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Properties of the electron-hole drop in n-doped germanium and silicone
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The gas-liquid transition of an electron-hole plasma is studied under the influence of a donor electron system
of density n~ . It is found that the density of holes within the drop decreases with increasing n~ . The width of
the electron-hole recombination line calculated from the joint density of states, is found to go through a
minimum in agreement with experiment. It is further shown that the behavior of the linewidth reflects the
nature of the impurity-induced semiconductor-metal transition. It is therefore possible to construct the
underlying change of the free-carrier density with doping which is demonstrated for Si:P. Condensation seems
to occur up to high doping levels. It might also be expected in a number of heavily doped (metallic)
semiconductors, for which the metallic phase is not stable with respect to exciton formation under normal
conditions.

I. INTRODUCTION

The occurrence of a metallic condensate in pure
Ge and Si under high excitation is very well estab-
lished, experimentally and theor. etically (see, e. g. ,
Ref. l). Recently, the influence of doping on prop
erties of the electron-hole drop (EHD) has been
studied in ' Ge, and4 Si. It seems that condensation
is not suppressed even for very high doping levels,
but significant- changes of the luminescence prop-
erties have been observed. Up to the present no
theoretical investigation of this experimental situa-
tion has been ca,rried out.

In this paper we will try to show that the major-
ity of the EHD properties can readily be understood
by an extension of existing theories appropriate for
pure samples. This may supplement our knowledge
of the metallic condensation, in general, as well
as of the nature of the semiconductor-metal transi-
tion induced by doping,

II. SYSTEM

The system under consideration is basically a
free-carrier plasma, for which the numbers of
electrons N, and holes Nz may generally be differ-
ent: N, -N„=NO. Of course, N~ cannot exceed the
number of donor centers ND. The respective num-
ber densities are ~„, e„and ~D. Our model cal-
culation will be based on T = 0 and the following as-
sumptions: (a) The donor centers are distributed
homogeneously over tbe sample. (b) The band
structure is taken into account within the frame-
work of the effective-ma, ss theory with anisotroyy
and multivalley structure approximately included.
Tbe effective energy gap E (n~) may be changed,
but the effective masses are assumed independent
of doping. (c}The donor electrons are supposed to
be either localized and then neglected (i.e. , re-
moved from tbe free-carrier system), or free-
and then described by the yroyerties of the resyec-

tive conduction band. Complications due to the oc-
currence of an impurity band are thus neglected.
(d) Any explicit influence of excitons (free or bound)
is not considered here, which is justified for high-
carrier densities (i. e, , high excitation and/or dop-
ing).

III. HAMILTONIAN

Let us assume that the single-particle energies
of momentum q are given by

E', (q) = I'q'/2m, + const,

where j is the band index. Bands included are the
upper valence bands (holes) and the lower conduc-
tion bands (electrons). All energies are measured
from the conduction-band minimum. The Hamil-
tonian for the N-particle system, consisting of N~
pairs and N~ excess electrons, may then be writ-
ten

H(Np, Nn) = Hj„,(Np, N~)+H„(Nq, ND)

+H (Np, ND),

Hj, g (Np, Nn) = Q E)(j)n-~
qyO
j

n-~' = c-'~' c'-~', c~'~' are the creation operators of a
q~& qo q&ty '

q fr

single particle in a state (g, j) with spin a. H„ is
the exchange part given by

II, represents the correction due to correlation.
Following a model proposed by Qverhauser, ' we
describe the correlation by a coupling of the single
particles to an effective plasmon mode u„which
approximates the dielectric response of the sys-
tem
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H, (N~, Nn) = Z her„n„
k &q&e

+ Q M'(k)(al+a-)c"» c'"
~t q+p7, e p, a

R,q, e

Here n& = a„-a„- a„- is the creation operator of an ef-
fective plasmon. M~ is determined by requiring the
single mode ~„- to fulfill the f sum rule, and &u~ by
requiring the model to reproduce the appropriate
dielectric function c(k, 0).

