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Microscopic theory of the driving force in electromigration
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Kumar and Sorbello have expressed the efFective force on an ion in electromigration in terms of a response
function, which is evaluated here by the method of quantum field theory. Formulas for the force are derived
for the jellium model and for a crystal lattice. Some physical insight can be gained by viewing previous works
on this subject through this particular perspective.

I. INTRODUCTION

%'hen a constant and uniform electric field is ap-
plied to a solid conductor, it causes a migration of
ions. The flux is determined by the mobility times
the effective driving forces acting on the ion. ' The
mobility is given by the Einstein relation in terms
of the diffusion coefficient. The effective driving
force on the ion consists not only of the direct elec-
trical force on the ion but also indirect force via
the electrons carrying the current. Much theoreti-
cal work on the effective driving force has given us
good physical understanding but not unanimity on
the subject. Sorbello has given a critical review
of all but the most recent theories.

Kumar and Sorbello' have provided an excellent
framework for the theory of the driving force by
using Kubo's theory of linear response. Their
evaluation of the response function in terms of the
memory functions is, however, of limited validity.
A more general formulation in terms of the ran-
dom-force correlation functions has been given by
Schaich. These are, unfortunately, difficult to
evaluate even in simple cases. In this paper, we
investigate the linear response by the conventional
field-theory method. 7'

%e examine a sequence of systems with increas-
ing complexity. The homogeneous electron gas
with a rigid positive background and a dilute ran-
dom distribution of impurities can be solved com-
pletely. There is no need to use the Born approxi-
mation for the electron-impurity interaction as was
done in Befs. 3 and 6. The formula for the effec-
tive force is just that of Fiks and of Huntington and
Grone. ' There is no further screening of the di-
rect force on the ion as found by Bosvieux and
Friedel. ' The modifications due to electron-elec-
tron and electron-phonon interaction are consid-
ered. In a crystal lattice, a formula is derived
for the force on the ion due to scattering by Bloch
electrons. Fik's use of crystal momentum trans-
fer including umklapp processes' is justified. In
the case of a small electron or hole Fermi surface,
it follows from our formula that the electron-wind
term has the same sign as the Hall mobility. '~

The advantages of the field-theory method of cal-

culating the driving force are that (i) The funda-
mental processes contributing to the force are cal-
culated, and when represented by Feynman dia-
grams, their physical nature is simple to interpret;
(ii) The nature of approximations used is easier to
delineate than in other methods; (iii) A general
formula involving the solution of the Landau-Boltz-
mann equation (thus including the Fermi-liquid ef-
fects) is derived, and the driving force under more
general perturbation than an electric field, such as
in a combination of electric and magnetic fields or
in a temperature gradient, can be calculated.

II. EFFECTIVE FORCE ON AN ION

Consider an ion with charge Ze at R. e denotes
the charge of a proton. The Z electrons which
come off the ion are assumed to be in the conduc-
tion band of the solid. Then the driving force on
the ion due to an electric field E is given by3

E =ZeE —(BV/BR ), (2. l)
where V is the interaction energy between this ion
and the conduction electrons.

The perturbation on the electron Hamiltonian by
the uniform electric field is most conveniently ex-
pressed in terms of the vector potential A,

H'= —t. J ~ Ae '" '" (2. 2)

E~ = ZeE~ + 1lm [X~8((d + 'LFJ )/t (d]EB, (2. 3)

where the summation over the Cartesian index P is
understood, and X z is the force-current response
function,

Xag(~+ ~li)

(2.4)

with the time dependence of the dynamical variables

where c is the speed of light, and J is the electron
current operator. The infinitesimal positive num-
ber g is used to switch on the electric field adia-
batically. When the first-order change in the elec-
tron density matrix is calculated, the driving force
on the ion from Eq. (2. 1) becomes, in the limit of
the dc field, '
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A. With dilute impurities

For simplicity, consider first the model of a
metal in which the lattice of positive ions is re-
placed by a uniform positively charged background.
There are several kinds of dilute impurities ran-
domly distributed in the system with concentration
n& and valence Z&. For the moment, neglect the
electron-electron and electron-phonon interactions.
A particular impurity at R of the j = 1 kind is sin-
gled out and its driving force is calculated. It is
evident that the response function (2.4) has to be
averaged over the distribution of all impurities ex-
cept the one under consideration.

