a quantizing magnetic field H in the
z direction and a parallel electric field E. The
steady-state conditions for each Landau level are
given by

d&P.). d&P,). d&P,).
field d~ scattering

and

d(e)„ d(c)„ d(a)„

where n=o, 1, 2, . . . indicates the Landau level.
When an electric field is applied, the electrons

experience a force and the momentum of the
electrons of each Landau level changes at a rate

& ,)„
f iel d
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where —e is the electron charge, E is the electric
field, and N is the number of electrons in the nth
Landau level. If a Mmvvellian-type distribution
for the electrons is assumed, the distribution must
be shifted away from the origin in order for there
to be any momentum transfer due to scattering
from the Landau systems. The amount of momen-
tum transfer due to scattering is largely deter-
mined by the size of the shift, which is described
by an electron drift velocity, v„= (p,)„/m.

If the electrons in a Landau level have an aver-
age nonzero drift velocity, energy is supplied to
the electrons in that level by the electric field at
a rate

d(e) = —eFN„v„.
field

We apply the drifted Maxwellian electron distri-
bution approach to semicondu. ctors in parallel or
antiparallel magnetic and electric fields of arbi-
trary size. We assume that the carriers lie in
parabolic energy levels, e„=(n+2)5~,+5'k', /2m,
where ~, is the cyclotron frequency, (eH/mc),
and m is a scalar effective mass. Both acoustical
and polar optical-phonon scattering are considered.

The electron-phonon interaction Hamiltonian is
given by

H = (C a e"'+Crate "'")
e e e e 9

where a, and a~ are phonon annihilation and crea-
tion operators, respectively. q is the phonon
wave vector. For acoustic-phonon interaction via
deformation potential coupling,

tion or annihilation of a single phonon are con-
sidered. Equilibrium acoustic-phonon distributions
are used, but we do include the possibility of a
distortion of the optical-phonon distribution.

We obtain two equations per level, one from the
steady- state momentum condition

and one from the steady-state energy condition

d(e) =- eEN vn n

8'k'. Bp k+Q((n+l)lr~+ " ' =0.
2m Bt

k'

The number of electrons in the nth Landau level is

22+ 1 @co

where N~ is the total number of electrons in the
sample, and L, +1 is the number of Landau levels
considered. The rate of change of the distribution
function for the nth level due to scattering is

— "„'= g [W(n, k.;n', k,')p„, (k.')
n', k'

—W(n', k,'; n, k,)p„(k,)],
where

i C, i'„=E,'5y/2pv, V, (6)

where E, is the deformation potential energy, p is
the mass density of the crystal, v, the constant
velocity of sound, and V the volume of the crystal.
The acoustical-phonon frequency is assumed to be

((u,)„=v,q.
For the polar optical-phonon interaction,

(12)

is normalized to the total number of electrons.
W(n, k„n, k,) is the usual golden rule transition
probability for scattering from Landau level n to
n and from electron wave vector k, to k„and is
given by

where E„and &0 are the dynamic and static dielec-
tric constant of the crystal, respectively. The
optical-phonon frequency is assumed to be inde-
pendent of phonon wave vector

((u,)„-=(o, = const.

We treat the electron-phonon collisions with
acoustic phonons as elastic collisions since for the
rather large magnetic fields considered here
Sv, q&&&„even for most of the longer wave-vector
phonons. Only those transitions involving the crea-

W(n, k„n, k,)

x[(N,),5(k, —k, —q, ) 5(e„,—c„—k ((u, ),)

(N,++1),5(k, —k, +q,)5(e„,—a„+K(&u,), )]

The sum over i is over the various scattering
mechanisms, and for n ~n,
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f„,„ I2 =,x"' "e "[L"' "(x)]2

where x = (k'q', /2m)/h&u, and L„" "(x) is the general
ized Laguerre polynomial. (For n~n', n and
n are interchanged everywhere they appear. ) The
sum over phonon wave vector q is changed to an
integral

de dq, q dq
V

q q~

The integral over 8 is simply 2z, and the integral
over q, is easily done using the 5 function, with
the result that q, is replaced by either (k, —k,) or
(k.—k,').

In the case of acoustic-phonon scattering we as-
sume that (h(d, )„=hv, q«kT~ (T~ is the lattice
temperature), and make the approximation

where
I

m =v —n+l+k,
8'(k, —k,)'/2m Fi q'/2m

k& S(d

"e'
I = —e~ Ei (- B)= —dy = eeE (B) .0 y+~ ].