This dielectric function is assumed to be

c(k, 0)= 1+~~k, '
Qg (6)

where

(7)

(6}

q, (x) = Z(x)/[1+ S,(x)Z(x) ],
Z(x) =-,'+ [(1 -x')/4x]in~ (1+x)/(1 -x)) .

0,'~' is the Thomas-Fermi screening wave vector

with

gJ (x) = 2x /(1+ 4x'+ PJ), (10)

P, = k,'»/kP' . (11

Then the form factor M'~' is found to be (cf. Ref.
6)

&2m e' ri& "' uM'"(1~)=~ ', "' 1-S,
k&0k (@~V ~ 2k@

4m 8' g n'"
(dp =

0 ) m

(12)

(13)

~~ is the plasma frequency for k- 0, while the dis-
persion relation is given by

~, = ~,&(k, 0)/[~(k, 0) —1] . (14)

We may now treat H, as a perturbation, and cal-
culate its influence by second-order perturbation
theory. Assuming no plasmons to be present we
get

k,""= 6wn'"e'/~, z,'» .
k~ ' is the Fermi vector and E~ ' is the Fermi ener-
gy. With S&=0, we would get the Lindhard formula.
Sj describes the exchange and correlation correc
tions to the dielectric response. According to
3ingwi et al. we choose

E '"(np, nn) = SEF""ez„""(np,nn) . (16)

Et is also convenient to introduce the mean energy
per pair

E~(n~, nn)=E'(nf„nn)+E"(n~, n~) .
Then the total energy of the free-carrier system
with respect to the conduction-band edge may be
written for a given homogeneous density n~ = Nn/V,
as

E( )(Np, ND ) = Np[Ep(np, ng) +R+ Eg]

+N, z'(o, n, ) . (2o)

is the energy gap and the last term is the ener-
gy of the excess-electron system as for N~= 0.
N~R is the change of this energy induced by the
electron-hole pairs of density n~ in the volume V~
=Nq/np,

R = (n,/n, ) [E'(n„n, ) -z'(o, n, )] . (21)

Obviously, for fixed N~ and total volume V, the
modified pair energy as given by

E(n» nn) =E~(n~, n~)+R, (22)

and likewise E„,is still a function of n~. This free
parameter is now fixed by the condition that Eq.
(20) should describe the stable state at T = 0, which
means the state of lowest internal energy. This
minimum condition

sz(n„n, )/sn, = o, (23)

determines the density n~(n~) and the chemical po-
tential

we may easily derive the mean energies per elec-
tron and per hole, E'„,' (n~, n~). These are ob-
tained by restricting the j summation in Egs. (15)
and (4) to the hole or electron bands, respectively,
and then dividing by the respective particle num-
bers. E„",", by definition, only depends on the den-
sities, but is otherwise independent of the momen-
tum of the particle under consideration. This local
approximation turns out to be well justified, as
shown previously by Overhauser' for a one-com-
ponent plasma, and can be used to simplify the
calculations.

To get the total energy per particle, one has to
add the kinetic energy

E""(j)= E„",",(g) + E'„;"(np, nj) ) .
The mean values are

(g) (g)
M'»(Z)' (1 —n;.&,.)n;,.

;,;,.„&~+E,'(k+4) —E';(i) (15)

p v
(24)

E„,(Np, Nn) =E„(Nq, ND)+E~(Nq, ND), (16)

From the total exchange-correLation energy of the
system,

of the pairs in the condensed phase [provided there
is a finite density n~ fulfilling condition (23)]. Con-
dition (23) establishes the stability of the condensed
phase within the present approximation, which ne-
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glects excitons. This is justified for high excess-
carrier densities n&. Since no excitons can exist,
condensation might occur in any semiconductor
(if thermal equilibrium can be reached). But for
n~-0, we may think of the free-carrier system as
being in thermal equilibrium with an exciton gas.
Then the condensate will only be stable if~

p(nn) = E(n&, nii)+E&(nii) & 0, (25)

where E, is the binding energy of the exciton. This
condition has so far resulted in the restriction of
condensation for n& =0 to Si and Ge.