The electron wave function is a plane wave char-
acterized by a wave vector k. If c~ and c~ denote
the annihilation and creation operators of the elec-
tron in the plane-wave state k, then the current
operator is

J = —(e/m)Qk c',c, , (3. l)

where m is the electron mass and the electron-spin

O, i

k, iEn I~ i( k, iEn+g k, iEn

k', IEn+g

k, iEn+g

—BV/BR and J'~ given in the Heisenberg represen-
tation, ' and the ensemble average taken over the
equilibrium electronic state without the electric
field. Equations (2. 3) and (2.4), first obtained by
Kumar and Sorbello, 3 form the starting point of
this paper.

III. HOMOGENEOUS ELECTRON GAS

k, iEn k, iEn pg

FIG. 2. Integral equation for the current vertex.—-x——denotes average over all impurity distribution
except the one at H.

states are understood. The potential of the impu-
rity is

n(- q) =& 'Q c~~,c, (3.3)

is the Fourier transform of the electron density
operator in the crystal of volume Q. The force
operator on the impurity is, therefore,

—8 V/BR =Q iq v (q) e ""n(- q) . (3.4)

We evaluate the response function (2.4) in powers
of the potential of the impurity under consideration.
The first-, second-, and pth-order terms are given
in Fig, 1. In this manner, the dependence on the
potential V(R) of this particular impurity ion is ex-
plicitly shown. The parts of the diagrams without
this impurity line are understood to contain the ef-
fect of all other impurities except this one. Con-
sider the electron Green's function. Since it is
averaged over the random distribution of all im-
purities except one, it regains the full translation
symmetry of the system,

V(R) =p v, (q) e-*''~n(- q), (3.2)
a

where v, (q) is the Fourier transform of the impurity
potential of the first kind, and

0, icug

(b)
G(k, iz„)= l/(iE„S, + io„/2~'-), (3.5)

k, iEn

k, iEn

kh, iE

kp I, iEn

kp, IE

h-I ~ 'En+2
K

tkI IEn+2
K

ko, IEn+g

where E„=(2n+ 1)vT, n being an integer, T being
the temperature in energy units. 0„=sgnE„, 5 = 1.
S~ is the electron energy measured from the Fermi
level and v' is the lifetime of the electron due to
impurity scattering,

(3.6a)

with

(c) 1/rq =nqm I

(2 )3, ~Tg(k, k'; —i0)
~

(3. 6b)

LEGEND: ELECTRON
0-----& IMPURITY AT R

p;---~FORCE ON IMPURITY AT R

h ELECTRIC FIELD

FIG. 1. Contributions to the force-current response
function.

where k and k' are on the Fermi surface, and fdS~i
is an integration over the Fermi surface. T, is the
T matrix of the electron scattering against an im-
purity of the jth kind.

The current vertex denoted by A in Fig. 1 con-
tains the vertex correction expressed as an inte-
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gral equation in Fig. 2. Again, it contains the ef-
fects of all impurities except the one under consid-
eration averaged over their distributions. The so-
lution for the vertex'8' ~ is of the form (- e/m)k
xA(iE„,iE„„),with

i&0, +i(o„„—a„)/2r ' (3.7)

where ~, =2lmT and 7' is the transport lifetime, giv-
en by a similar sum as Eq. (3.6a) with

I/r;=mn~
2 )ak, ~T~(k, k', —iO)

~

(1 —k k'),
(3.6)

where k and 0' denote unit vectors. The vertex
corrections around the impurity potential at R are
negligible for low-concentration impurities.

