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We study the effect of interchain coupling on the Peierls transition temperature T„for a model with
a nonplanar Fermi surface. Using the standard electron-phonon coupling, we show that the soft mode
which causes the transition should have a wave vector qo ——(m'/a, m'/a, 2p F). We evaluate the effect
of interchain coupling on TI within the mean-field theory, as well as the effect of fluctuations. Both
these effects reduce TJ, but we find that there is a range of interchain coupling where this reduction,
due to both effects, is small. Neutron-scattering cross section and fluctuation contribution to the specific
heat are evaluated. Comparison is made with experiments on K2Pt(CN)&Bro3 3820 {KCP) and
tetrathiofulvalene-tetracyanoquinodimethan (TTF-TCNQ).

1. INTRODUCTION

One-dimensional theories have recently gained
a new interest due to extensive studies on organic
conductors like the tetrathiofulvalene -tetracya-
noquinodimethan (TTF-TCNQ) charge -transfer
salt' and the Krogman compounds, such as
K,Pt(CN), Bra, SH,O (KCP). These materials
have a linear-chain structure such that the inter-
chain coupling is much smaller than the intra-
chain coupling. This is reflected in the conductivity
ratio o, jo~, which is of order 10' for TTF-TCNQ,
and 10' for KCP at room temperature.

Also related to these systems are the inter-
metallic compounds of the A15 (P-tungsten) cry
stal structure. ' These consist of three perpen-
dicular families of chains which are largely inde-
pendent, thus leading to a quasi-one-dimensional
behavior along each chain.

The interest in these materials is motivated by
the search for a high-temperature superconductor.
In fact, the A.15 have the highest known super-
conducting transition temperature T, . This may
be associated with their one-dimensional char-
acter. However, we should point out that uniaxial
stress in the [100]direction, which leaves the
chain structure intact, lowers T, considerably. 4

Surface dependence of the tunneling gap' also sug-
gests the necessity for cubic structure (or three
families of coupled chains) to sustain a high &, .
The band calculations' also indicate that the prop-
erties of this system may depend on the high-
symmetry cubic structure.

The usual BCS-type superconductivity is caused
by attractive electron-electron interaction me-
diated by the electron-phonon interaction. How-
ever, such an interaction in a one-dimensional

system leads to a Peierls transition' at a tem-
perature T~. This transition creates a lattice dis-
tortion with wave vector 2P~ and a gap in the elec-
tronic spectrum at the Fermi surface P =+P~ be-
low T„." Frohlich' suggested that this distortion,
which is a charge-density wave, may propagate
along the crystal, and due to the presence of the
gap, represent a superconducting state totally
different from the BCS pairing state which was
not known at that time. However, this Frohlich
mode may be pinned down by lattice commensur-
ability or by impurities' and thus lead to the op-
posite extreme of an insulating phase.

A Peierls transition has been suggested for
TTF-TCNQ"'" with TI, = 60'K and for KCP "'"
with T~= 100'K. We shall later on apply the
present theory to these systems, but first, let us
present few theoretical problems associated with
the one-dimensional electron-phonon system.

Most of the available theories treat the Peierls-
Frohlich transition using mean-field theory,
although fluctuations in a one-dimensional system
prevent altogether the occurrence of a phase trans-
ition at a finite temperature. Thus it is necessary
to introduce some kind of interchain coupling which
will enable the development of long-range order
in the transverse direction and lead to a real
phase transition. Using one -dimensional models,
it has been argued" that T~=-,'T„',where T~ is
the mean-field value of the Peierls transition
temperature. The factor & is somewhat arbitrary,
and we shall show that it is actually a sensitive
function of the interchain coupling.

Since the Peierls transition is a property of
one-dimensional systems, a second problem is
whether the transition exists altogether for a
finite interchain coupling. This problem was
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dealt with by Beni" using an electron dispersion
which depends also on transverse coupling. If g
is the ratio of the interchain to the intrachain
transfer integrals and 7s= T~/Tz, Beni concludes
that T~ is finite if roughly q ~ 7~, although there
may be some solution at rl -(rg)'~'. Since we usual-
ly deal with w~«1, there is a large region,
s qs (vg)'~', where the result is not clear.

The present work is a continuation of Ref. 15
which dealt with the mean-field theory of the one-
dimensional electron-phonon system. In Sec. II,
we present our model for the interchain coupling

In Sec. III, we deal with the effect of inter-
chain coupling on T~ and show that the region ~~
s q 6 (~~)'~' has a very important physical signifi-
cance. We show that for g~ 7~, the Peierls in-
stability associated with the wave vector q,
=(0, 0, 2P~) is suppressed, while for qs (~g)'~'

[see Eq. (3. 4)], there still exists a Peierls in-
stability associated with the wave vector q,
= (n/a, w/a, 2P„).Actually, if exact three-dimen-
sional electron-hole symmetry exists [Eq. (3.1)],
the system is effectively one dimensional with
respect to q„and T~ is finite for any p, as large
as we wish.

In Sec. IV, we deal with the problem of fluctua-
tions. If the interchain energy is larger than the
thermal energy g ~ 7~, we expect mean-field the-
ory to be valid. An explicit calculation to first
order in fluctuation effects confirms this expecta-
tion. Thus the instability at qo has a range of g
[Eq. (4.18)] for which one-dimensional mean-
field theory is effectively valid. In Sec. V, we
evaluate the neutron scattering cross section and
compare with experiments on KCP. Later on, we
evaluate the free energy and the specific heat due
to fluctuations and compare with experiments on
TTF-TCNQ.

