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Noninteracting-band model for dielectric screening and local-field corrections in bcc transition
metals: Application to paramagnetic chromium
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An isotropic-noninteracting-band model is constructed using the energy eigenvalues calculated by Gupta and
Sinha along the three principal symmetry directions [100], [110], [111]and along the three off-
symmetry directions [310], [311],and [221]. It is found that three d subbands and the s band are
partially filled and two d subbands are completely filled. The numbers of electrons per atom are assigned to
the partially filled d subbands in the ratio of the volume occupied by them. The contributions to the dielectric
matrix e(q+6, q+Px'), which arise because of the intraband and interband transitions, are evaluated explicitly
using the free-electron approximation for the electrons in the s band, and a simple tight-binding scheme for
the =lectrons in the d subbands. The diagonal part of the dielectric function is compared with the detailed
calculat&&ns of Gupta and Sinha. The anisotropy of the dielectric function is found to be small. The
nondiagonal part of the dielectric function, which gives rise to local-field corrections, is found to be larger
than the diagonal part for large values of the wave vector.

I. INTRODUCTION II. MODEL BAND STRUCTURE

The quantum-mechanical treatment of the frequen-
cy and the wave-number-dependent dielectric func-
tion was given by Nozidres and Pines' and by
Ehrenreich and Cohen. ' These authors have given
the explicit expression for the longitudinal com-
ponent of the dielectric tensor, and evaluated in
the free-electron approximation. Adler' extended
the formalism for the full dielectric tensor and
also included the local-field effects which he eval-
uated for the cubic insulating solid. The formal
microscopic theory of dielectric screening was
also studied by Sham for transition-metal com-
pounds and by Shimizu and Hayashi' for transition
metals.

Earlier, one of us studied the diagonal part of
the dielectric matrix for the fcc transition-metal
paramagnetic nickel in the noninteracting-band
scheme for s and d conduction electrons' (here-
after this paper is referred to as I) and used this
dielectric function to calculate the phonon frequen-
cies.' The scheme was further extended for noble
metals. ' Very recently, we studied the dielectric
function for ferromagnetic nickel' (hereafter this
paper is referred to as II), in the noninteracting-
spin band model where the calculations are also
extended for the nondiagonal part of the dielectric
matrix which gives rise to local-field corrections.
In this papaer, the noninteracting-band scheme is
extended for bcc transition metals and applied to
paramagnetic chromium. The noninteracting-band
model is discussed in Sec. II. The calculations
and results are given in Sec. III, and the results
are discussed in Sec. IV.

Many detailed calculations of the band structure
of paramagnetic chromium exist in the litera-
ture. ' ' We use the detailed augmented-plane-
wave (APW) calculations of Gupta and Sinha's to
construct an isotropic-noninteracting-band model
because these authors have also calculated the
diagonal part of the dielectric matrix. We follow
a procedure similar to that adopted in paper I.
The + bands are obtained by joining I', to &„ I',
to N„and I', to P, in the [100], [110], and [ill]
directions, respectively. For d subbands, I'» is
joined to &ts in the [100] direction, I'ssi is joined
with lower N, point in the [110] direction, and I"».
is joined to I'~ in the [111]direction. The nonin-
teracting band structure along the three principal
symmetry directions is shown in Fig. 1. The plot
of d subbands looks similar to that obtained by
Asdente et al, .' using the tight-binding approxi-
mation. To make the weighted averaged isotropic
energy bands, the energy bands along the I' to
G, I' to D, and I to E directions are also included.
A plot of energy bands along these directions is
not available in the conventional band-structure
calculations. Therefore, we construct them ac-
cording to the compatibility relations. " I'» is
joined to G„G»; D„D„and Es along the [310],
[221], and [311]directions, respectively. I'». is
joined with G„G„G„D„D4,D„. and with I"i I"3
along the above off-symmetry directions, respec-
tively. The joining between the two points is done
through the parabolic -band approximation using
the eigenvalues tabulated by Gupta and Sinha. This
parabolic band structure is shown in Fig. 2.
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FIG. 1. Noninteracting band model along the three principal symmetry directions [100], [110], and [111] for paramag-
netic chromium. The dashed line shows the Fermi energy.