The first-order term for the response function,
depicted by Fig. 1(a), vanishes in the uniform elec-
tric field case since it selects out the zero-mo-
mentum transfer (@=0) component of the force
—BV/8& which vanishes by Eq. (3.4). The sec-
ond-order term has two contributions given by Figs. ,

l(b) and 1(c); thus

X'()'(iu, ) = (2e/m)TQ P i('& —k)
nkk'

&& ~vg(k' —k)
~

ka[G(k', iE„)—G(k', iE„„)]
&& G(k, iE„)G(k, iE„„)A(iE„,iE„„). (3.9)

The frequency sum over n is considered in detail in
the Appendix. After analytically continuing i~& to
++ i' and taking the zero-temperature and low-
frequency limit, we obtain, by Eq. (A4),

I s(sss ik) = —I!,s( )O'P i(k —0') ~ kiss(k —0')[s
kk'

X„()((k)+ i0}= —&»i(k)en' 7S» (3.11)

where v~ = k~/m is the Fermi speed, n is the total
conduction-electron density, and S~ is the "trans-
port" scattering cross section of the impurity in
the Born approximation,

with both k and k' on the Fermi surface. This is
equivalent to the results obtained by Kumar and
Sorbello' and by Schaich, ' using a different method
for evaluating the response function to second order
in the impurity potential.

It is possible to evaluate all higher-order terms.
The pth-order term, typified by Fig. 1(d), contains
p terms with different number of impurity lines on
each side of the current and force vertices. With
k~ = ko, we have

x —sgn(x) Im[G(k', x+i0)2G(k, x+ i0)~]
(0O 2%

s—[ImG(k', s0)][ImG(k, i0)]), (0, 10)

where Im stands for the imaginary part of. Both
terms on the right-hand side can be evaluated. The
first term, involving the integral over x, is of the
order I/vS~, where gz is the Fermi energy and is
thus negligible. The second term yields

P

I',]](iss,) QG(-I' Q =—s, (k, —k, , ))m n k1 ~ ~ k
h'='1'

P

&& ko(] Q [(k„—k„,) G(ko, iE„,() ' ' ' G(k„g, iE„„)G(k„, iE„) ~ ~ ~ G(kp, iE )A (iE„,iE„„)] .
h=1

(3.13)

The frequency sum over n is evaluated by Eq. (A4) for T = 0 and small (I). The first term, involving an in-
tegral over x, is negligible when 1/7 «hz, and the second term yields

I.'ss'(w+(0) =k.s{s~s/kmss')0 s Pss(k k s)),
k1 ~ ~ ~ k~ h=1

&&ko Q [(k„—k)k g)G(ko, iO) ~ ~ ~ G(k„~, iO)G(k„, —iO) G(k~, —iO)]
h=1

= i(dner5 8 && 2 '

~ P (1 —k ' k') Tq" "'(k, k' —iO) [ImG(k', —i0)]T,'"'(k', k, i0),
~ (2m

(3.14)

where k is on the Fermi surface and T,'"' is the hth-
order term in the impurity potential v1 of the T ma-
trix given by

"d k"
Tg(k, k', iE„)=v~(k —k')+

( ),

xv, (k —k")G(k", iE„)T,(k", k'; iE„) . (3.15)

Summing over all orders in the impurity poten-
tial, we obtain the same expression as in Eq.
(3.11), except that the scattering cross section of
the impurity whose driving force is being calculated
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is given by

S, =(2wvp) dS&,.(1 —k. k') ~T, (k& k'; —i0)
~ & (3.16)

with both k and k' on the Fermi surface. Substitut-
ing Eq. (3.11) into Eq. (2. 3), we obtain the driving
force

(a) (b)
FN = (Z —nvz7'S&)eE (3.17)

This is the result of Fiks9 and of Huntington and
Grone so

B. Modification due to electron-electron and
electron-phonon interaction

The inclusion of the electron-electron Coulomb
interaction is done in the same way as Langer.
Modification of the diagrams for the force-current
response function results in corresponding modifi-
cation of the formula for the scattering cross sec-
tion, Eq. (3.16). For example, three types of
modification of the response function are illustrated
in Fig. 3(a), and the corresponding modification in
the T matrix is shown in Fig. 3(c): (i) screening of
the impurity potential such that v(q) is replaced by
v(q)/&(q, 0), where e(q, 0) is the static dielectric
function of the electron gas; (ii) vertex correction
of the impurity potential; and (iii) dressing of the
electron propagator which results in a factor of
wave-function renormalization on the right-hand
side of Eq. (3.16). The effect of the impurity at R
on the dieleetrie screening, as illustrated by Fig.
3(b), should also be included in the T matrix as
shown in Fig. 3(d). We shall return to discuss the

FlG. 4. Electron-phonon dressin. g of the respon. se
function. The wavy lines denote phonons.

physical significance of these types of processes in
Sec. IIID.

