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Ultrasonic second-harmonic generation in piezoelectric semiconductors is investigated using the classical
Boltzmann-equation approach with the ansatz of a constant relaxation time. The flux at the second-harmonic
frequency is calculated in terms of the flux in the fundamental and the linear and nonlinear conductivity
tensors. It is found that when ql & 1, our results for second-harmonic generation reduce to those of Conwell
and Ganguly, while when ql & 1 they reduce to those of Wu and Spector. The existence of a separate regime
when ql & 1 and eo7 g 1 as found by Nakamura is shown not to occur.

I. INTRODUCTION

When large-amplitude acoustic flux propagates
in a piezoelectric semiconductor, the nonlineari-
ties in the acoustoelectric interaction between the
phonons and the conduction electrons give rise to
many frequency-mixing effects. One such effect
of particular interest is second-harmonic genera-
tion, which was first observed in photoconducting
CdS by Tell. ' The physical situation is that the
self-consistent electric field produced by the inter-
action of the ultrasonic wave and the conduction
electrons contains harmonics of the fundamental
piezoelectric field. Second-harmonic generation
has been calculated by Spector~ and Conwell and
Ganguly' using a phenomenological theory which is
valid for low-mobility semiconductors where the
electron mean free path is much smaller than the
phonon wavelength (q/ «1) and by Wu and Spector4
using the quantum Liouville-theorem approach
which is valid for high-mobility semiconductors
(q/» 1) in the limit ~r» 1. Recently, Nakamura'
has discussed three wave-mixing effects using the
classical Boltzmann-equation approach. One can
extract the flux distribution in the second harmonic
from his calculations, though he does not calculate
it directly. However, there are certain discrep-
ancies in his calculations, and his results do not
go over to those of previous calculationsa 4 in the
appropriate limits. Therefore we present our cal-
culations in this paper also following the classical
Boltzmann-equation approach.

In Sec. II we present the theory of second-har-
monic generation due to the interaction between
the ultrasound and the conduction electrons, follow-
ing the same approach as in Hef. 3. The second-
harmonic flux generated is calculated in terms of
linear and nonlinear conductivity tensors. In Sec.
III we present the calculation of the conductivity
tensors. This is done using the classical Boltz-
mann equation. We can use the Boltzmann distri-
bution for the equilibrium distribution of the con-

J] = o'])E)+A]~I,E;EI, . (2. 1)

In a piezoelectric semiconductor, the equation
of motion

(2.2)

must be supplemented by the piezoelectric equa-
tion of state
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where

(2.3)

(2.4)

xz
(2. 5)

is the strain tensor, T,&
is the stress tensor, C,»,

are the elastic constants, P„.„are the piezoelectric

duction electrons since in most materials where
acoustic amplification is observed, the carrier
density is low enough for the electrons to obey
classical statistics. This approach is valid both
in low-mobility semiconductors like CdS (q/ «1)
and in high-mobility semiconductors like GaAs and
n-Insb (q/» 1). This is of interest since amplifi-
cation of large ultrasonic flux has been observed
in GaAs, '7 and n-lnSb. ' Finally, in Sec. IV we
present the discussion of our results and compari-
son with previous works. ' '

II. SECOND-HARMONIC GENERATION IN
PIEZOELECTRIC SEMICONDUCTORS

In nonlinear media, the electronic current den-
sity contains terms which are nonlinear in the elec-
tric field. The observation of second- and higher-
order harmonics of the fundamental piezoelectric
field can be investigated by using the nonlinear
terms in the electronic current density as source
terms in Maxwell's equations. In Sec. III we shall
show that one can write the current density in the
form
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—(4m/z) P„))S~),(
1 —(4))/i(0e) o„(&o) ' (2. 8)

constants, E is the electric field, D is the electric
displacement, and e is the static dielectric constant
of the medium. Using E(ls. (2. 1)-(2.5) together
with Maxwell's equations, one can solve for the
electric fieMs induced by the ultrasound.

Transverse electric fields induced by the ultra-
sound in piezoelectric materials are weaker by a
factor of (v,/c)3 than the longitudinal electric
fields. ~ Using Gauss's law we can obtain the lon-
gitudinal electric fields associated with the fun-
damental and second harmonic. They are

—(«/a) &g,„s„,
1 —(2~/i~~) o„(2~)

(2)(f/()) z)Ag)), (()))(47(p+,„/&)'S,'„
[1 —(27(/i~ ~)o„(2~)1[1 —(«/&~ &)&„(~)P'

(2. f)
where S», and S»2 are the strains associated with
the fundamental and second harmonic, respectively.
Using the piezoelectric fields in the equations of
motion of the lattice (2. 2)-(2. 5), we find that the
sound wave amplitudes for the fundamental and the
second harmonic obey the following equations:

93$( 47(P /z 8~$(
P BP 1 —(4))j('(0z)o„(~) sz' (2. 8)

8'g, 4~p'/z & 8'4 (f/~) (4~p/z)'A. ..(~) 84 s'4
p &t' 1- (2))/i~a)o„(2~)&~ &z' [1 —(2)T/i~a)o„(2~)j [1 —(4n/i~a)o„(~)]' &z sz' (2. 9)

$, {z, f) =u;{z)exp'(q, z —~;f) . (2. 10)

Because of the smallness of the electromechani-
cal coupling coefficient 47(P'/&C«1, the amplitude
u, will change very little over the distance of a
wavelength. Therefore, neglecting terms involv-
ing Bu, j&z compared to q,u„we obtain the follow-
ing set of first-order differential equations for u,
and g2.'

where p and C are the appropriate components of the
the piezoelectric tensor and the elastic constants.

Following the same procedure as in Refs. 2 and
3, we can write the sound-wave amplitude in the
form

The coupling coefficient determining how the
fundamental drives the second harmonic is

u (z) =u (0)e (2. 18)

(z) 111 1 (C u' ~0) (&(i(8a(&3&-2C)(3s &-n~s)
i (2qi —qa) —(2 o'( —o'~)

(2. 1V)

(4n'P/&) (i/&C) (q /4) A„,(&)
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(2. iS)
where q = ~/v, and v, is the sound velocity in the
absence of the piezoelectric coupling.

The solution of E(ls. (2. 11) and (2. 12) arez

881
~Z 101 P

BQ2 2
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(2. 11)

(2. i2)

The acoustic Qux accompanying a wave of fre-
quency +, is

(2. 18)

Here, o.', and &~ are the absorption (amplification)
coefficients for the fundamental and the second.
harmonic

Therefore, the ratio of the acoustic flux in the sec-
ond harmonic to the initial flux in the fundamental
is

I'/I (0) A(e ~'+e

n(= q im . , 2 13
27(p' 1
ac ' 1 —(4')~,. e)a„(~;)) '

and the wavevectors for the fundamental and second
harmonic are determined by the dispersion rela-
tion

2)Tp'/zC
~( =q(vs 1+Be

( j. ) ( )
' (2 14)

where

-2e" &' &"cos(2q, -q, )z), (2. 19)

8 (2wP
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(2. 20)
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The electron current density in a piezoelectric
semiconductor in the presence of the ultrasound is
given by

j ———e dvv v (3 1)

where f(v) is the electron distribution function in
the semiconductor in the presence of the ultra-
sound. The Boltzmann equation which determines
f(v) is

Bf ~ Bf e ( v Bf f-f
+ v ~ ~~ E + ~')( B1 sl n III, c ~v 7

(3.2)

where E„and B„are the electric and magnetic
fields induced by the acoustic wave, 7. is the elec-
tron relaxation time, and f, is the distribution to
which the electrons relax in presence of the wave.
This distribution is

d$f(v) f~ v ——, , q +=q, +q, )

=fo(v)- — + n, —+ n, . (3.3)
d $ df() df() df()

dv dnp dnp

Here fo(v) is the equilibrium distribution of the
electrons, $ the amplitude of the acoustic wave,
and the second and third terms on the right-hand
side of (3.3) arise from the collision drag effect
and the fact that scattering is local 'P and there-
fore does not change the electron density. The
second term can be neglected in semiconductors
where the electron-phonon coupling is either via
the deformation potential or piezoelectric cou-
pling. " The transverse electric fields induced can
be neglected, since they are smaller by a factor
(v,/c)o than the longitudinal fields so that 8„=(cq„/o)„)
xE„=O. The solution of Eq. (3.2) can be written

Therefore, to study the acoustic flux in the sec-
ond harmonic, we have to calculate the linear and
nonlinear conductivity tensors O„and A„,.

III. CALCULATION OF CONDUCTIVITY TENSORS

(3.7)

Then the solution of (3. 5) can be written

gg(v) = — Eg v + .
)

~ (3.8)
er n, f()(v)

P~T gp 1+1 q v

Using (3.8), the solution for (3.6) can be written

e7 n2 fo(v)
g v)= -- z v+—

keT no 1 + 2$ (qgvg —(d) T

ev (eT/keT)E~2,
m 1+ i(q v, —(d)~

1
m5 zqv 7

k q 1+&(qv, —tq)v)