It is evident from Fig. 1 that the s band is par-
tially filled, while some of the d subbands are
partially filled, some are completely filled, and
some are completely empty along the different
symmetry directions. It is too lengthy to calculate
the contribution to the dielectric matrix along

different symmetry directions separately. There-
fore, we construct the isotropic-energy-band
structure. This requires the assignment of a mag-
netic quantum number m to different d subbands.
If we completely neglect hybridization and choose
the direction of k as the axis of quantization, then
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FIG. 2. Noninteracting band model along the three off-symmetry directions [310], [221], and [311] for paramagnetic
chromium. The dashed line shows the Fermi energy.
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the different d subbands with m=0, + 1, a2 will be
in ascending order of energy, and the lowest one
will hybridize with the s band. However, in the
detailed APW calculations, the s-d hybridization
and the overlapping of the atomic orbitals is taken
into consideration; therefore, such an ordering
is not maintained in the noninteracting-band model
constructed on the basis of eigenvalues obtained
from the detailed band-structure calculations.
Hence we assign a magnetic quantum number m to
different d subbands by examining the d component
of the basis functions of the representations F, P,
&, G, N, D, and F, and assume that to be valid
throughout the Brillouin zone. '4

The d components of the basis functions of the
representations F» and 8» are ~2 and F2, but
the representation 6, has only one d component,

Therefore, the subband obtained by joining
F» to +y2 through h2 is assigned with magnetic
quantum number m=2, and the band obtained by
joining F» to &» through &, is assigned m=O.
and H». have the d components F,', F, ', and F, ',
but 6, has only one component, F, '; therefore,
the subband F» to H». through b,, is assigned
m= -2, and the remaining band through 6, is doub-
ly degenerate and is assigned m=+ 1. Similarly,
in the [110]direction, the upper band from I"» to
N, is assigned m=0, and the lower band F» to N,
is assigned m= 2. The representations F», N„
and Z, have only one common d component, F2 ';
therefore, the band F» to N, through Z, is
assigned m= —1. The band obtained by joining
I'» to K, through Z, in the [110]direction is
assigned m= —2 and, the last band from F»i to
W, through Z, is assigned m = 1, according to the
splitting of the bands in the [100) direction. The
band F» to P~ is doubly degenerate with m= 0, 2

in the [111]direction. In order to keep the same
ordering of the splitted bands, we assign m= —2

to the band I'» to P4 through ~, and m = + 1 to the
band F»i to P, through A„which is doubly degen-
erate.

In the off-symmetry directions, the m assign-
ment is made using compatibility relations, and
the diagrammatic plots of energy bands of Gupta
and Sinha» and of Asdente et al." The band H»
to P~ through E, joins to the band P4 to I'» through
A, which is doubly degenerate and is assigned
m=+1. Therefore, the band I'» to E3 is assigned
m=+1. The band F» to E, is assigned m= —2.
The band I » to E3 is doubly degenerate and is
assigned m= 0, 2 as it joins to the band F» to P,
through A, having the same m values. According
to the splitting of bands in the principal symmetry
directions, the band F» to D2 is assigned with
m=0, and the band F» to Dy is assigned with m=2
in the [221] direction. The representations P„

TABLE I(a). Assignment of magnetic quantum number
m to different d subbands along the principal symmetry
directions.

[100] [110]

bg H(2
~2s'- &s-H2s'
I'2s'- &s-H2s

~2s' +2' H2s'

~4-&4
I'2s'-~2~2

I'2s'- ~3-&3

I „-A,-J,
I'2s~~ A-3~P 4

~2s' A3 P4
As P~
A( P4

0
1

-1
2

-2

D„and N, have only one d component, F, ', in
common, therefore the band F» to D, which also
joins to P~ is assigned m= —1. The representa-
tions P4, D„and N, have only one component in
common, ~, ', therefore, the band F» to D,
which joins with P4 and N,' is assigned m= 1. The
last band F»i to D4 is assigned the value m= —2.
The band B» to N, through G, is assigned m= —2
because the band F». to N, to which it joins is
assigned m= —2. Similarly, the bands H» to N2

through G, and H» to N4 through G4 are assigned
m= 1 and m=O values, respectively. Therefore,
the bands I'„ to G„ I'„ to G„and F» to G, are
assigned m= —2, 1,0, respectively. The band
from I'» to N, which also joins G, is assigned
m= —1, and therefore, the band I"» to G, (upper
point) is assigned m = —1. The last band in this
direction, F» to G„ is assigned m = 2. The m
assignment to different d subbands in different
directions is shown in Table I.

