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The phonon frequencies of paramagnetic chromium are calculated using the dielectic function which takes into
account the local-field corrections. The Animalu-Harrison model pseudopotentials are used for the bare-ion
potential and the results are compared with experimental values. The agreement is reasonable except in the
transverse branches in the [110] direction. Some anomalies in the phonon dispersion relations are also

found.

I. INTRODUCTION

The lattice-dynamical studies of simple metals™°
are based on the linear screening of the electron-
ion interaction in which only the diagonal part of
the dielectric matrix €(q+G, q+G’), where q is
the phonon wave vector, and G, G’ are reciprocal-
lattice vectors, is used to screen the pseudopo-
tential. But in transition metals, the conduction
electrons have both free-electron character (s or
p) and localized character (d), which is evident
from electronic-band-structure calculations.!!*!?2
All the d subbands are also not completely filled.
Therefore, the dielectric function does not reduce
to a scalar, but it contains both diagonal and non-
diagonal contributions and the latter become re-
sponsible for the local-field corrections.

Sinha'® proposed a factorization ansatz for the
polarizability of insulators and semiconductors,
and Hayashi and Shimizu'* have formulated a di-
electric function for transition metals which takes
into account local-field corrections, and have
applied it to study the effective potential and in-
duced charge density due to an impurity in fer-
romagnetic nickel. A similar formal theory of
dielectric screening for normal insulators and
transition-metal compounds was also studied by
Sham.'®

Hanke'®''” calculated the phonon frequencies of
paramagnetic nickel and palladium using the non-

-

interacting-band model'® for the dielectric screen-
ing, but he neglected the interband parts of the
dielectric matrix which were found to be relatively
small. In the preceding paper'® (hereafter re-
ferred to as Paper I), we explicitly calculated the
dielectric matrix for paramagnetic chromium
using the formulation of our earlier paper!®?
(hereafter referred to as II). We found that in

this case, the nondiagonal part is comparable
with the diagonal part for large values of the wave
vector. Therefore, in this paper we plan to in-
vestigate the phonon spectrum of paramagnetic
chromium taking into account the complete di-
electric function. The scheme of the paper is as
follows: The inversion of the dielectric matrix
and the expression for the dynamical matrix are
given in Secs. II and III, respectively. The cal-
culations and results are presented in Sec. IV and
discussed in Sec. V.

II. INVERSION OF THE DIELECTRIC MATRIX

The dielectric matrix in the random-phase ap-
proximation can be written as
q+G").
(1)

Here, v(a +@) is the effective electron-electron
interaction potential, and x°(q +G, q +G’) is the
generalized susceptibility matrix given by
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where k and k' are Bloch wave vectors, and
k’ =k +q lies in the first Brillouin zone. [ and m
are orbital and magnetic quantum numbers and -
also act as band indices. 7,,(k) is the Fermi

(2

occupation probability function. ¥;,(K) is the wave
function for the Bloch state kK with energy E,M(E).
The spin index o is omitted for the paramagnetic
phase and is included in 7, (k). We call thefactor
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in parentheses in Eq. (2) the band structure part,
and the remaining term involving the matrix ele-
ments, the overlap part of the dielectric matrix.

In our isotropic-band model for chromium, we
found that the s band and three d subbands are
partially filled. All the intraband and interband
transitions between the electrons in the s and d
subbands (as described in Paper I) will take place
to adjust themselves to the thermal motion of the
ions, and therefore, the dielectric matrix will
consist of both diagonal and nondiagonal parts,
the latter being a consequence of the localized
nature of the d electrons. One way to have com-
plete inversion of such a dielectric matrix is to
apply the factorization ansatz developed by Sinha
et al.*°?! for insulators and semiconductors and,
later on, extended to metals (unpublished work)
where intraband transitions also take part in
screening. The main philosophy of the factor-
ization ansatz is to separate the band structure
and overlap parts of the intraband and interband
contributions. This reduces the infinite-dimen-
sional dielectric matrix into a finite-dimensional
one, and therefore, inversion becomes possible.