A third basic problem is the possibility of usual
pairing superconductivity and its relationship with
the Peierls transition. This problem has been in-
vestigated extensively in the literature, """ and
we shall consider it within the discussion.

phonon coupling constant.
We define a dimensionless coupling parameter
s, by

g', = s,(u', /2N(0), (2.2)

5 =+0, (2.3)

where n~ is the electron momentum distribution
function. TJ, is the temperature where the phonon
Green's function D(q, u&) has a pole at &u = 0:

(&u', )'+2(u', 11,(q, 0, T~) = 0

For T«T~, the instability occurs at q, =2p~, al-
though for T~ T~ this may not be the case. ' ' "

In genera1. one deals with T«TE, and we as-
sume this to be the case throughout this work.

Let us define

IIO(q, 0, T)= —s, &o,I(q, T),
where

(2.4)

l(q, T'I = -,
'

v (
—

) f d'P (2 6)

N(e) is the electron density of states for both
spins, and e =0 is the Fermi level. If v~ is the
Fermi velocity, then N(0) =2/va'v„, where a is
the distance between chains, while c will denote
the lattice constant along the chain.

The Hamiltonian (2.1) neglects direct electron-
electron Coulomb interaction. Within the random-
phase approximation (RPA), '"'" the Coulomb ef-
fect renormalizes the electron-phonon coupling
constant and thus amounts to a redefinition of the
parameter s, .

The one-dimensional Hamiltonian (2.1) was
studied by many authors' '" '9 using RPA cal
culations. The phonon with q, =2p„softens, and
its frequency reaches zero at a temperature T~.
Below T~, a superlattice with wave vector 2p~
appears, which introduces a gap in the electronic
spectrum at p=p~.

The phonon self-energy, within RPA is

2 d p pl+ npII (q, 4), T)= —2g
(2 ) ( )

a= ge,c,'c, +g ~;a&a,

+ g, (a, + at, )cd„c~,
sC

(2.1)

where c~, +, are the electron and phonon destruc-
tion operators; c~, co', are the electron and phonon
unrenormalized energies; and g, is the electron-

In this section, we summarize the mean-field
results for the one-dimensional case, and present
our model for the interchain-coupling effect.

We start from the Frohlich Hamiltonian

Thus T~ is obtained by solving

1 =2sI(q, =2Pz, TI,), (2.6)

where s and m, are the values of s, and (d', at
q~ =2pz.

Using a tight-binding spectrum e~ = -c~cosp, c
for a half-filled band givesi6 T& 2 26'&-2/s For
a free-electron spectrum e~ =P'/2m, and any fil-
ling of the band, the result is' T~ =4.52T~e ~'.
Later we shall use a free-electron spectrum, and
for simplicity, an inclined step function for n~.
This gives a slight deviation, with the result"
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z
In order to see the reason for the different

coefficients, let us pass to integration on the en-
ergy variable. The use of electron-hole sym-
metry e~,» ——-e~ is valid for P = —P~, which is
the important region of integration in (2.5). How-
ever, the energy integration implicitly includes
both regions P =+P„,so that an extra factor of —,

'
is needed to obtain from (2.3),

f(2P„T)=—1 (2 'I)

1/2s —f(2P, T) =-,' lnT/T (2.8)

Our model for the interchain coupling involves
electron hopping between the chains described by
the electronic dispersion:

(P, ) —q, ( os P„+o P, ) . (2.9)

We define jz as e(P, =Pz) =0 (see Fig. 1) and vz

3T(/a

'x

This integral converges slowly, so that it depends
on the form of N(e), or alternatively, if we take
N(e) =N(0}, the result depends on the electronic
cutoff energy. However, the difference of
f(2P~, T) at two temperatures does not depend on
the cutoff. Using Eq. (2.6) we obtain

= Se(P, =P~)/SP„so that N(0) and s in (2.2) are
formally defined as in the one-dimensional case.
We also define

1Co= 2 VpP~, (2.10)

This energy coincides with c~ only for the free-
electron model. The Fermi surface which corre-
sponds to (2.9) is shown in Fig. 1.

As we saw, the Fermi energy e~ does not deter-
mine uniquely the energy scale in the problem.
Indeed, the distance of the bottom of the band from
the Fermi level is not a relevant quantity when
we consider only states near the Fermi level.
Thus, our scale of energy is determined only by
Fermi-surface parameters as in (2.10).

The dispersion (2.9) corresponds to nearest
neighbor tight binding in the transverse x, y di-
rections, and g is the measure of the interchain
coupling. Note that (2.9) implies a tetragonal lat-
tice, but the extension to a triclinic lattice will be
shown to be trivial.

Apart from the electronic dispersion, other
quantities may depend on interchain coupling,
such as g, or cu', . Within RPA calculations, this
implies a dependence of the coupling parameter
s, on the transverse momenta. The consequences
of such a dependence are straightforward, and we
treat them in Secs. III and V.

For a three-dimensional dispersion, the equa-
tion for the Peierls instability instead of (2.6), is
now

1 =2s~ f(q„T~}. (2.11)

2Tt/a—
In Sec. III, we look for the value of a three-dimen-
sional vector q, which leads to the highest tem-
perature of a Peierls instability. This corre-
sponds to mean-field calculation, while fluctuation
effects will be considered in Sec. IV.

7r/a

p

P

FIG. 1. Fermi surface following (2.9), (3.2) for g=0.5
in the plane P~=r/2a. Full line corresponds to n =0 and
dashed line, to & =1. Note that for «0, the symmetry
across the point 0 is broken. For & =0, all the vectors
(~/a, &/a, 2p~) connect opposite sides of the Fermi sur-
face.