(ni/no)zg. mv. iq,
1+i(qv, —tq)q kqq 1+i(qv, —tq)q )z

fo(v)
1+2i(q,v, —(d) r

Here we have used the approximate dispersion re-
lation qv, = (o. Substituting from (3.8) and (3.9)
into (3.1), we can write the ac current densities
j&()-expi(q ~ r —(dt) and jo ccexp2i(q ~ r —(dt) as

j„=(T„((())E„-R, ((d)n, ev, (s. io)

jo, = e„(2(d)zo, R, (2 )(dn2ve, -

Bg Bgo ~g e - df() n~ df e-
+ v + ~~ E ~ + + —Eg ~

et er 7 m dv T dnp m ~v

(3.8)
We choose our coordinate system so that the wave-
vector of the acoustic wave lies along the z axis,
and we also treat the electrons as obeying Boltz-
mann statistics in the absence of the acoustic
wave. This is justified since in most materials
of interest the electron density is low enough for
them to obey classical statistics. Therefore,

f(v) =f()(v) +gg„(v)e'""' """, (3.4) + v„,(~)zf, -S„(&u)n,ev,z„, (3.11)

where g„(v) represents the part of the distribution
function induced by the acoustic wave of frequency
„and wave vector q„.

The part of the distribution function which is
associated with the fundamental obeys the equation

where

o„(o))= (2cro/v(') ) (1/o'~'vo) Io,

R, ((d) = (1/v'~'v, vo) I, , (3. 13)

e- . Bfo &i dfo+v' 8~ + E1 ~ + (s. 5)
20'p p, 2 ~ I~qks(~)- ~iso o ~) -m~o-&q«o

Vp Vp

and the part of the distribution function associated
with the second harmonic obeys the equation

p, 1 2
S„((d)=-— ggo

—
o Jo+iq«) (s. is)
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where
" dxx" e ~" 2

I„= a+ibx

dxx
(a+ibx)(c+aibx) ' (3.17)

i "e' dt
w(z) = 8 ' erfc —iz =—

7t oz) g
(3.19)

Therefore, we get for the conductivity tensors

)
svgr' (I -i~7) 1 —ital)

(q/)' iql

J „'= —(d/da) J„,
1 —ico7

7T ql
(s. 20)

with a=1 —i~a, c=1 —aired, b=iq7 and d=l/vo.
The integrals (3.16) and (3.17) can easily be done
using the integral representation for the function'2

l

R, (ld) = . 1 — . i)r w
vp 1 —i7' . g/2 1 —i('d'p

v,iq/ iql iq/

(3.21)

~ g/2

2zq/

3 1 —zloty & . z 1 —ai)d7 . 2)r (1 —zlirT) )rx (1 —z~z') w — . —s(1 —azm7') zv — . —iql s +
iql 2iql (ql '

(q/
'

I (1-i~7)' l-i», , 1-ai~rx 2(1 i~~—) i &r——,w — . ——,'(1 —ai&&)'w
(ql) iql ' 2iql

(3.22)
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r' 2w . 2

It' 1 -i+&, . 2 1 —2z(de

v, rr "' (q/)' (q/)' ) iql ' 2iq/
~, (I —i~a)' cu) — . --,'(I-'s~r) iu — . )

airr'r'(1 —i~v) irr 1 —2i+7'
+ iql —,, +, ,2 1 —2iev w 2' l(ql) (q/) zq

2(1 -i»)' 1 i»—
1 -2ili)'r —

z z iql
(3.23)

As = ass (~)Els i (s. 24)

Jz = a (2M)Ez + A ss(N)Els,

where

c,', ((o) = c„((o)/[1 —R, (&u)], (s. 26)

where op is the dc conductivity, p, is the carrier
mobility, and l is the mean free path of the elec-
trons. Using the continuity equation we can write
(3.10) and (3.11) in the form (2. 1),

2

)
6 r Q~ evs

=4rr ~ q mv'pl v()
(3. 29)

where qs = (4)rnoe /ckz)T)' is the electron Debye
wave vector, v, = (aksT/m)' r' is the thermal veloc-
ity of the carriers, and v, is the sound velocity in
the piezoelectric semiconductor. Equations (3.28)
and (S.29) are valid for either limits err» 1 or
~7«1 as long as q/»1.