To construct the isotropic energy-band struc-
ture, we first calculate the effective masses for
the d subbands along all the six directions using
the energy eigenvalues tabulated by Gupta and
Sinha. " Using these effective masses, we cal-
culate the corresponding eigenvalues at k = y~
where y~ is the radius of the sphere whose vol-
ume is equal to the volume of the Brillouin zone.
These eigenvalues are averaged using Houston's
six-directional-average formula. " The averaged
energy eigenvalues are then used to calculate the

[310] [221] [311]

I'i2-G4
I'»i- G 3
I'2si 6 (
I (2 G(
I'2s -G

2

I'2s~ ~Dg
I'2s'-D~

D4

I'i2-F s
I'2si~F 3
I'~s'-&s
I'i2-Fe
r».-F

0
1

~1
2

TABLE I(b). Assignment of magnetic quantum number
m to different d subbands along [310], [221], and [3111
off-symmetry directions.
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effective masses and with the help of these effec-
tive masses, an isotropic-energy-band structure
is constructed which is shown in Fig. 3. Since
there will be much hybridization between different
m components in the isotropic-d-band model, we
cannot assign a particular m value to a particular
d subband. %e count the d subbands from 1 to 5

starting from the lowest d subband.
The physical parameters and the effective

masses for all the five d subbands are tabulated
in Tables 11(a) and II(b), respectively. We find
in Fig. 3 that the bandwidth for the d subbands is
of the same order of magnitude as the average
bandwidth found in the calculations of Gupta and
Sinha.

In this paper, the calculations are done for the
configuration 3d'4s' of chromium. Therefore, one
electron per atom is assigned to the s band. It is
evident from Fig. 3 that three d subbands are par-
tially filled and two d subbands are completely
filled. Each filled d subband is assigned two elec-
trons per atom, and the remaining one electron is
distributed among the partially filled d subbands
in the ratio of the volumes occupied by them. The
charge distribution of the d subbands is also given
in Table II(b).

III. DIELECTRIC FUNCTION AND LOCAL-FIELD

CORRECTIONS

According to Fig. 3, the following possible tran-
sitions will take place:

TABLE II(a). Physical parameters for paramagnetic
chromium.

Lattice parameter a& = 5.4419
(in Bohr units)

Volume of unit cell = 80.578 96
{in units of aso)

Radius of BriBouin sphere &z = 0.9024
(in units of 1/ao)

(i) from a partially filled s band to a partially
filled s band,

(ii) from filled and partially filled d subbands to
partially filled d subbands and s band,

(iii) from a partially filled s band to partially
filled d subbands.

To calculate these contributions, we use Eqs.
(5), (7), (8), (11), (12), and (15)-(18)of Paper II
by removing the spin index 0 and multiplying
these expressions by a factor of 2 for spin degen-
eracy. In order to take into account the hybridi-
zation between different m components of the d
subbands, we give equal weight to all the five m
values. Such an averaging has also been done by
Brown" and Hanke in the calculation of the
dielectric matrix for palladium. %e use the 3d
radial wave function for chromium tabulated by
Clementi' in the analytical form:

5

RM(r) = Q g(mme

I.O

0,8-

The parameters a~ and o.'& are tabulated in Table
III.

The various contributions to the diagonal part of
the dielectric function e(q+C) where q is along the
[001] direction are compared in Table IV.
e„(q+5) and e«(q+6), which arise because of

0.6-

TABLE II(b). Fermi momenta (in units of 1/ao), effec-
tive masses, and charge distribution {in units of elec-
tronic charge) in the s and&1 subbands of chromium for
the configuration 3d54s~.
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FIG. 3. Isotropic-noninteracting-band model for
paramagnetic chromium. The dashed line shows the
Fermi energy. The five d subbands are numbered from
1 to 5.

d subbands

0.9024
0.9024
0.7104
0.1889
0.1297

-7.335 74
-20.335 50

11.929 50
-5.771 10
-6.718 58

Charge

2.0
2.0
0.9757
0.0183
0.0060
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TABLE III. Parameters of 3d radiat. wave function. 250 0

a;
Clg

7.1287
3.4700

45.3415
10.3587

40.0003
5.2264

3.9975
2.3442

0.1364
1.2645

200.0- !
I

I
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I

I

I 50.0-

2.0

I.O

intra s- and d-band transitions, have the same
sign and decrease smoothly as I q+Cl increases.
e«(q+ Cl for m = m' is approximately 10 times
larger than e„(q+6). &«(q+6) for mw m' and

s~, (q+6) have the same sign. s~,(q+6) decreases
smoothly as I q+ PI increases, while e«(q+6) for
me m' and s,„(q+4) show an oscillatory nature.
The qualitative behavior of all the contributions
to the dielectric function is the same as found in
Papers I and II for paramagnetic nickel. From
Table IV it is evident that the contribution due to
response of d electrons plays a dominating role.