III. VALUE OF qo

In this section we solve (2.11) for q, and T, and
show that if &, is independent of q~, the instability
should occur at qo= (n/a, v/a, 2p~) '(q~ stands for
both q„and q, ). We denote by s the value of s, at
q =q„and for comparison, by s, the value of s,
at q, =- (0, 0, 2P~). Even if s, depends on q~ and s,
&s, we shall show it is possible that q, rather than
q, describes the instability.

The basic difference between q, and q, can be
noted by looking at Fig. 1. If q~=0, the vectors
q, which connect both sides of the Fermi surface
are smeared around q, =2P„with a width of order
g x2P~. This peak around 2P~ is the cause of a
giant Kohn anomaly, which for g smaller than
some critical value 7)', (to be calculated here) will
cause a Peierls instability. If g &g'„ the Kohn
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anomaly is not strong enough and will not induce
a Peierls instability with q =q, . Let us now con-
sider the case q~ = v/&, so that the instability is
described by go=(n/~', v/u, 2P~). Let us first as-
sume electron-hole symmetry for e(P, ). The
Fermi surface is described by the full line in
Fig. 1, and as shown, all the vectors q, connect
opposite sides of the Fermi surface. In addition,
all connected points on the Fermi surface have
parallel tangents, which is the criterion for a
Kohn anomaly. Thus the Kohn effect is ac-
cumulated on the whole Fermi surface with the
same wave vector q, . The phonon with this wave
vector sees an effectively one-dimensional sys-
tem, although there is a finite (and possibly large)
coupling between the chains. We may define such
a Fermi surface as "effectively flat" with respect
to the vector q,. The degeneracy of all vectors
q, connecting opposite sheets of the Fermi surface
is due to inversion symmetry of the electron dis-
persion e~ through the point p=-,'q, =(P~, v/2a, v/2a).
To be more precise, we prove the following gen-
eral assertion:

If there exists a point ~ q, in the Brillouin zone
such that

(3.1)

and e(p) =e(-p), than there is a Peierls instability
at a finite temperature associated with the wave
vector qo. This result does not depend on the de-
tails of the electronic spectrum e(p) (like the value
of the interchain coupling), but only upon the valid-
ity of (3.1).

To prove our assertion, we note that the as-
sumptions are equivalent to e(p+q, ) = -e(p). Thus
(2.5) reduces to (2.7) which has the one-dimension-
al singularity at T=O.

The inversion symmetry (3.1) is essentially a
particle-hole symmetry through the point & q, .
For the dispersion (2.9), we obviously have —,

'
q,

= (+v/2a, +v/2a, +Pz), and one such point is de-
noted by 0 in Fig. 1.

Let us now analyze when the relation (3.1) is ex-
pected to be valid. The first assumption is the
use of nearest-neighbor tight binding, as in (2.9),
for the dependence on the transverse components
p„,p, . This is a reasonable assumption due to the
relatively small interchain interaction. The sec-
ond assumption is the use of electron-hole sym-
metry for e(P, ), namely, e(jz+P, ) = -e(P~ —P, ).
This is exact for the half-filled nearest-neighbor
tight-binding dispersion, or more generally, if the
expansion of e(P~+5P, ) contains only odd powers
of @,. For T«T~, we expect the linear termtobe
dominant, so that the second assumption is rea-
sonable too. However, for large enough q, we ex-
pect some symmetry breaking effect due to the

second-order term. Thus for actual calculations
we use the following dispersion:

(3.2)

5p, =p, +p~, p, &0.

We chose the coefficients so that e, = ~ v~p~ in ac-
cordance with (2.10), and u =1 corresponds to the
free electron dispersion. Expanding the nearest-
neighbor tight-binding dispersion gives 0 & n & 1,
if the band is between zero and half-filled. If the
band is more than half-filled, 2P~& v/c, and the
instability should be described by (2w/c —2').
Alternatively, we may consider the Fermi vector
Pz=v/c —Pz and obtain -1 ~ o. & 0. Although, in
principle, it is possible to have ~n~&1, the values
of ~o.

~

=1 and u =0 represent the two physically
extreme cases of the free electron dispersion
(n =1) and the half-filled nearest-neighbor tight-
binding dispersion (n = 0). For KCP, the band is
8~ filled, so that for the hole spectrum P~ = v/Gc
and n = 0.9. Part of the Fermi surface for 0. = 1
is shown in Fig. 1 by the dashed line. The sym-
metry through the point 0 is broken, and the wave
vectors (w/&, n'/&, q, ) connecting the Fermi surface
do not have the same q, . Therefore, the Kohn
anomaly is smeared and we again expect a critical
value g„such that for g &g„the Peierls transi-
tion is suppressed. Due to the preferred direction
of qo we expect gc ~

Before presenting the detailed results, let us make
two remarks. The choice of (2.9)with (3.2) is area-
sonable simplification of an actual dispersion, but
even for amore complicated dispersion, the symme-
trye(p) =&(-p) alone ensures that the strength of the
Kohn anomaly is largest for q~ = (m/a, n/a). Obviously,
the effective flatness" of the Fermi surface is
always highest for q~ = (v/a, n/a). Thus if one has
a possibility for a Peierls transition, it should
a priori be associated with the wave vector q„as
long as s, does not decrease too much with q~.

The second remark is the generalization of our
treatment to a triclinic system. If a, b, c are the
vectors of the unit cell, the equivalent of (2.9) is

e
z =e(p, ) -~,(q, cosa'p+7l, cosh p) .

It can be easily checked that again, the trans-
verse components of q, are at the corner of the
Brillouin zone. If we choose the axes along the
vectors of the reciprocal unit cell, then for e(P, )
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which has electron-hole symmetry qp=
(v/a, w/5, 2pl), which satisfies (3.1). However,
as the system deviates more from the orthorombic
structure, the second-neighbor effect becomes
stronger. Since the transfer integrals in the z
direction are the most important, the relation
(3.1) is a good approximation only if we are rather
close to a monoclinic structure.