E,(B) is the exponential integral. For n ~n, n
and n are interchanged.

We now have

W(n, k, ;n, k,) =2 ', -~ 6(&„,—c„)G„'.„2pv IzL

2' ~ 1 1
+—e'(d, ———G'„F„(B)I

(N,)„= ~ =(N, +1)„.kT

8

We then have

I c, I'„(N,).,=
I c, I;,(N, +1)„=E,'kT, /2pv', v,

(15)
x[(N ),5(e„, —q„—h~,)+ (N +1),g(c, —z +@& )] .

(21)

When this expression is inserted into the momen-
tum and energy steady-state equations we have
sums over k, and k, to evaluate. The sums are
converted to integrals

which is independent of q. In the energy 5 function
we drop (h(d,), using the assumption that the
acoustic-phonon scattering is elastic. The acous-
tic-phonon part of the transition probability is
therefore equal to

2(E',kTi/2pv', SL,) 5(e„,—&„)G„',„,

G„',„=- q~ „,„d
0

The factor of 2 arises from the fact that the ab-
sorption and emission terms are the same.

For polar-optical phonons (dp is a constant so
that (N ), and (N + l)„may be taken out of the in-
tegral over q, as may the delta. function over en-
ergy and (d, in the IC I' term. For the polar op-
tical-phonon terms we then get

2 7TO K~ 1 1——=' ———G .(B)

L 2

dk, dk, .
k, k''

One of the integrations is performed by using the
5 function over energy, and the other one is done
numerically on the computer.

The distortion of the optical-phonon distribution
is dealt with in the manner after Ferry. ' The op-
tical-phonon distribution is a, Bose-Einstein dis-
tribution with a phonon quasitemperature T~ de-
scribing the number of phonons in the disturbed
distribution:

N —(ehuo/kr& 1)-(
q

The energy fed into the system by the field is
transferred from the electrons to the lattice by
the emission of optica. l phonons. The optical pho-
nons that are emitted are either reabsorbed by the
electrons or decay into acoustic modes with a
chara, cteristic relaxation time 7~. The time rate
of change of the optical-phonon density is given by

&&[(N,).,V(~„, —~„-n~, )

+(N, + l)„5(e„,—c„+h(o, )],
N —N

HATT

~p ~ scattering
(23)

where for e ~ n,
2

Gay (B) I. p'tl I q J qJ.
q', + (k, —k,)'

( 1)((+A)1 (B)~ (n —n+t)! (n —n+k)! (n —t)!(n —k)!t!k! '
l y k=p

N is the e(luiiibrium phonon density (at the lattice
qp

temperature) and (SN,/8t)„,« „,is the change in
phonon density as a result of the electron-optical
phonon scattering. 7~ can be written CJN, , where

is constant. ' For a steady- state condition,
BN,/st=0. The rate energy is supplied by the field
is equal to the rate energy must be supplied by the
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electrons to the optical phonons so that

d(e)
dt «„o=—eE gv jV„

n=0

scat ter ina

scatterins
(24)

The sum over q simply gives N, the number of
atoms in the crystal, since (d0 and N, are taken to
be independent of q for optical phonons. We have
then the equation

N, -K,
st Cq/N,

m

——eE v„V„
n=0

(25)

which becomes

N,'—NP', —Co(- eENrvo/NK(oo) = 0 (26)

III. NUMERICAL RESULTS AND DISCUSSION

In this section we will present the results of
numerical calculations. In the calculations we
have used parameters for n-InSb, which are listed
in Table I. The lattice temperature T~ is taken to
be 77 K. We first show the dependence of d(P, )/dt
and d(e)/dt on the drift velocities and electron
temperatures for the various scattering mecha-
nisms, and on the field, for a one-level system.
The case where there is only one level occupied is
physically realistic in the case of a large magnetic
field where @co, is sufficiently larger than 5~0.
The results below are for @co,=25(d0. We take the
electric field to be in the -z direction so that the
distribution is drifted in the +z direction.