If we treat the s electrons in the free-electron
approximation and the d electrons in the tight-
binding approximation (as done in Paper II), then
the intraband part due to the s electrons reduces
to the Lindhard function, and the intraband part
of d electrons in the partially filled d subbands
reduces to a separable form,

- >

Edd-intra(a +G’ q +6’)

a E)ZAdm,dm q"'G)f(Q) dm,dm(a"'a,)y

(3)
where
NQ
f(q -é_z_-znmdm dem

4k, = 1ql? I 2kpyn+ 1l
x| 14+ —Edm — In Fdm 3 >.
< 4k1r¢m,q1 2Rpgm— lql

(4)

Ay ,dm(a+§) are the same functions as defined
in Paper II. kg;,, and m,,, are the Fermi momen-
tum and the effective mass for the electrons in
the mth parabolic d subband. , is the atomic
volume, e is the electronic charge, and N is the
number of unit cells in the crystal. It has been
pointed out in Paper I that in the isotropic-d-band
model, the m component of d wave functions mu-
tually hybridize, and therefore, the assignment
of a magnetic quantum number . to a particular
d subband does not ramain valid. Therefore, we
number the d subbands from 1 to 5 in ascending

order of energy. We calculate the contribution
from each d subband for all the five m components
and average them with equal weight. Such an
average has also been done by Hanke!” and Brown.??
Therefore,

Au,u(&*'a) =1, (E+G.), (5)
where
L@+8)= [ 8,3+EIrRLIdr ®)

Here R,; (v) is the 3d radial wave function for
paramagnetic chromium and has the same ana-
lytical expression as in Paper II, and d,(|q+G|7)
is the spherical Bessel function of zero order.
The subscript ¢ denotes the labeling of d subbands.
Therefore, the intraband contribution can be writ-
ten

- >

€40 -imra @ +G, q+§')

where
A@+G)=1,q+G) (8)

and
—NQ
f(Q)-‘ 27'.2 2 Zmdz del

[q/2 pgi + 10l
1. e = 1al® | 2kpa+ 9] >
( " dkpg; |l IZdei lal

9)

The interband part contains three contributions
due to (i) transitions between different d subbands,
(ii) transitions from d subbands to the s band,
and (iii) transitions from the s band to partially
filled d subbands. In our formulation contribution-
(i) is in separable form, but the other two are not
because of the nonorthogonality of s and d wave
functions. If we follow Sinha’s factorization ansatz
and represent the total interband part in some
simple separable functional form, we can write

etqtal—inter (a + _G” a. + E;’,)
= —v(g+G) B(q+G)F@Q) B*(q+G"). (10)

Here F(q) and B(q +G) are the functions represent-
ing the band-structure and overlap-integral parts
of the total interband part of the dielectric func-
tion. These functions can be obtained by actual
calculations of the total interband part. There-
fore, the total dielectric function can be written
as
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-

€@+G,q+G") = ¢(q+G)ozz
+ €dti-intra\(q +G’ a +§I)

+€ (ﬁ+§,ﬁ+§'). (11)

total—inter

Here the first term arises from purely diagonal
contributions which include the free-electron part
of the intraband contribution. The second and
third terms in Eq. (11) include both the diagonal
and the nondiagonal terms. Using Egs. (7) and

1G+6,3+8) = o (000 - Zh (4@ OL @ G 8 + BE-DL@AG+E)
~ B +3)S @ B*@+8") -A<a+a>T<a>A*<a+a']) . )
where }:A*< ”(q*G’)A@ 3), (19)
L@ = - EQX*@T@ = - SO X*@C@), (14) B D - v )
S@=[F@ - V@ - X*@C@ X@) ==
. — . . . d
- E@X*@T@X@ E@ +EQ), s " =1/ 0@ on
T@) =1/ @) - V@) - X@) EQ) X*@) ™ - ! fff :_(1;. ot but steaieht
e o . e proof for Eq. is lengthy but straight-
= C(Q) X(@)S@)X*@)C(@) +C(@), (16) forward, therefore, it is not given here.
V@)= 254G - G)”((‘“G)) BG+3®, () The density respons:fitfif 15 defined.
XG+G,§+ ) =G G, (g
-. u(q+G)
X@)= ZA*( GG Bar +G), (18) Using Eq. (13) in Eq. (22), it simplifies as
e s 1 1 . B@+G) .- BXG+G") A@G+G) ..~ A*G+G")
X@+G,3+G)= - v(a+é’)<1‘eo(a+6>) Mg *(eo(a+6>s(‘” @+0) @0 [ DeGie
A@G+G) o BHG+T) _ B@+G) o A*@+E)
“ @0 L9 R T oG 1@ eo(a+c”;'))'
(23)