Even then, second neighbors in the (a, 6) plane
may become important, until eventually, for the
hexagonal lattice, there are three pairs of nearest
neighbors in the transverse plane. In this case,
e~ has three equally important terms which de-
pend onP„,P, , whence Eq. (3.1) implies three
equations for q,„andq», so that there is no solu-

tion for qp. In such a case, the dependence of
s, on q~ will determine the wave vector of the
instability.

A. qo =(vr/a, x/a, 2p )

We evaluate I(q, T) for q = (v/a, w/a, 2p~+q, ) with
the dispersion (2.9) and (3.2) to lowest order in q.
For q, «2P„,we have

Ep +q
—ep = 2vF[ ps+p E

+ —,'gp~(cosap„+cosap, )+ —,'q, ] .
The limits of the Fermi surface p, =p, (p„,p, ) are
given by

p, =p~[1+—,'q(cosap„+cosap, ) ——', uq'(cosap„+cosap, )'+O(g')] .
We change variables to p,' =p, +p, -p~. The linear term in q cancels and from (2.5) we obtain

p +p~+gppQg (cosap„+cosapq) + gq
(3.3)

The change of variables ensures that the drop of
n(e~ ) from 1 to 0 is around P,'= -Pz for allP„,P, .
(The behavior at P,'=+Pz is not important. )

For T=O, (3.3) can be evaluated, with the re-
sult

Thus from (2.11) we obtain

where 7~=- T~(g =0)/e, and the coefficient 3.5 de-
pends somewhat on the choice of the electronic
cutoff as discussed for Eq. (2.6). The Peierls in-
stability exists only for g &g„and as expected,
there is no such limitation when n -'0.

For T4 0, we evaluate (3.3) in the appendix using
an inclined step function for n~. We plot I(x, &) in
the upper row of Fig. 2, where x=q, ,/2' and
7 = T/e, . For a given 7i, the peak becomes higher
and sharper as 7 decreases, until for 'T 6 gag',
the asymmetry term np2 dominates, and further
decrease of v has a small effect on I(x, v). Since
1/s =2I(q, Tp), these curves can be viewed as a
set of critical curves s,(q, q, , T). For a given
g, T, an instability will occur at the point where
s(q, )~ s,(g, q, , T). For r «1, the sharpness of the
peak indicates that the instability should occur at
(q, +q), =2Pz, but for T ~ 0.1 the peak is broad,
and some dependence s(q, ) may cause an instability
at a different q, .

The asymmetry for at 0 causes a small shift
from x= 0 to x„=——', og' (if 7 z Ix„l)in the peak of

2.5—
q=0. 01

2.0—

1.5
1.0
0.5

q=0. 001
2.0—

1.5
1.0

q=0. 1

@=0.01 q 0.05

0.5
-0.1 0 0.1 -0.1 0 0.1 . %.1 0 0.1

FIG. 2. Function I{x,7) for wave vectors (7t/a, m/a,
2Pz+q~) in the upper row, and for {0,0, 2P~+q~) in the
lower row, using +=1; x=q~/2' and 7 =T/eo =T/Tz.
In each section, we plot three curves for 7 =0.001 {1},
0.01 (2), and 0.1 (3).

I(x, w). We solve the instability equation 1
= 2sI(x, w~) with x at the peak and plot ~~ in Fig. 3.
We conclude that r~(g) is almost constant until
very close to t:he critical p„where it drops down
to zero. [Due to approximations in the appendix,
the values of g, in Figs. 3 and 4 is somewhat less
than the result (3.4)].

Higher-order terms in the g expansion and in
the tight-binding scheme limit the validity of our
results to small g. Since we use g to second or-
der, we estimate the region of validity as g'~ 0.1.
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8. q, =(0,0,2p~)

For comparison, we repeat the calculations of
Sec. III A for the wave vectors q = (0, 0, 2Pz+q, ).

In this case: e~+, —e~=2vz(P, +P~+-,q, ), and the
change of variables toP,' =P, +P, -P~ gives a term
linear in g:

4 2m
" ' ' p,'+p~ ——,'pp~(cosap„+cosap, )+-,'q, (3.5)

T = 0 calculation gives I(0, 0) = ——,'1n~-,' g ~, whence

q' = 8e ~/'& = 1.570 .P (3.6)

This result is independent of n as expected, since
the interchain coupling itself is responsible for
the suppression of the Peierls instability at qy.
Also for v~ « I, we have from (3.4) 71', «rl„ if
s =s, as expected.

For Tw0, we evaluate (3.5) in the appendix, the
way we did with (3.3). The result for I(x, 7) is
shown in the lower rom of Fig. 2. Evidently, the
effect of q is much more drastic than in the case
of q, . Roughly, the results for a given p in the

qo case correspond to the results with n'=2@82«q
in the q, case. The solution for w~ is shown by
the dashed line in Fig. 3. We observe again a
sharp depression of 7~ near g =g', . Evidently, for
g', ~ p & p, only, the transition with qo exists.

Finally, let us discuss the effect of the q~ de-
pendence of s, . If s, does not depend on q~, then
the instability is always at q~ = v/~ For rl &. 'q'„
a small maximum of s, at any value of q~ will
force the instability to have that value of q~ [see
Eq. (5.10)]. However, for g ~ 71'„ the transition
with q, = 0 is suppressed, and we should check
transitions with other values of q~. For any q~ in

s, ~ 2s/(1+ —,'s luego, i) (3."I)

and for n =1, this implies s, ~ 2s. Thus we con-
clude that for p~ p', -T~, the instability with q~
=n/a is strongly favored. As we shall see in Sec.
IV, roughly the same region ensures small fluc-
tuation effects, so that the mean-field calculation
that we use for qo is valid in that region.