Since the transition probability for scattering
due to acoustical phonons is independent of q, and
is essentially ihe same for boih absorption and
emi. ssion,

where Nrv~= Q„oN„v-„and is a complex function of
v, might be called the average drift velocity

of the electron system. The above equation must
be added to the system of equations resulting from
the steady- state momentum and energy equations.
We have two variables per level, p„and 7„, plus
the phonon quasitemperature T~. To obtain a solu-
tion we truncate the system to a finite number of
levels, and solve the resulting system of equations
numerically to obtain the phonon quasitemperature
T~, the electron temperatures T„and the electron
drift velocities g„.

TABLE I. Insb parameters used for the calculation.

m =0.013m'=la184x 10 29 g
E& = 1.60 x 10 i~ erg = 10 eV
p =5.70 g/cm~
v, =2.0 x 10~ cm//sec

o=3 457x10'3 sec '
~ „=15.68
&p = 17,88
+&/V = electron density=1. 75 x 10 cm
Ã/V =atomic density=1. 41 x 102 cm 3

&@=5.36 x 10 sec
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FIG. 1. d(po)o/dt and d(e)o/dt per electron as a func-
tion of drift velocity for a one-level case. The field
terms (E') and the scattering terms (A, acoustic-phonon
scattering; 0, optical-phonon scattering) are of opposite
sign. The electron temperature Tp is taken equal to the
lattice temperature, Tz = 77 K. The magnetic field is
such that hcuc =2Acu

0
8

& 0

For small xo (drift velocity) the integral is approx-
imately equal to x0, and for xo- ~ the integral
goes to a constant. Therefore, the momentum
transfer rate increases linearly with x0 for small
x0 and then saturates as x0 becomes large, as
shown in Fig. 1. For acoustic-phonon scattering
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within a level,

d(e) acoustic Pho+&»

=0
7

scat t er ing

since we are considering the collisions to be elas-
tic.

The 1/q' optical-phonon interaction gives rise
to the q, dependence of Eq. (20). Because of this
q, dependence electrons will tend to scatter more
readily to the same side of the energy level that
they are initially on than they will to the opposite
side, although both processes do occur. With the
electron distribution drifted in the +z direction,
the scattering due to absorption of an optical pho-
non will result in a net gain of momentum and en-
ergy for the level. Emission of an optical phonon
will result in a net loss of momentum and energy
for the level. In order for the level to lose energy
and momentum by scattering we see thai the opti-
cal phonon emission terms must be larger than the
absorption terms. The transition probability for
emission is greater than that for absorption since
for the temperature under consideration, N, +1
&&N, . However, the lower energy states are gen-
erally more likely to be occupied than the higher
energy states so that the absorption and emission
contributions are about the same size. In addition
to the competition between emission and absorp-
tion, for small drift velocities there is consider-
able cancellation of net momentum transfer because
the effect of processes on one side of k space are
opposite to that of the other. An increase in the
drift velocity will result in an increase in the ratio
of momentum loss to momentum gain because the
number of electrons with energies above the pho-
non energy increases, and because the increase
is on one side of k space only, so that there is
less cancellation. Since cancellation effects are
not present for energy transfer, the scattering
processes involving optical phonons are more ef-
ficient for energy transfer than for momentum
transfer when the drift velocities are small.

Figure 1 shows that (d(e),/dt)„ increases approx-
imately as.the square of the drift velocity while
(d(p,)0/dt)„varies approximately linearly with drift
velocity for g, &10'. For larger drift velocities,
more transitions occur at smaller phonon wave
vectors, and for smaller phonon wave vectors the
scattering rate and the momentum transfer in-
crease more rapidly.

For the smaller values of drift velocity an in-
crease in the electron temperature will have only
a small effect on ihe ratio of momentum loss to
momentum gain due to cancellation from the two
sides. If the drift velocity is quite large there is
less cancellation and temperature can become more
important. Because there are no cancellations

from the two sides for energy scattering, the en-
ergy scattering rate is strongly dependent on the
electron temperature. The drift velocity is there-
fore the important parameter for achieving mo-.

mentum balance and the electron temperature is
the important parameter for achieving energy bal-
ance.

With two or more levels the situation is compli-
cated by the exchange of momentum and energy be-
tween different levels. The effect on the lower
level(s) of adding one more level depends primarily
on the spacing of the levels compared to the optical
phonon energy and the number already included.
In the example under consideration, that is, h~,
=25~0, the effect is small since the occupation of
the second level is very small. As S(d, gets small-
er, adding an additional level will effect a larger
and larger change in the parameters of the lower
levels. We decide how many levels are needed at
a given magnetic field, or for a range of magnetic
fields, on the basis of how much the temperatures
and drift velocities of the lower levels change when
we add one more level. Table II shows what hap-
pens when we consider 1-5 levels at a magnetic
field such that 5~, =25~,.