Thus the electron density response splits up into
two parts. The first is a purely diagonal part
analogous to that in the case of simple metals.
The second part is due to the polarization of d
electrons and corresponds to a set of dipole and
monopole distributions centered on the atomic
sites. The dipoles and monopoles interact via

the screened electron-electron potential

(@ +G)/€,(q +G) rather than the bare electron-
electron potential v(§+(_§). Therefore, the dipoles
and monopoles have effective form factors
B@G+G)/¢,(d+G) and A(G +G)/¢,(§ +G), respective-
ly. Looking into Egs. (17) and (19), we can regard

(10) in Eq. (11), the total dielectric matrix can
be written

e(a +§,a+f}") = eo(a +§)655,
-v@+G)A@+G) f@A*G+G)
-v(@+G) B(@ +G) F(Q) B*@q +G"). (12)

After some mathematical manipulation, the in-
verse of the dielectric matrix can be written

—

V(@) and U(Q) as the coupling coefficients between
dipolar and monopolar distributions which interact
via the screened electron-electron interaction
0 +G)/ey(+G). Therefore, if the factorization
ansatz scheme is extended to d-band metals where
intraband and interband transitions are important,
the novel feature of monopole and dipole distribu-
tions is introduced in the theory. However, it is
to be noted that these are not point dipoles and
monopoles.

If we switch off the interband transitions [i.e
B +G)=0 and F({)=0] Eq. (13) reduces to

*y
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PR 1 v +G) A@G+G)A*G+G")
€eHq+G,q+G)= —= <**:+ S X =t e e 24
@+G,q+G) &@+G)\ 7 @+G) T FH@) -DelA@+G)® v(@+G)/€@ +G)> (24)
which is exactly the same expression as that used D ,5@) =D «8@) =D ,5(0), (26)
by Hanke.!” If we consider the case of simple
metals, the terms in large parentheses in Eq. Where
(23) vanish and the density response function be- D @)
comes scalar. For insulators €,({+G)=1 and 2 2 . oz e
intraband transitions are also absent. Therefore, = 41Z’e (@+G)o(q+G)s

we get the dipolar model of screening for ideal
insulators. In the case of transition metals, the
screening matrix €(q +5, q+G’) consists of both
the intraband and interband parts, and therefore,
all the terms in Eq. (23) are retained, which yields
a model similar to the breathing-shell model for
insulators.

III. LATTICE DYNAMICS

If the adiabatic and harmonic approximations
are valid, the phonon frequencies w;(g) for wave
vector q and polarization branch j, in the case of
a monoatomic lattice are given by the solution of
the determinantal equation,

detID aB(a) -M (.U? (6)5 aﬂl = O’ (25)

where D 3(q) are the elements of the dynamical
matrix, Mis the mass of the ion, and @, B are
the Cartesian components. For a system of non-
interacting electrons and nuclei,'®'23:24 the dy-
namical matrix can be written

D@ 4:7rZ2 2 Z (q+G)a(q+G)

SO €@ +G,q+&
90 E,G’ Iq"‘G IZ (q ’q )

(27)
and Z is the ionicity. Thus we find that the dy-
namical matrix is completely determined by the

inverse dielectric matrix € 14 +G,3+G’). Eq.
(27) can be written

-  4nZ%e? G+3)G+G)s
D@ - )
(@ = =5 LT

-

+N 2, @+8)W@+E)x@G+8,5+8)

xW(@+G')(G+G")s, (28)
where the Fourier transform of the electron-ion
potential

W@ +G)=

Substituting the value of the inverse dielectric
matrix from Eq. (13) into Eq. (27), the dynamical
matrix is written

- 412 /NQ,|q +G|2. (29)

. 4nZ2¢° Z G +G)