IV. INFLUENCE OF THE SEMICONDUCTOR-METAL
TRANSITION

We considered so far a condensation process
within a homogeneous excess-electron gas of given
density n~. Now n& will also be influenced by the
electron-hole condensate. We may assume that the
carrier density inside the drop is always high
enough to guarantee that n& = n& even for very low-
doping levels. But outside' the drop n& will be re-
lated to n~, the density of donor centers. This re-
lation characterizes the semiconductor -metal tran-
sition

For na=nD (i. e. , nD~ n, ) we get back Eq. (22).
It turns out that for nD & n„condition (31) tends

to increase n~ over the value obtained from Eq.
(22), depending on f(n~). As n~ strongly influences
the linewidth of the electron-hole recombination
line, the function f(n~) can be studied from the be-
havior of the linewidth as a function of n&. More
details are presented with the application to Si and
Ge.

V. LINE SHAPE

We assume that the luminescence intensity is
proportional to the joint density of states of the
electron and the hole subsystem.

a IO

f(Iiv) a n(Erik)n(Eki )f(Ekik)f(Ekik)
0 0

x5(tv —Ek —E' —E +If&)dEk„dEk„,
(32)

where ci is a constant, n(E„",,"):are the respective
densities of states, and f(E„",,") are the distribution
functions. E', E" are the total energies per par-
ticle according to Eq. (17) and RQ is the energy of
a phonon involved.

For T = 0, we get with
ng =f(ng) . (26) s =hp -Eg —Exc Exc+ SQ (33)

Above a critical value n„~
n = 0. 25/as, (27)

f(s)= a
B

(E'„,}"'(s E„'„)'"dE,—'„, (34)

(ez"),(az(n)) (29)

Assuming the electron density outside the drop to
be n~ =f (nii), the balance for the pressure reads

Z„„(n,)+S,(n, ) = ~,(n, ),
which leads to the condition

(30)

w here a~ is the Bohr radius of the donor centers at
ns-0; all donor electrons are delocalized (which
means in our simplified model that they are in the
conduction band). Below n„nD outside the drop will
go to zero. If it was a discontinuous Mott transi-
tion we would expect, for T = 0,

nD

nD for ng ~ n

(23)
0 for nz &n,

In any case, this means that for n& & n„ the density
of the excess-electron system will be smaller out-
side than inside. Mechanical equilibrium requires
the pressure in both phases to be equal. At T = 0,
the pressure of a system of density n, character-
ized by the internal energy "E=N (E),nis given by

where

0 for s& E&,
A=

s -E+ for s &Ez,'

s for s&E~,8=
for s)Q~

(35)

The halfwidth 4 of the line, and the position of the
maximum with respect to the high-energy edge d
are given in Fig. 1., as a function of

t = lE~ E~
I
l«~+E~) -~ (36)

VI. LINE SHIFT

The energy released by the recombination of one
electron and one hole is given by the difference of
the total energy of the system in its initial and fi-
nal state

hv=E«i(N» Nz) -E«i(N& —1, Nz) . (37)

This approach does not include possible effects due
to potential flucutations.

SE(n„n, ) 1,SE'(O, n.)

, SE'(0, n. )
ng) ~

ng QD

(31)

If both states are drops (in their ground state), as
studied above, then h p corresponds to the high-en-
ergy edge of the recombination line, and the two
states only differ by the number of pairs. We can
then write
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TABLE I. Input data. ~

0.9- mf PPl g E &o(me V)

0.8-
Ge
Si

1.58
0.9163

0. 082
0, 1905

0.042
0.154

G. 347
0.523

15.36
11.4

2.66
13

0.7— ~Reference 10.

0.6-

0.5-

0 0.2
I

04
I

0.6
I

0.8

FIG. 1. Combined density of states of an EH-plasma:
half width 6 and position of the maximum with respect
to the high-energy edge d as a function of t; (1) b/Ez,
(2) 1+d/E~.