The electric field dependence of the temperatures '

and drift velocities for a four-level case at the
same magnetic field are shown in Figs. 2 and 3,
respectively. Results for the one-level case are
shown for comparison. As F. approaches zero the
electron temperatures approach the lattice temper-
ature and the drift velocities approach zero as ex-
pected. The drift velocities increase with increas-
ing field, and then level off at high fields, because
at high fields the number of electrons with enough
energy to emit an optical phonon increases quite
rapidly, and because more of the phonons emitted
have smaller wave vectors. As anticipated in the
introduction, v, is much larger than the g„~'s,
and the velocities for the upper levels have similar
values since they all have at least one level below
them to which electrons can scatter.

For the lower fields the drift velocities neces-
sary to achieve a momentum balance tend toward
an excess of energy loss due to scattering in n =0
because of the greater efficiency of the energy
transfer process. Since the energy scattering
terms are responsive to electron temperature
changes while the momentum terms are not, the
electron temperature To decreases until both an
energy balance and a momentum balance are
achieved. For the larger electric fields the drift
velocities are larger and the efficiency of the mo-
mentum transfer process increases. The larger
velocities also increase the rate energy is gained
from the field so that the rate of energy gain from
the field tends to increase faster than the rate of
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TABLE Il. Effect of including 1-5 Landau levels at high magnetic fields; 1~=2@p,
E=5.0 V/cm, T&=77 K.

No. of
levels TQ

Electron temperature {K)
Ti T2 T3 T4

76.52
76.55
76.55
76.55
76.56

77.70
77.70
77.70
77.70

78.10
78.10
78.10

78.36
78.36 78.56

No. of
levels Vp

Electron drift velocities {106cm/sec)
Vi V2 V3 V4 Vg

1
2
3
4
5

5.8911
5.8015
5.8014
5.8015
5.8013

5.0699
5.0429
5.0429
5.0428

4.9775
4.9557
4.9556

4.9479
4.9282 4.9122

5.8911
5.8007
5.8005
5.8006
5.8005

momentum loss due to scattering. As a conse-
quence the electron temperature 7, must rise to
maintain the energy balance, and for large enough
electric fields rises above the lattice temperature.

The steep increase in the temperatures of the
upper levels is a consequence of electrons entering

the upper levels from lower levels. These elec-
trons bring with them a large amount of energy but
most bring very little momentum. The electrons
that are scattered by acoustic phonons have an
equal probability of being scattered to the +k, or
-k, side of the energy level so they contribute no
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FIG. 2. Electron temperature vs electric field for a
four-level case. Tp for the one-level case is shown for
comparison. The optical-phonon pseudotemperature T~
is also shown.
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FIG. 3. Electron drift velocities vs electric field for
a four-level case. VQ for the one-level is shown for com-
parison.
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net momentum gain to the level. Most of the elec-
trons that are scattered by optical phonons will
come in around A, =O so again the net momentum
gain is small. The drift velocity needed to achieve
momentum balance is not enough to get the needed
energy loss by scattering, so the electron temper-
ature must rise rather sharply.

Figure 2 also shows the optical-phonon tempera-
ture T~ as a function of electric field. The approx-
imate dependence of T~ on the electric field can be
seen from Eq. (26), which has the "solution, "

Nq X/2-'fo
~ ) 4C~eEN ~gq

2 pf +@co
4fO

(v~ is a function of N, , so the solution is not so
straightforward. ) The quantity

4C~eENzv~/N, NS~o = 4KEv„—

is much less than 1 so that

N, =-N, (1-KZv„).

Expressing the inverse of this equation in terms
of T~we have

+h tao/kr/, 1 (eh tao /RT& 1)(1 +Kiev )

Solving for T~ we obtain the approximate expression

Tp = T~[1—(k Tghcoo)KEv„] .
If we remember that E and v~ have opposite signs,
we see that 7.'~ should increase with increasing E,
directly from the E term, and also from the p„
term, which also increases with E.

The increese in T~ is small, indicating that the
optical-phonon distribution is not too disturbed at
the electric fields we are considering here. The
calculations have been done using the equilibrium
optical-phonon distribution, and the differences in
the electron temperatures and drift velocities have
been small.