IV. FLUCTUATIONS

In this section we investigate the effect of fluc-
tuations on the temperature of the Peierls transi-
tion. We denote by Tp the results of mes. n-field
theory as obtained in Sec. IIIA for q,
= (n/a, v/a, 2Pz), and look for the real transition
temperature T~.

We are interested in the region with T~4 0, and

the range O~q~&w/&, there is no effective flat-
ness, "

and there is some finite g„even if n = 0,
like in (3.6). Thus for q & max', (q ), all transi-
tions are suppressed except for q~ =v/a, if o. is
small enough. Comparison of (3.6) and (3.4) shows
that the transition with q~ = 0 will dominate that
for q~ = v/a for all g only if s, is large enough
compared with s:

0.1 =—--
S= 05

,
0.05-

S=0.4
0.02—

0.1

0.05-

T/T

0.02—

S= 05

S= 04

0.01— 0.01—

0'005
S = 0.3 ' 0 005

S 0 3

0.002
0005001002 005 01 02 05 1 0.002

Q02 0.05 0.1
i

0.2 0.5

FIG. 3. Mean-field Peierls transition temperatures
for the dispersion (2.9), (3.2) with n =1. Full line is
the tr ans ition temperature for the qp = (~/a, 7(/a, 2P~)
instability, and dashed line for the q&

= (0, 0, 2p&) insta-
bility. The electron-phonon coupling constant is given by
S.

FIG. 4. Peierls transition temperature including fluc-
tuations (dashed line) for the instability at qo. Full line
is the mean-field transition temperature. The electron-
phonon coupling constant is given by s, and u =1 in the
dispersion (3.2).
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as we saw in Fig. 3, until very close to the criti-
cal q„Tg(q)is almost flat. Roughly for
g & 3(7J'/~n~)'I', the asymmetric effect due to
o.' o 0 in (3.2) is negligible, and T~o = T~o(q = 0).

In order to calculate fluctuation effects, we need
the expansion of I(q, T) for q, +q
= (w/a+q„, m/a+q„2P~+q, ). From (2.9) and (3.2),
we obtain the result (3.3), except for the replace-
ment q, -Q(q, P„,P,), where

The region of integration is limited by the Bril-
louin zone and by (4.4). The limit imposed by
(4.4) means that the contributions to (4.6) outside
this limit are negligible. Physically, this implies
that the thermal energy restricts the important
fluctuations to be in the region (4.4), and as the
temperature is lowered, this region becomes
smaller. We may define two cutoff lengths so
that v/]'~~ ~ is the limit (4.4} on q, or q~ separate-
ly:

@(q,p. , p, )
t ti = vz/2T; & i = aq/8'I''r (4.7)

=q, ——,'q pz[cosap, (1 —cosaq„)

+ sinap„sinaq„+cosap, (1 —cosaq, )

+ slnap~ slnaqy ] (4.1)

We may use the one-dimensional expansion" for
the dP,' integration in (3.3),

&& [q', + ,'q'pepsin' ,' aq + sin—'—'aq, )]. -- (4.3)

Expanding to second order in q„,q, we find that
this result is va, lid for

q;+ 8 ri'pW'qi - (2~T/vz)', (4.4)

where q~2 =q„'+q',.
The fluctuations in the ions position (u') can be

eva, lua, ted using the fluctuation-dissipation the-
orem. (For a detailed derivation, see Sec. VII of
Ref. 15). For the gap n, , we have A'
= u'sMÃ&u', /N(0), where M, N are the mass and den-
sity of the ions, whence the fluctuation of the gap
18

I(q. , T) =I(o, T) —„k(3)(p7. /2 T)'+ o(q.') .

(4 2)

This expansion is valid for q, ~ 2m T/vz.
The term with u in (3.3) does not depend on q and
causes just a small shift in the q, peak position
as discussed in IIIA. This is not important here,
so that in (4.2) we just perform the replacement
(4.1) and the necessary averaging (a/2n p
x fJe'(q, p. ,p, )dp.dp,

For brevity we use Ig(3) = 8 and obtain

I(q, T)=I(0, T) — (v~/2n T)'

where 7 = T/e, = T/~V~P~ as before. Generally,
$'~, »a, but not so for go~. If $', (a, the transverse
fluctuations are restricted only by the Hrillouin-
zone limit. However, if )o~&a, the limit (4.4) is
inside the Brillouin zone, and fluctuation effects
are reduced in an essential way. We expect that
a phase transition can happen only in such a case,
nalTlely,

Z'„~Z; =-,'ge, . (4 8)

[The factor 4 replaces 8' ' if, in the limit of q„
= v/a, we avoid the expansion of (4.4)].

The condition (4.8) determines the usefulness of
the mean-field transition temperature. If T~~

~ T„fluctuation effect on the transition tempera-
ture should be small, and we shall confirm this
explicitly. This means that already at 7 = T~o, the
interchain energy (~e,) is enough to suppress
thermal fluctuations. Qn the other hand, if T~
» T„(4.8) implies a strong reduction in the tem-
perature before the interchain coupling is suf-
ficient to induce a three-dimensional phase trans-
ition. 2' In this ca.se, fluctuati. ons should be
treated to higher orders, which are not considered
in the present work. Thus Z', is a basic tempera-
ture of the system, and the possibility that the
mea, n-field temperature is relevant is a mere
chance, whether Tz (which is determined by s)
falls above or below T, .