We also calculated the dielectric function for q
lying in the first Brillouin zone along the three
principal symmetry directions [100], [110], and

[111],but we noted the anisotropy to be small
except in the vicinity of Iq!=0. Therefore, in
Fig. 4 we plot the results for the total diagonal
part of the dielectric function for q along the Z
direction', only in Fig. 4, the total intraband
[- e„(q+5) —e«(q+5) for m=m'] and interband
[- s«(q+5) I„„,—s„(q+6) —s„(q+5)] contribu-
tions are also displayed separately. For small
values of I q+CI the magnitude of the intraband
part is larger than that of the interband part,
while the interband part is larger than the inter-
band part for large values of I q+ G!. The intra-
band part decreases faster than the interband part.
The qualitative behavior is in agreement with the
calculations of Gupta and Sinha. The total diagonal
dielectric function, obtained by using the results
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FIG. 4. e(q+G) vs Iq+ GI for paramagnetic chrom-
ium. The dot-dash line shows the dielectric function
obtained from the susceptibility function of Gupta and
Sinha (Ref. 12).

of detailed calculations of the susceptibility func-
tion of Gupta and Sinha, is also shown in Fig. 4.
The dielectric function obtained in our calcula-
tions is larger than that due to Gupta and Sinha.
This is because the parabolic-d-band approxima-
tion overestimates the d-band contribution.

The nondiagonal part of the dielectric matrix
which gives rise to local-field corrections is
shown in Fig. 5 where a relative comparison of
intraband and interband contributions is also dis-
played. %e find that the magnitude of the intra-
band part of e«(q+5, q) is much larger than the

TABLE IV. Relative magnitudes of e», e&~, s~~ ands«. Iq+@ is in Bohr units.

e„(q+0)
egg (q+ 4) e, s (q+G)

m +m' egg (q+G) e,& (@+4

0.2
0 4
0.6
0.8
1.4981
2.5092
2.9937
4.1183
5.0419

-18.6207
-4.5620
-2.3468
-1.0408
-0.1516
-0.0139
-0.0067
-0.0018
-0.0008

-209.9551
-55.2196
-21.8696
-10.1592
-1.1009
-0.0653
-0.0161
-0.0003
-0.0000

-1.0961
-0.0456
-0.0324
-0.0412
-0.2446
-0.1642
-0.1382
-0.0529
-0.0216

-1.1637
-0.4368
-0.1733
-0.0794
-0.0586
-0.0092
-0.0036
-0.0005
-0.0001

0.9922
0.3966
0.1650
0.0924

-0.0170
-0.0009
-0.0003
-0.0000
-0.0000
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magnitude of the interband part &«(q+4, q)(„. ..
&«(q+5, q), and &«(q+4, q) except for very large
values of (q+5(. On comparison with the corre-
sponding diagonal parts, we find that the local-
field corrections are larger for intermediate and
large values of (q+C( for the intraband part,
while they are much smaller for the interband
part.

We also calculated the dielectric function in-
cluding the exchange and correlation corrections
factor f„,(q+ 6) of Singwi et al. ,

"but we applied
this correction only for t„(q+P) and e„(q+4)
where the s electrons are itinerant. Such a cor-
rection is hardly applicable for d electrons. These
exchange and correlation corrections decrease
the result only by less than 5%. Therefore, to
simplify the diagram, these are not shown in the
figure.

We use the plane-wave approximation for s elec-
trons. In fact, we must use a wave function which
is orthogonal to the core as well as to d wave
functions. An orthogonalized plane wave is a
suitable choice. However, it has been found that
the orthogonalization corrections are very small. "
The parabolic-band approximation for the energy
values is fairly justified for 8 electrons, but for
tightly bound d electrons it is crucial. We have
constructed the isotropic-noninteraeting band
model by combining the bands along different
symmetry directions according to compatibility
relations. The magnetic quantum number m is
assigned on the basis of d components of the basis
functions of high-symmetry points in the Brillouin
zone. A point-to-point m assignment is impractic-
able in the present scheme. However, in the iso-
tropie-d-band model, these m components further
hybridize. We take into account this hybridiza-
tion by taking a simple average over all the m
components of the wave function. Overall, a
qualitative agreement with the calculations of
Sinha et al. lends some justification for our model
calculation.

In this paper we have calculated the dielectric
function and estimated the local-field corrections
for chromium in the paramagnetic phase for the
first time and concluded that for a bec transition
metal local-field corrections are quite large and
should be explicitly accounted for in the calcula-
tion of any physical property. An application of
this model to the calculation of the phonon fre-
quencies of paramagnetic chromium where Kohn
anomalies are present (as in other bcc transition
metals) is reported in the subsequent paper
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