The direct magnetic field dependence enters the
steady-state equations as the cyclotron energy 5~,.
By replacing T„with the lattice temperature T~
and limiting discussion to magnetic fields such that
y, =h~gkT~ is of—the order of unity or larger, we
may approximate Eq. (10) by

and

The fractional changes in these quantities are

~„~/N„~ = —nay

~/N =8 "cQp

The large fractional change in N„~ compared to
the small fractional change in No for a small
change in y, is a dominant factor in determining
the magnetic field dependence of the temperate. res
and drift velocities.

The transition probability for scattering by
acoustic phonons is directly proportional to the
magnetic field as seen from Eq. (18). The inter-
esting behavior comes from the magnetic field de-
pendence of the transition probability for scattering
by optical phonons, and is more complicated.
G„"„,(B) is a function of B = (x —x )'/y„where x'
= 8'k', /2mkT~ and x '=5'k2/2mkT~. B depends on
the magnetic field through y, in the denominator,
and also on the (x- x )' term, since the (x, x )
pair is determined from the energy conservation
conditions. The transition probability is therefore
a complicated function of the magnetic field.

When one intergrates over either k, or k, by using
the energy 5 function, the electron density of
states for that level is introduced. By exercising
care in choosing which integration (k, or k,) is to
be performed by using the delta function, and
which will be done numerically, it is possible to
avoid any singularities arising from the electron
density of states term except for the case of verti-
cal transitions, that is, whenever y, =my„where
m is an integer. For the momentum equations no
problem arises as the density-of-states term is
exactly cancelled by the electron momentum. This
is not the case for the energy equations, and there
are real singularities in the energy scattering
terms whenever y, =my, .

We first discuss the magnetic field dependence
of the electron drift velocities temperatures for a
two-level system since it is easier to understand
and contains most of the physics of the problem.
The average momentum gain from the field is pro-
portional to the electron population of n =0, which
decreases very slowly with decreBsing magnetic
field. The largest contribution to the scattering
momentum loss is optical phonon scattering within
the z =0 level. This scattering decreases much
more rapidly than does the field term because in
addition to the affect of the decreasing electron
population there is the decrease in the transition
probability as the argument B increases with the
decrease of y, . Since the scattering momentum
loss tends to decrease more rapidly than the field
momentum gain decreases, the drift velocity p,
must generally increase to maintain momentum
balance as seen in Fig. 4(a).

The interesting inflection of the drift velocity
just before the resonance point at a= 1 reflects
the contribution to the scattering momentum loss
by optical-phonon transitions between the n =0 and
e =1 levels. The scattering momentum loss tends
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FIG. 4. Electron drift velocities (a) and temperatures (b) vs n —= I~o/her, for the two-level case.

to increase initially as n increases due to the in-
creasing optical phonon transition probability and
to the fact that more electrons are able to absorb
a phonon and scatter up from n = 0 to rg = 1. Al-
though the optical phonon transition probability has
a maximum at n= 1, it also tends to decrease as
5~, gets smaller, which makes for a curve that
rises more slowly to the maximum than it falls
off after the maximum. This fact, plus the ever
present decreasing population of e =0 and increas-
ing population of n =1, turn the curve around be-
fore the resonance point is reached, which would
result in a maximum in the scattering momentum
loss before +=1 if temperature and drift velocity
where held constant. The fact that the momentum
loss due to optical-phonon scattering between the
two levels tends to rise before the resonance point
means that such a steep rise in drift velocity is
not needed and vo can flatten out somewhat. After
resonance the decreasing transition probability
and decreasing population of n =0 would lead to a
rapid decrease of the scattering momentum loss

so it is necessary for v, to increase more rapidly
in order to maintain a momentum balance.

The decrease in py to a minimum just beyond
a=1 as the magnetic field decreases reflects the
effect of the optical-phonon transitions between
the two levels on the ~ =1 level's momentum loss.
In addition to the increasing momentum loss from
~ =1 due to the increase in the number of electrons
in n =1 and the accompanying decrease in the num-
ber in n =0, there is also the increase in the opti-
cal-phonon transition probability as @=1 is ap-
proached. The scattering loss therefore tends to
increase more rapidly than the field gain and the
drift velocity must decrease in order to maintain
a steady state. After the resonance point the pho-
non interaction term decreases. So does the num-
ber of electrons eligible to emit a phonon and scat-
ter down to n =0. There is still the increasing
contribution from the number of electrons in the
n =1 level, but the other two contributions largely
succeed in overcoming that and the curve flattens
out at some point beyond resonance. As the scat-
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tering tends to level off, the drift velocity must
increase again to keep the scattering even with the
increasing field term.