Substituting from Eqs. (3.28) and (3.29) into
(2. 20), we find the flux in the second harmonic is

( )
r„,((u) S„(~)c,', (~)

1 -Rs(2&) 1 -Rs(al)r) (3.27)

8rrp z ez qz
A=

9pv', e (mvzo)' (q'+q,')' ' (s. so)

In the short-wavelength limit, i.e. , ql » 1, the
linear and nonlinear conductivities reduce to

The acoustic flux in the second harmonic has a
maximum when q =q„, i.e. , when the phonon wave-
vector is equal to the electron Debye wave vector.
The magnitude of the flux at this maximum is

o,', ()d) =- )t
~

1+irr'r'z&E q f . l zv
4r q I, vp

(s. 28)
A = (2/9pvz))rp /enokz)T (S.31)

and and is inversely proportional to both the electron
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density and the absolute temperature. These re-
sults agree with those of Wu and Spector4 using a
Liouville-equation approach and neglecting the ef-
fects of collisions. This indicates that this ap-
proach is valid as long as ql»1. In the long-wave-
length limit, i.e. , ql «1, we can use the asymp-
totic form of the error functions to obtain the
limiting forms of the conductivity tensors. For
large X, "

exp- X2 1erfcX= „~ 1— (3.32)

Then we have

ol ~)
q4)

C

4n(1+i~/~v) ' (3.33)

4n, (1 +i&a/u&v)(1 +2iar/~v) ' (3. 34)

where &u, =4wnoe p/c is the dielectric relaxation
frequency, and ~D =v2/D, where D is the diffusion
coefficient. The flux in the second harmonic can
be obtained using (3.33) and (3.34) in (2. 20):

3(2v PP/«. )' [1+(~/~v)']
pv', [1+9 ((o/(ov)'][1 + ((u, /(o+ &u/(uv)']

Therefore, we see that the frequency dependence
of the second harmonic will depend on the relative
values of (d, and D. In low-resistivity materials
~,» &uo, and (3.35) has a maximum at +=(~,~v)'~2,
or a wave vector q =q„. The magnitude of the
second-harmonic flux at this maximum is

A = (1/Qpv3)vP~/enoksT (3.35)

A = (8/pv', )(2v pP/ev, )' . (3.37)

This predicts a smaller second-harmonic flux than
Eq. (3.31) for materials of the same electron den-
sity and at the same temperature. The results
derived here also agree with those obtained by
Conwell and Ganguly using a phenomelogical ap-
proach. When q/= 1, the exact expression for the

and has the same form as the second-harmonic
flux at the maximum q =q„ for a high-mobility semi-
conductor, given by (3.31). However, the magni-
tude of second-harmonic generation will be higher
for low-mobility semiconductors (q/ «1), because
the limit q/» 1 will occur for the frequency of peak
generation at higher electron densities. In high-
resistivity materials we have ~, «~D, and (3.2V)

predicts a plateau region for &, &&& &~. The
maximum second-harmonic flux in this region is

linear and nonlinear conductivities have to be eval-
uated numerically.

IV. DISCUSSION

The results of our calculations using the Boltz-
mann equation to obtain the linear and nonlinear
conductivities are in agreement with those of Con-
well and Ganguly' for the case ql «1, appropriate
to low-mobility semiconductors, and with those of
Wu and Spector4 for the case ql » 1, appropriate
to high-mobility semiconductors. Our results
disagree with those obtained by Nakamura, ' which
seemed to indicate the existence of a separate
regime, where q/»1 and uv«1. However, our
results seem to indicate that there are just two

regimes, at least for the case of a constant relaxa-
tion time, which depends upon whether ql ~ 1.
Since the calculation of Wu a,nd Spector neglected
the effect of collisions, it was not apparent
whether the results of their paper were valid when

ql » 1, or whether they required the stronger con-
dition w» 1. The present calculation indicates
that only the weaker condition q/» 1 is required
for their results to be valid. Also, Nakamura's
final result for the nonlinear conductivity seems
to diverge in the limit ql»1. Therefore, the
present calculations resolve the apparent differences
in the earlier calculations.

The calculation we have done in this paper has
been in the absence of a dc electric field. How-

ever, although the presence of a dc electric field
can have a, drastic effect on the absorption coef-
ficient (in fact, changing a linear loss to a linear
gain), the coefficients in Eq. (2. 20), which de-
termines the amplitude of the harmonic generated,
is only a very weak function of such a drift field
except at very low frequencies [compare Eq. (3.35)
of this paper to Eq. (26) of Ref. 2]. Therefore,
although the presence of a dc electric field will
change the rate at which the second harmonic gen-
erated will grow or decay with position, it will not
greatly modify our calculation of the amplitude A.
Also, even in the absence of a dc electric field,
the electronic losses in high-mobility semiconduc-
tors such as InSb and GaAs are low enough because
of their relatively low electromechanical coupling
coefficients so that the second harmonic generated
should still be detectable in samples of reasonable
length. For example, in n-InSb, ' for a frequency
of 3.8 GHz and at a temperature of VV 'K, where
ql is estimated to be about 15, the total absorption
coefficient (electronic and lattice) in the absence
of a drift field has been determined to be less than
2 cm
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