We proceed to evaluate (n, ') for the two cases:
q small (q s 47) and g large (7ia 4w). For small
q, the integration limit in (4.6) is an ellipsoid
truncated by the Brillouin zone in the q„,q, direc-
tions. We approximate these limits by ~q, ~

~2m T/
v~, qi & 4F/a and obtain

2

16m'N(0) I/2s —I(q, T)

Using (2.8), we obtain

(4.5)

(4.9)

Let us define the temperature Z'«by the relation

in(T/T ~) +2 (v~/2v T)'(q', + ", q'ga'q ~)—
(4.6)

InT, /Tg =q'/w7', .

For T» T„expanding (4.9) we obtain

(d-) = ' vT[2/2(1nT/gT)P~' (T» T, ) .

(4.10)

(4.11)
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This is the one-dimensional result which diverges
at T~. However as T approaches T~, the inter-
chain coupling dominates, and finally

(a') =II'r'(2II)&2~/q, (r= T,') . (4.12)

Thus T, defines a temperature where the system
passes from a one- to three-dimensional behavior.

We evaluate the actual transition temperature
using the Qrenstein- Zer nike criterion,

(&') r=r, =~,'=... (4

where 4 is the actual gap in mean-field theory.
(We shall later discuss the validity of this cri-
terion. ) Mean-field theory gives"

S ' = -10T' In(r/Tg) .

Thus from (4.12) and (4.13) we obtain

In(Tp/Tp') = -2.5l~'/ll .

(4.14)

(4.15)

p ln —
o tRn -- —

o

(4.16)

Note that ' large" or "small" g depends on tern-
perature. If II is "large" near T~ (I) ~ 4&l', )„at
higher temperatures (T& T, ) we pass to the region
of "small" g, Rnd finally above T„asdefined in
(4.9), we pass to the one-dimensional region.
Usually one has, indeed, T;& T„sinceT, & T,'

lxllplles ljy (4.8) and (4.10) 'tllat II - 4 x 10 T~, wlllcll
is not reasonable for actual systems.

Use of the criterion (4.13) leads now to

Since we deal with II S 4r, (4.15) implies a large
shift, and we do not expect mean-field theory or
the result (4.15) to be valid. In this case, specific
higher-order diagrams should be considered. For
example, the RPA bubble diagram with dressed
electron lines g~ves28 T~- (c)'~'T~ in the limit of
small c, where c is the anisotropy in the phonon
dispersion. The difficulty in such calculations is
the fact that for small interchain coupling, the
whole perturbation expansion diverges 2s and o
should be cautious in selecting the correct dia-
grams.

Consider now the case of large g, g~ 4v. The in-
tegration limits in (4.6) are determined by the
ellipsoid (4.4). We can change to spherical co-
ordinates and end up with

7'
(ZP) =4II'r'—

n'

valid. T~ and T~o are plotted in Fig. 4, and eviden-
tly for smaller v, we obtain R larger range of q
with a small shift. Using (3.4), we conclude that
one dimensional mean-field theory is effectively
valid in the region

47~6 7/ 6 3(T~/~n~)'~' (4.18)

This relation is the basic result of the present
work. It gives the region of interchain coupling
where one-dimensional theories based on mean-
field approximation (and such are most of the
available theories' "' ")are applicable. The
result (4.18) is due to a remarkable property of
the RPA bubble diagram. This diagram feels only
two bare electronic states at a time and so can be
effectively one dimensional for a dispersion which
satisfies (3.1). On the other hand, higher-order
diagrams feel more electronic states at a time
and cannot be effectively one dimensional. This
is precisely the reason why we can have a mean-
field theory which is effectively one dimensional,
and still have small fluctuation effects.

V. APPLICATIONS

&(q, Id)-B(q, ~)/(e "-I) (5.1)

In order to compare our results with experi-
ment, we must note that the experimental energy
resolution was larger than the width of the central
peak. " Thus, we may use the sum rule

In this section we evaluate the neutron-scatter-
ing cx'088 section Rnd the speclflc heRt Rnd com-
pare with experimental results. Neutron-scatter-
ing experiments give direct information on the
phonon-spectral density distribution B(q, &o), and
thus can sensitively detect the approach to a
Peierl s instability.

Neutron-scattering experlme»ts on KCP' nave
shown softening of the acoustic phonon with wave
vector qo =(Il/a, II/a, 2pF), although actual phase
transition wR8 not estRblished. It 18 possible that
disorder of the Br ions or the K atoms inhibits
the occurrence of R phRse tx'ansition.

An alternative explanation" for the instability at
q, for KCP, suggests that Coulomb screening leads
to a maximal s, at q=q, . This effect may exist to-
gether with our model for the band structure, and
thus favor more strongly the transition at q, .

The neutron cross section in the Born approxi-
mation is given by"

ln T~/T~o = 4(710 /q)' . - (4.17)

Since 'g 4&@, we obtain 0.8T~K T~ & T~, whence
a maximal shift of 2091'I in the transition tempera-
ture. This is a small shift and confirms our ex-
pectation that for q ~ 47~, mean-field theory is

—B(q, (d) =. I(d, +2II, (q, 0, T)] (5.2)

to obtain from (5.1) the integrated cross section
around the central peak
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S(q)- T(ln(T/Tg ) + 7((3)(vF /4wT)'

&& [q', +~.'P'F(sin'2aq„+ sin'-,'aq„)]
(5.3)+2/s, —2/s, ]

If the variation of s, with q can be neglected,
taking 7$(3) =8, the correlation lengths are iden-
tified as

dx dg0, =-T+,2,s 2 A. IIO(q, cu„)D(q,&„),

(5.5)

where &o„=2mTn and D(q, u&„)= -2&so/
[~'„+u&,'+2', XII,(q, &o„)].Retaining only the most
important term n=0, we obtain

g ~~

= v, /mT[2 in(T/Tp)] ~',

g, =pa/2m. [in(T/T~)] ~' .
(5.4)

0, =
~ f in[1 - 2sl(q, T)]d'q . (5 6)

Using (4.3) and the integration limits (4.4), we ob-
tain for the specific heat per electron

S 000-

6 000—

4 000—

2 000—
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100
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50
I ~ i ~ 0 I ~I

100 150 200 250 300 350

I ('~)
FIG. 5. Critical neutron-scattering cross section at

Q'p = (&/+, &/a, 2P~), using Tp&= 107 'K. The inset showers
the transverse correlation length using T&=107'K and
interchain coupling energy of gap =300'K. The experi-
mental points are from Benker et al. (Ref. 13). For
discussion, see Sec. V.