Figure 4(b) shows the magnetic field dependence
of the electron temperatures for the two level sys-
tem. T, shows a slight rise to a maximum just be-
fore +=1, and then decreases rather sharply.
The fact that T, & T~ reflects the fact that energy
transfer is more efficient than momentum trans-
fer. In the region before ~=1 where the drift
velocity v, rose less sharply, the temperature was
forced to rise just slightly so the rate of energy
loss due to scattering was large enough to balance
the rate energy was gained from the field. The
sharper increase in v, beginning just before the
resonance point that was necessary to obtain mo-
mentum balance also tended to increase the energy
scattering term too much. In order to achieve en-
ergy balance it was necessary for the temperature
to decrease.

The decrease in v, that is necessary to achieve
momentum balance in level n =1 also reduces the
energy lost by scattering, but not enough to
achieve an energy balance with the field. The
singularity in the density of states leads to a large
contribution to the energy loss of level n =1 at
resonance, and in order to maintain an energy
balance with the field it is necessary for the tem-
perature T, to decrease quite sharply as the reso-
nance point is approached. Once the resonance
point is reached the temperature continues to de-
crease, but only slightly. Since the density of
states term is now decreasing it might be expected
that T, should increase again. When more levels
are included it does, but for the two level case the
decrease in T, brings about a larger than usual in-
crease in the population of n =1. This leads to the
increase in scattering energy loss that is neces-
sary to achieve an energy balance.

We have used the relatively simple two-level
system so that it is easier to see what is happening
physically. However, two levels are not sufficient
to give an accurate description of the real system
at the lower fields we have used in the two-level
system (h&o, /h&o, = 2). Table Ill shows what happens
to the temperatures and velocities when two, three,
four, and five levels are included in the calcula-
tions at slightly lower fields than used in the two-
level examples.

Figure 5 shows the temperature results for four
levels over a slightly larger range of magnetic
fields than in the two level case. The basic fea-
tures of the two level case are still present. T,
does not fall off so rapidly after &=2, and then
decreases again. The behavior of T, around a=2
is very much like its behavior around cy=1. The
dip in T, at o. = I is caused by the resonant (q, = 0)
exchange of optical phonons between n = 0 and n = 1,
whereas the dip in Tp around n = 2 is caused by the
resonance exchange of optical phonons between n
=0 and n =2. As mentioned earlier, T, rises
slightly after resonance instead of decreasing
slightly. It then continues to rise to a maximum
just before m=2, and then decreases. Once S(d,
&5', the n= 1 level will have no further resonant
exchanges with n = 0, so that at the second reso-
nance point the behavior of T, is similar to the
behavior of T, at the first (and second) resonance
point. The dip in T, at +=2 is caused by the reso-
nant exchange between the n =3 and n =1 levels.
The two additional temperatures, T, and T, behave
much like T, before the n =1 resonance, but rise
sharply again after resonance. Near +=1 the
main exchanges are between adjacent levels, so
that the n&1 levels are not influenced so strongly
by the n =0 level. The occupation of both levels
between which the dominant scattering takes place
increases with decreasing magnetic field. There-

TABLE III. Effect of including 2-5 Landau levels at moderately high magnetic fields;
@~c-—0.471~p, E=5.0 V/cm, T~ =77 K.

No. of
levels

Electron temperatures (K)
Ti Z2 T3

72.78
74.46
74.96
75.00

76.26
76.51
76.76
76.78

76.30
76.45
76.50

77.32
77.32 77.29

No. of
levels Vp

Electron drift velocities (106 cm/sec)
Vg V2 V3 V4

13.5927
11.5507
10.8147
10.6824

6.0950
5.4785
5.1610
5.0495

3.7080
3,5051
3.4377

3.3560
3.2789 3.0743

12.3196
10.3118
9.6166
9.4810
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FIG. 5. Electron temperatures vs 0. for a four-level
case. T, is the electron temperature obtained by using
the over-all steady-state approach.