3+G) 1
[q+G|2 B(eo(§+§) - 1>

|q+GI? 0 F
+N(ZG:(q+G B(q+c)%—;) <Z(q+G B*(q+G)ng:_g:;>
¥ Zar0.a@+0) LD 1@ (a0 a6 EEG
-N( L @+0).5G 3+6) 249 1@(Z (a+6'>BA*(a+6'>%%:(%))
-N(Z@+8).46 )%) L*(ﬁ)@ @+8s E§+g 3. (30)

In this derivation, the overlapping between nearest
neighbors is completely neglected. This is justi-
fied in transition metals like chromium.?® The

~ first term in the above equation denotes the usual
ion-ion Coulomb interaction contribution to the
dynamical matrix. The second term represents
the simple-metal-like electron-ion contribution

where only the scalar screening appears. The
third and the fourth terms represent the contri-
bution to the dynamical matrix due to dipole-dipole
and monopole-monopole interactions, respectively.
The last two terms are contributions due to dipole-
monopole and monopole-dipole interactions. As a
particular case, if we switch off the interband
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transitions, we get for the dynamical matrix the
same expression that was given by Hanke!” in
which only intraband transitions are taken into
account.

1V. CALCULATIONS AND RESULTS

For the calculation of phonon frequencies, it
is necessary to separate the core from the con-
duction electrons. In the isotropic-energy-band
calculations, it is found that the two d subbands
are completely filled (Paper I); therefore, we
assume that the core is limited to the 34* con-
figuration and that there are two conduction elec-
trons per atom. In Toya’s® self-consistent-field
method, the solution of Eq. (25) along the principal
symmetry directions can be

W =w? +w? +w?, (31)

where w,, w,, and w, are the frequencies due to
direct ion-ion interaction, core-core overlap,
and ion-electron interactions, respectively. We
have taken for w, the values, tabulated by Ani-
malu®® for bce metals, along the principal sym-
metry directions [ 100], [110], and [111], in
units of the plasma frequency w,;. Animalu®®
pointed out, by calculating the ratio of the core
radius to the atomic-sphere radius, that the core-
core overlap for transition metals is very small,
and therefore, we assume w, to be negligible for
paramagnetic chromium. Now our main interest
is to calculate the ion-electron-ion contribution to
phonon frequencies.

In Eq. (30), all the terms except the first con-
tribute towards the ion-electron-ion part of pho-
non frequencies. In Paper II, the purely diagonal
part in the free-electron approximation is given
6@ +3)=1+0( +G) “rakeaa

5 <1+4k§s-la+§lz I 2kp, + 1§ +G| )

4k, [4+G1 | 2kp,— [ +G|
(32)
where
V@G- gaqegn 1= @O @3

Here kp; and m, are the Fermi momentum and

the effective mass for the s electrons, respective-
ly. The exchange and correlation corrections

are taken into account through the factor £, (4 +G)
in the expression for the electron-electron inter-
action given by Eq. (33). We have taken for the

s electrons the £, (4 +G) given by Singwi e/ al.,?"

£ @+@) =A[1 - exp(ﬂa—ﬂ)} (34)

2
sz

where the parameters A and B depend upon the
inter-electronic distance of s electrons.

The intraband contribution to the dielectric func-
tion due to d electrons is represented by Eq. (7)
which is evidently in separable form in our model
formalism. The exchange and correlation cor-
rections given in Eq. (34) are not applied tod
electrons because they are valid for free electrons,
while the d electrons are partially localized.?®
For d electrons we follow Moriarty®® and use the
Lindgren®® exchange correction in the modified
Slater exchange form for which

50,13+G|* . =
> o 0% ig+al 2< 1612
fe@+G) = T6kz, » o7 dnlG+GIP< 16k,

, for 5a,|q+G|2=16k%,
(35)

Here a, is a parameter for the 3d electrons of
chromium tabulated by Lindgren et al.,*® and kg4
is the average Fermi momentum for the partially
filled d subbands. Equation (35) also includes the
core~-conduction exchange, while the correlations
for d electrons which are yet not established, are
completely neglected. The core-conduction ex-
change for s electrons which is very small is also
neglected. In the interband part of the dielectric
function, we find that the major contribution
arises from d-d and d-s parts where d electrons
are mobile. Therefore, we use the fxc(§+(—§) given
by Eq. (35) for the interband part also, where
kpq is taken as the average of the Fermi momenta
of all the active d subbands.