In Fig. 5, we compare the critical scattering at
qo -S(0) and g~ with the experimental values. " We
obtain a fit with T~ = 107 K and interchain energy
coupling of qe, =300'K A possible dependence of
8, on q~ is actually absorbed in the fitted value of

The fit is reasonable for 110'Ks T, while for
lower temperatures, the phase transition is not
completed as mentioned above. For T a 140'K
S(0) overestimates the experimental values, be-
cause then the central peak does not dominate the
integral (5.2), and we overestimate it by taking
the integration limit to infinity.

From the fit we obtain ri/7$ = 3, which is some-
what below the region (4.18) of small fluctuations.
Vfe conclude that fluctuation effects are important
for KCP, although they do not have a drastic ef-
fect, as is evident from the comparison of mean-
field theory with experiment in Fig. 5.

Let us now evaluate the fluctuation effect on the
specific heat. The thermodynamic potential due
to interactions is given within RPA by

s' n'~' tan-'[2/In(T/T, ')]~'
sT' ' 8q' [-',in(T/T', )] '

There are other terms in the result for C, which
are smooth functions of temperature. Usually
smooth backgrounds are subtracted from the ex-
perimental results so that (5.7) should apply.

The result (5.7) diverges at Tp, however, very
near Tp, renormalization effects are important and
(5.7) is not valid.

Specific-heat measurements have been carried
out on TTF-TCNQ" showing a rise from T = 60'K
up to a peak at 53'K. Entropy conservation gives"
T~ = 55'K. Equation (5.7) gives a reasonable fit
somewhat above 55'K with g = 0.1 and ~ =0.025
(Tz, -—0.2 eV). However, the experimental re-
sults for C, are not exact due to the uncertainty
in the background subtraction.

Some more insight into our case can be made by
the free-energy expansion

E(b, , T}=-TQln(l+e s&~r)+ a' . (5.8)-z /r
P

The first term is the electronic free energy, and
the second is the elastic energy of the distorted
lattice. Using the dependence of E~ on 6,,"ere
obtain

E(&, T, q) =N(0)[[l./s —2I(q, T)]LB,+0.026a'/T') .

((5 8)

Finally, using (4.3) and (2.8) we have

2 vE(4, T, q) = ,'N(0)
I

ln ——,
Tp sq s 2Tf T

x fq,'+ ~2'Pg (sfn' ,'gq„—
+sin'-,'aq, )] 6', +0.026~(0) +

(5.10)

We note that q is measured from the instability
wave vector qo=(n/a, w/a, 2Pz} and s=s, . The
terms involving q represent the excess energy
required to create a gap with a wave vector differ-
ent than qo. We observe that if s is independent
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of q~, then the free energy has a minimum at
q~ =0 a,nd a maximum at q~ = w/a. In order to pro-
duce a gap at q~ w 0, the coupling s, should behave
in an opposite way and compensate for the excess
energy.

The expansion (5.10) is suitable for use of the
renormalization group techniques. Thus the first
order shift in the transition temperature can be
evaluated, "and it turns out that the criterion
(4.13) is equivalent to this first-order term up to
a factor of 3, which has a small effect on our re-
sults.

An interesting feature in (5.10) is that the trans-
verse coupling is quadratic in g, which leads to
much stronger fluctuation effect than a linear de-
pendence. Alexander and Amit" have estimated
fluctuation effects based on a free-energy expan-
sion similar to (5.10). They obtain an analogous
result to (4.17), but assume that the coefficient
of q~ is measured by the interchain coupling g. If
this could be the case, the temperature shift
would be small in the region 7'~ g which is much
larger than the region in (4.18).

VI. DISCUSSION

Vp to date the only experimentally established
Peierls transition is found in KCP. X rays" and
neutron scattering" experiments have shown that
the instability is associated with the wave vector
q, =(v/a, v/a, 2P~). We discussed this instability
in Sec. V; however, additional effects due to dif-
fusion processes and lattice defects' should be
considered.

Another quasi-one-dimensional system is TTF-
TCNQ. There, pressure dependence"'8 of the
conductivity is much weaker than in KCP,"espe-
cially near the transition. Thus it is possible that
in this case we are in the region (4.18) of small
fluctuations. We obtained from the specific-heat
data in Sec. V the estimate g = 0.1 for v~ =0.025,
which is indeed within the region (4.18). Low-
temperature properties" show a direct gap of
4 =90 K which is consistent with the mean-field
result. Also, microwave measurements above
the transition give q =0.0'I [see Fig. 15, and Eq.
(21) of Ref. 38]. TTF-TCNQ has a sharp metal to
insulator transition near 58'K, and together with
the specific-heat data, a second-order phase
transition is well established. Thus it is possible
that we have here a Peierls transition, but it is
not certain. X-ray measurements" could not show
a static distortion in the lattice. Since the dis-
tortion amplitude is proportional to 1/&u„ it is
possible that a high-frequency phonon is respon-
sible for the instability, and the distortion is too
small to be observed. (For the C= N bond vibra-

tion the distortion is -0.001 A compared to - 0.01 A
for the acoustic phonon. ) Reflectivity measure-
ments" showed a broad minimum around 1500
cm ' which was related to the optical phonon of
the C =- N band at 2100 cm '. ' Such a high-fre-
quency phonon, when leading to a Peierls insta-
bility, has in addition to the soft mode, a hi.gh-
frequency branch somewhat below ~,." Thus if
the C-=N vibration is responsible for the Peierls
transition in TTF-TCNQ, its high-frequency
branch is shown to cause exactly the observed dip
in the ref lectivity. " Actually in the x-ray study
at 100'K, only the C=Nbond was observed to
change compared to the room-temperature data.