FIG. 6. Electron drift velocities vs o for a four-level
case. v, is the drift velocity obtained by using the over-
all steady- state approach.

fore, the mechanism that allowed T, to level off
after +=1 (that is, the rapid decrease in T,) is not
present here. T, and T'3 must therefore rise sharp-
ly after a=1. The upper temperatures also have
a dip at the second resonance point. Although the
n =2 level now has the resonant exchange with the
n=0 level, the temperature in n=0 does not de-
crease fast enough that T, does not need to rise
again. Hence the increase in T, after the reso-
nance point.

Figure 6 shows the four-level results for drift
velocities. As in the case of the temperatures,
the results are similar to the two-level case.
continues to increase while undergoing changes in
slope near the resonance points. The drift veloci-
ties of the three upper levels are grouped together
and all have a minimum just after the resonance
point at +=1. At the second resonance point v,
leaves the pack and continues to rise while v, and

v3 decrease to a minimum a little past a = 2 . v,
continues to rise because most electrons in the
n =1 level no longer have a large probability of
emitting phonons and scattering to the lower n =0
level. Levels n=2 and n=3 still have major ex-
changes with levels n = 0 and n = 1, respectively, so
they retain the character they possessed at the
first resonance point.

This pattern is expected to continue as higher-
order resonance points are passed. Of course the

lower the magnetic field used, the more levels
that will have to be included to get meaningful re-
sults. The number of levels included is limited
only by restrictions of computer time and memory.
Since the basic features have been shown with only
four levels, we do not include any more levels
here. In an application of this electron distribution
it may be necessary to use more levels in order
to obtain results for lower fields.

The magnetic field dependence of T~ is small,
arising from the magnetic field dependence of v„.
v„ increases roughly by a factor of 2 over the range
of magnetic fields in the four level example.
Therefore, the deviation of the phonon temperature
from the lattice temperature increases by a similar
factor of 2.

IV. TRANSPORT CALCULATIONS

In this section we use the distribution function
discussed in Secs. II and III to calculate the elec-
trical conductivity. We compare these results with
the results obtained when a single drift velocity
and temperature are used for all levels.

The conductivity o is defined by the relation

j=eE,
+here E is the applied electric field and j, the
current density, is given by
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5.0

n, k

Changing the sum over k, to an integral and sub-
stituting the expression for p„(k,) [Eq. (12)] we in-
tegrate over k, and obtain

N„g„j=—e

Earlier we defined v„by

Nrv~= QN„v„,

45

Io 40
4P

fO

O 3.5

KO

2.5—

I I I I I I

0.5 I.G
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E=5.0 V/cm
TL=77O K

I I I I I I I I I I I

l.5 2.0

so that we can write j as

—eSOV~ q

where n, =Nr/P is the electron density. For the
conductivity we then obtain

o' = —en.,v~/F. .
This same result holds whenever only one drift
velocity and temperature is assumed. The single
drift velocity is then what appears in the equation
for the conductivity.

Figure 7 compares the calculations of the con-
ductivity as a function of o —= hw, /h&u, for the cases
of a single drift velocity and temperature and for

drift velocities and temperatures. The number
of levels included in both calculations is four. As
would be expected, at the higher magnetic fields
the two calculations yield essentially the same re-
sult since only the z =0 level is appreciably occu-
pied. As the field decreases and the upper levels
become more occupied the differences between
the two methods become more pronounced. Not
only is the conductivity greater when different
drift velocities and temperatures are used, but the
oscillations near the resonance points are more

FIG. 7. Electrical conductivity vs G. obtained from the
detailed-steady-state approach (DSS), and from the over-
alll-steady-state

approach (OSS).

pronounced as well.
The differences arise because we have relaxed

the restriction that all the physics must be ex-
pressed in two parameters. The single drift veloc-
ity and temperature must in some way reflect both
the situation of the lower level and of the upper
levels, and as a result the finer details of both
are lost (see Figs. 4 and 5). With the additional
parameters the differences between levels become
apparent.

More important, the differences also show up in
the conductivity calculation. It is mostly the n =0
drift velocity that determines the average drift
velocity since it is considerably larger than the
drift velocities of the upper levels, and also be-
cause the population of the lower level is the larg-
est. The average drift velocity does deviate from
go as the magnetic field decreases, but not to the
extent that the single drift velocity does.
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