The functions B(§+G) and F(q) in the expression
for the total interband part are given by

Aq+Gl2exp(-p|G+G| +0|q+G1?),
for |G+G|< 5.0,

B(G+G)=
Alexp(- |§+G|*®), for |§+G|>5.0,
(36)
and
F(g)
4r% - 1q]? .Zk 14| )
=NB,m kp, 1+ ——E— 1 s 124 .
' S'Fs< 4szqu " Zsz"qu
(37)

The functional form of F(q) is the same as for
free electrons. A, u, 6, A], and B; are para-
meters which have been calculated by fitting the
actual total interband contribution (Paper I) in the
above functional form by the least-squares method
with an accuracy of 10%. The parameters are
tabulated in Table I(a). The above functional form
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TABLE I(a). Parameters for the interband part of
the dielectric function.

A U [

10.0 2.022 38 0.186 74 12.8613 5.0

gives the correct behavior of the susceptibility
due to the interband contribution. It is zero at

| §+G|=0 and also becomes zero as |§+G| be-
comes very large.

In the core region, the conduction-electron wave
function has oscillatory behavior. The mutual
orthogonality of the wave functions of the s and
d conduction electrons and their orthogonality to
the core states gives a repulsive contribution
which largely cancels the attractive Coulomb po-
tential in the core region. In the present scheme,
the s and d wave functions are not orthogonal;
therefore, the bare-ion potential calculated from
first principles does not reproduce the real pho-
non frequencies.!® To overcome this difficulty,
we replace the bare-electron-ion potential by a
local pseudopotential. However, it has been shown
by Sham® that the structure of Eq. (28) is still
preserved. We adopt the Harrison’s local pseudo-
potential,

w(d +G)

lq+G|2
4nZé?

v—BI-—
(1+ Iq+G|27i)2>'
(38)

__4nzée (_
T NQ,lq+G|?
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Here the first term represents the Coulomb part
due to the ionic charge, while the second term
describes in a phenomenological way the repulsive
part of the potential. The parameter 3’ gives

the strength of the repulsive potential, and 7, is
the decay radius in units of the Bohr radius. The
parameters are determined by matching the pho-
non frequencies with the experimental values at
two points.

Using Eq. (38), in Eq. (30) the phonon frequen-
cies for paramagnetic chromium are calculated
along the three principal symmetry directions
[100], [110], and [111]. It has been found that
the sum converges for 369 reciprocal-lattice
vectors. The parameters 8’ and 7. are obtained
by matching the phonon frequencies in the longitu-
dinal branch in the [110] direction at H and at
q=(0.1, 0.1, 0.0) in reduced units. The para-
meters 8’ and 7, are found to be 7.5 and 0.25,
respectively. The calculations are extended along
all the three principal symmetry directions and
these results are shown in Fig. 1 by dashed lines.

Recently, Animalu®® devised a transition-metal
model potential by examining the spectroscopic
data for a large number of 3d-, 4d-, and 5d- series
elements in the Periodic Table. In this model
potential, the parameter A,=(E -E,)™" is strongly
dependent on the energy, gives s-d hybridization,
and provides evidence for the resonance model
of transition-metal d bands in the pseudopotential
framework.*® We have also calculated the phonon
frequencies of paramagnetic chromium using the
Animalu model pseudopotential, in conjunction
with our dielectric function. Because here the
ionic charge Z =2 (according to our isotropic
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FIG.1. Phonon frequen-
cies of paramagnetic chrom-
e ium along the three princi-
pal symmetry directions
= [100]1, [110], and [111]. The
solid and the open circles
show experimental values
e for the longitudinal and the
transverse branches, re-

\ spectively. The triangles
N\ ° show the T; branch in the

\ [110] direction. The solid
lines show the phonon fre-
quencies due to the Animalu
transition-metal model po-
tential and the dashed lines
show the phonon frequencies

Rl DT T R —

P

L

0.5 1.0

due to Harrison model po-
tential.

o
(7]