(3S)

which is identical to the chemical potential [com-
pare Eg. (24)]. Under the general condition (31),
and allowing for a phonon hQ to be emitted, we get

sume g isotropic conduction bands of mass m

m, ,' = —,
' (2/m, + 1/m, ), (48)

and two isotropic valence bands of mass m,„,
m, ', = —,

'
(I/mhh+ 1/m, „) . (49)

g= 6 for Si and g = 4 for Ge. The input data used are
given in Table I.

The energy E(n~, nn) following Eq. (23) is cal-
culated as a function of n~ for a homogeneous ex-
cess electron density n~. Part of the results are
shown in Fig. 2. We see that this function has (at
least a local) minimum at n~(nn). The values for
n~ = 0 are given in Table II and agree well with ex-
periment. (Compare also Ref. 11.)

Figure 3 shows the contribution AE(n~, nn) to the
shift of the high-energy edge of the electron-hole

The second term is zero for nD &n, . For these
high doping levels the shift of the high-energy edge
hv ~ with respect to its position at n~ = 0 is given
by

E(np, no)/E

1.6-

thv. „=tE(n,', n, )+t E,(n, ),
where

&E(n~, nn) = E(n~, nn ) —E(n~, 0);
~E,(n, ) =E,(n, ) -E,(o) .

(4o)

(41)

(42)

0.8-

—0.8-

—1.6-

=Op
19

10 (c)T) )

Note that EE~(no) does not contain the influence of
particle-particle interactions, as these are in-
cluded in 4E. 4E, is due to any other influence of
the donor centers (compare, e. g. , Ref. 9). In-
stead of the high-energy edge, we may as well
study the peak position E~,&,

-2 4-4

08-

Eyeak ~ vmax ~ ~

Given t and E~, d can be read from Fig. 1.
VII. APPLICATION TO Si AND Ge

(43)
0

—0.4-

'l0,

The Fermi energies in these cases are given
by"

Ep = h hg/2m'. ,

m,.= (m,)'"(m,)t",
E'=h'h /2m (I+y"')"'
Y = mph/mhh & 1 .

(44}

(45)

(46)

(4 I)

For the exchange-correlation correction we as-

— 12-

FIG. 2. Energy E (g, gzz) as a, function of ~ for vari-
ous homogeneous excess-electron densities gD, (1) gD
= 0, (2) ~D= 10 6 cm"3, (3) pgo = 10 7 cm 3, (4) ~&=10
cm, (5) nD=10' cm 3, (6) &~=10 cm 3; (a) Ge, (b) Si.
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"~D(cm s)

1Q-

18
1

1d
1Q

)Q
1Q & 'lQ

FIG. 6. nD= f (no) for Si, 0, expt, Ref. 14.

nD. This is done for the following three assumptions:

n)) for ng n~
(B) n, =

0 for nD &n

(C) nn =f(n~) taken from expt (only for Si).

All three assumptions are identical for n& + n, .
Below n„codniti no(31) leads to different values
n~(n~), and therefore to different halfwidths. A
and B represent the two extreme cases,' any exper-
imental result is therefore expected to lie between
them, reflecting a specific function f(n~). This can
be seen for Si, when n& is taken from experiment
(compare Fig. 6). Furthermore, in this case there
is a striking agreement between calculated and
measured halfwidth.

It will also be clear that n~o and &(n~) will depend
on the chemical nature of the donor center, in that
n, and f(n~) are changed. Even without knowing de-
tails about f(n~), one will expect that the minimum
occurring in the linewidth as a function of n~ gets
deeper with decreasing n„ i. e. , decreasing ioniza-
tion energy of the donors. Similarly, the reduction
atn~ with n~, sets in already at smaller nD, if
donors with a smaller ionization energy are used.

The latter finding is in qualitative agreement with
experiments in Ge [cf. Fig. 4(a)]. The measured
linewidth, too, shows the expected behavior, ex-
cept for the bump around Sx10 cm . This may
be due to the influence of potential fluctuations.
It is not clear why this influence is apparently
stronger in Ge than in Si.