Conductivity measurements show a peak just
above the metal to insulator transition, which has
typically"'4' the value v/oRr=20 —50. This peak
was attributed to BCS-type fluctuations xi to
Frohlich-type fluctuations, "or even not con-
nected at all with the transition near 58 K." In a
separate work, 4' we investigate the interchain
coupling effect on the Frohlich-type supercon-
ductivity fluctuations. We show that the high-fre-
quency phonon model with g = 0.1 gives a better
agreement with experiment.

In conclusion, a Peierls instability due to the
C =-N bond vibration is consistent with experi-
ments on TTF-TCNQ, but further experiments
are needed to establish this and the meaning of
the conductivity peak.

Still another quasi-one-dimensional system is
the 815 intermetallic compounds. ' The theory of
Gor'kov4' describes the possible mar tenisitic
transformation in the A15 as a Peierls transition.
In this case g may be large and even comparable
with the critical g, for the o' band. '

We proceed with a comment on the possibility
of BCS-type superconductivity, and its relation-
ship with the Peierls instability. The one-dimen-
sional problem has been considered recently, ' '~'

however the superconducting transition is not re-
stricted to one-dimensional systems, "as is the
Peierls transition. Thus, at least for ri &rl, [Eq.
(3.4)], only the BCS transition occurs. In fact,
if we are close enough to g, from above, there is
no Peierls instability, but a significant Kohn
anomaly is still present. The Kohn anomaly leads
to softer phonons, and for ~0» T„this wi1.11ead
to higher transition temperatures T, ." For the
&15, we may have g -p„and so it is possible
that the high T, of the A15 compounds is due in
part to such a mechanism.

To summarize, our model for the band structure
classifies the systems capable of undergoing a
Peierls transition to three qualitatively different
regimes:

(i) qs4r~ Mean-field theory is not valid,
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strong fluctuation effects. [Unless other types of
interchain couplings are important, e.g. , Coulomb
effects, and s, of Eq. (2.2) has a strong dependence
on gg. ]

(ii) 4T~&q«1 [or Eq. (4.18)]: one-dimensional
mean-field theory is effectively valid, T~(q) can
be approximated by Tg(0} (i.e., calculated by as-
suming the system to be one dimensional, but
neglecting fluctuations).

(iii) q =1: Peierls transition is suppressed.
TTF-TCNQ seemstobelongtoregionii, and KCP

may be a borderline case between regions i and
ii. The A15's seem to be a borderline case be-
tween regions ii and iii, at least for the O-band.

If a high T, is associated with the one-dimen-
sional electron-phonon interaction, and since
fluctuations reduce transition temperatures (which
is undersirable}, it seems that the search for the
possibility of high T„boththeoretically and ex-
perimentally, should be concentrated in the re-
gion ii.
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APPENDIX

We evaluate (3.3) using an inclined step func-
tion for n~. The dP,' integration is the same as
in the one-dimensional case [Eq. (6.3) of Ref. 15];
thus

I(x, ~) = (-1/67)(a/2~)'[~ J(x+~) -J(x —~)]+-,'(1+ im),

+sinaP„, we obtain

l
J (a) =16 du K'(u)(a+ —,'ug'u') in~a+ ~ay'u'~

0

K'(u) is a, complete elliptic function of the first
kind, and we use the expansion

K'(u) = 1n4 —lnu + O(u' lnu) .
The integral with the lnu term is approximately
proportional to the integral multiplying the ln4
term. The approximation is good for small g, and
thus is consistent with our evaluation which is to
lowest order in g.

If the proportionality constant is C, the result
contains a factor (ln4+ C). We fix C so that for
q-0, we have the one-dimensional result; thus
C =~a —ln4=1.08. In the other limit, +-0, eval-
uation of J'(0) shows that C is indeed close to 1 for
small g. For n = 1, we obtain C(q =0.1) = 1.3 and
C(q = 0.01)=1.2. Thus the final result is (apart
from an additive constant which does not depend
on a)

J(a)=4~' (a+~op')lnla+ '~n'I -~3-a

2a ~~2 1+(-2a/op') '—
egg' 1 —(-2a/eq')"~'

(A4)

For a/u &0, the second "ln" should be replaced by
2 tan '(aq'/2a)~'.

Evaluation of (3.5) proceeds on the same lines:
(A1}is valid with the definition

where v = T/e„x=q, /2P~, and

f)'/a

J (a) = ) dP„dP,[a+—,
' ug'(cosap„+cosap„)']

-m/a

(Al) J(a) = dp„dp,[a ——,'q(cosap„+cosap, )]

xln~a ——,'q(cosap„+cosap, )I .

(A5)

xln~a+ —,
' oq'(cosap„+cosap, )'~ .

(A2)

Transforming to u =cos+P„+cosaP„,and v =sinaP„

Using the same constant C, we obtain

J(a) = —(2w'/q)[(a -g} ln(a —q( -2a' ln)a)+2'].
(A6)
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