REDUCED WAVE VECTOR 9
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model) for paramagnetic chromium, and we are
using a different dielectric function, the Animalu
potential parameters are renormalized to get
agreement of the phonon frequencies with experi-
mental values. In this calculation, we have taken
the contribution due to s-d hybridization, rep-
resented by the parameters A,, to be the same

as taken by Animalu,?® and varied A, A,, and

R, sothatA, is as near to Z/R,, as possible,

as discussed by Animalu.* The electronic charge
is taken to be unity (in atomic units) and not the
effective electron charge because orthogonalization
of the core- and conduction-electron wave functions
is not explicitly included in our calculation. The
parameters are obtained by matching the phonon
frequencies in the longitudinal branch of the [ 110]
direction at the two points mentioned in the case

of the Harrison model potential. These parameters
are tabulated in Table I(b). The phonon frequencies
obtained by using the Animalu potential are also
shown in Fig. 1 by solid lines. The theoretical
results are compared with the experimental values
of phonon frequencies taken from Muhlestein

et al.** The overall agreement with experimental
values is reasonable except for the transverse
branches in the [ 110] direction.

V. DISCUSSION

It was found in Paper I that the local-field cor-
rections are important in the dielectric screening
of paramagnetic chromium. Because lattice dy-
namics are intimately connected with the nature
of screening, it is expected that the local-field
corrections contribute appreciably towards the
phonon spectrum. In the present calculations for
chromium, it is found that in the longitudinal
branches, the maximum contribution of these
corrections is 15%, which cannot be neglected
in any case. But in transverse branches the con-
tribution is very small. This is because in fcc
and bce crystals the diagonal contribution cancels
the nondiagonal contribution in transverse
branches, and therefore, the transverse branches
are not renormalized by the d-type contribution
to the dynamical matrix. But in longitudinal
branches, the diagonal and the nondiagonal con-
tributions sum up to a maximum of 15%, and
therefore, local-field corrections contribute most
in the direction of propagation.

There are various anomalies in the phonon
spectra of bee transition metals. The Fermi sur-
face of chromium®* shows electron and hole pockets
and electron and hole surfaces near some sym-
metry points, the existence of which has been
established by de Hass—Van Alphen studies®® on
pure chromium. The anomalies may occur either

32,33

TABLE I(b). Parameters of the Animalu transition-
metal model pseudopotential. All the parameters are
in atomic units except | E,| which is in rydbergs.

Ag Ay Ay Ry £
1.6 1.08 1.40 1.70 80.6
z m* R, O off |E.|
2.0 1.0 1.588 0.0 0.102

at the extremal portions of the Fermi surface
(Kohn anomalies) or at wave vectors which sepa-
rate the nesting portions of the Fermi surface of

a crystal. Anomalies like softening of longitudinal
branches (Kohn anomalies), which are also found
experimentally, appear in our calculation as shown
in Fig. 1. In the longitudinal branch in the [ 100]
direction, the softening occurs at ¢=0.7158 (atomic
units), which is equal to Fermi momentum of the

s band and the d subband which contributes most

to the dielectric matrix. The softening along the
longitudinal branch in the [ 111] direction occurs
at ¢=0.4387 (in atomic units). The softening of
longitudinal branches appears in our calculation
approximately at the same value of the wave vector
q at which it is experimentally observed. A dip,

in the longitudinal branch in the [ 111] direction,

is also observed at ¢=0.6928, but in our calcu-
lations it is more pronounced and is found at
g=0.8082. One of the reasons why all the anomal-
ies do not appear in our calculation is that we have
used a spherical Fermi surface for s and d elec-
trons which may not exhibit explicitly all the
details of the Fermi surface.

It has been found in our calculations that the
contribution due to the interband part is relatively
small as compared to that of the intraband part.
In the [110] and [ 111] directions, longitudinal
branches show good agreement with experimental
values but in the [ 100] direction the longitudinal
branch is lower by 15% than the experimental
values. The transverse branches along the [100]
and [ 111] directions have lower values approxi-
mately by 18%, but in the [ 110] direction agree-
ment is not good. From Fig. 1 we see that both
model potentials give approximately the same
values along all the polarization branches. This
is because of the parametrized nature of the
pseudopotentials.

We conclude our paper by saying that ours is the
first attempt to apply a screened breathing-shell
model to calculate the phonon frequencies of a
bcce transition metal. The agreement between
theoretical and experimental values can further
be improved if we properly take into account the
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local-field corrections and s-d hybridization,
but this may lead to an enormous amount of com-
putations.
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