So far there is no definite indication of a break-
down of the assumption of parabolic bands. It is
expected, however, that deviations from this the-
ory will occur at very high-doping levels: In this
case the line-shape should no longer be determined
by Eq. (34).

VIII. SUMMARY AND CONCLUDING REMARKS

In order for condensation to occur, the con-
densed state should be the ground state, i.e. , the
state of lowest energy, of the free-carrier sys-
tem. Within our approach we found that this is the
case for Ge and Si even for high doping levels,
i. e. , in metallic samples, though one might ex-
pect that the EHD lifetime will be reduced. The
change of the critical temperature remains to be
studied.

Because in the metallic samples the ground state
of the carrier system is necessarily a plasma
state (not the exciton state), condensation effects
may even occur in a number of other semiconduc-
tors, for which in the pure case the exciton state
is the stable state.

Below a critical density n„ the excess electrons
outside the condensate start to localize, resulting
in a change of pressure in that phase. We then
have to study the drop under pressure: It has been
demonstrated that the variation of the equilibrium
pair density and the linewidth as a function of n&
can be understood on the basis of our simplified
approach, which neglects all complications due to
the occurrence of an impurity band. The nature of
the semiconductor-metal transition is reflected by
these functions, so that it is possible to construct
the free-carrier density as a function of doping
from linewidth measurements. Insofar as n~(n~)
also depends on the chemical nature of the donor
centers, so will the properties of the EHD: It
seems that the drop can be used as an internal de-
tector of the impurity-induced semiconductor -met-
al transition, signaling the situation around it by a
characteristic linewidth.

Note added in proof. A theoretical study of the
high-doping region was recently published by B.
Bergerson, P. Jena, and A. J. Berlinsky, J.
Phys. C 8, 1377 (1976).

ACKNOWLEDGMENT

We would like to thank Professor Morigaki
(University of Tokyo) for valuable discussions and
comments on this work.

Supported in part by NSF Grant No. DMR-74-21991-A01
FRAP-10753N-C UNY.

*Present address: Universitat Regensburg, Fachbereich
reich Physik, 84 Regensburg, %'est Germany. Vfork at
City College supported in part by the Deutsche Forsch-
ungsmeinschaf t.

~YA. E. Pokrovskii, Phys. Status Solidi A 11, 385 (1972).
C. Benoit a la Guillaume and M. Voos, Solid State
Commun. 11, 1585 (1972).

3A. Nakamura and K. Morigaki, Proceedings of Inter-
national Conference on the Physics of Semiconductors,
Stuttgart, 1974, (unpublished) p. 86.



PROPERTIES OF THE ELECTRON-HOLE DROP IN n-DOPED. . . 3227

R. E. Halliwell and R. R. Parsons, Solid State Commun.
13, 1245 (1973).

5A. W. Overhauser, Phys. Rev. B 3, 1888 (1971).
6K. S. Singwi, A. Sjolander, M. P. Tosi, and R. H.

Land, Phys. Rev. B 1, 1044 (1970).
N. F. Mott, Philos. Mag. 6, 287 (1961).
M. Combescot and P. Nozieres, J. Phys. C 5, 2369
(1972).

9A. P. Shatov and M. S. Murashov, Fiz. Tekh.
Poluprovodn. 1, 573 (1967) tSov. Phys. -Semicond. 1,

476 (1967)t.

~0W. F. Brinkman and T. M. Rice, Phys. Rev. B 7,
1508 (1973).
G. Mahler, Phys. Rev. B 11, 4050 (1975).

~2K. Burstein and T. S. Moss, Phys. Rev. 93, 632 (1954).
R. ¹ Silver, Phys. Rev. B 11, 1569 (1975).

'4C. Yamanguchi, K. Mizuguchi, and W. Sasaki, J.
Phys. Soc. Jpn. 22, 859 (1967).

5K. Morigaki (private communication).
~6A. Nakamura, Ph. D. thesis (University of Tokyo,

1975) (unpublished).