The modification due to the electron-phonon in-
teraction is formally the same as that due to the
electron-electron interaction in the sense that in the
diagrams considered above, we simply have to re-
place the Coulomb line by a phonon propagator.
The scattering cross section S, has to include the
electron-phonon modification as discussed above.
Furthermore, the electron-phonon interaction con-
tributes to the electron-transport lifetime. At the
high temperature where ion diffusion is important,
(usually much higher than the Debye temperature),
the electron-phonon scattering in transport can be
treated in the elastic approximation' '" resulting in
a transport lifetime 7',~. If the interference term
between the phonon-scattering and the impurity-
scattering events [such as in Fig. 4(b)] are ne-
glected, and only the processes in Fig. 4(a) are in-
cluded, the reciprocal scattering times due to the
different sources are additive, whence Matthies-
sen's rule follows. Whether this approximation is
used or not, r in Eq. (3.17) is the total relaxation
time If Yp represents the relaxation time without
the impurities of type 1, we have

-1 -1—7p = syvpSy (3.16)

provided that S, represents the scattering cross
section by an impurity of type 1, including the in-
terference effects of phonons and other impurity
scatte rings.

(a) (b)

0 0

--—mD
8—---

A

(c)

FIG. 3. Electron-electron interaction, denoted by
dashed lines, modifying the force-current response func-
tion.

C. Screening of the direct electrical force on the ion

Since the electric field is uniform (q = 0), there
is no electronic screening of the field and the direct
force ZeE in Eci. (2. 1) is modified only through the
electron-wind term (the second term) in Eq. (3.17).
Bosvieux and Friedel' argued that for an impurity,
the direct force is completely screened by the elec-
trons. We have shown above that this is not cor-
rect. Consider the impurity potential at R as a
function of the valence Z. The electron screening
which completely compensates the direct force
ZeE must contribute a term to the response func-
tion X &

of first order in Z. The first-order term,
Fig. 1(a), is shown to be zero. The electron-wind
term is at least O(Z ).
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Let us further examine the issue of screening by
treating the q-0 and +-0 limits of the spatial and
temporal varying external electric potential P(q, u}
x e'~' '"', producing a perturbation on the electron
system,

a' = —en( —q)y (q, ~) e '"'"' . (3.1&)

The external electric field acting on the impurity
at R is

D = —iq y (q, ~) e"". (3.ao)

1 —v(q)X„„(q, (o) = I/a(q, (o), (3.23)

where v(q) =4me /q is the Coulomb interaction be-
tween electrons. If we take the impurity potential
to be —Zv(q), the driving force to first order in
Z 1S

F ' = ZeD /e (q, (o), (3.24)

when Eq. (3.22) is substituted into Eq. (3.21) using
Eq. (3.23).

In the uniform and static-field limit, for a metal,
6 d1verges, '6 and thus the direct force of the exter-
nal field D„on the ion is completely screened out.
However, the same argument can clearly be ap-
plied to any point charge, including Bn electron in
the metal. Thus, the external field creates no cur-
rent. If we wish to maintain a current, we must
have the total electric field inside a metal to be
nonvanishing, i.e. , taking the finite field to be

E = —iq y(q, (o) e ""/a(q, (o), (3.as)

which yields again,

E'"=ZeE (3.2&}

The direct force cannot be screened by the elec-
tron gas, not considering the wind effect.

D. Residual resistivity dipoles and spatial
conductivity modulation'~

Landauer 7 h3s pointed out two physical effects
which need be considered in electromigration as
well as in conductivity when both impurity and
electron-phonon scatterings are present. It is in-
teresting to see what physical processes in the

By the same reasoning as in Sec. II, the driving
force on the ion is

E =Zea +eX (q, (o+iq)y(q, (o), (3.21)

where X is the force-density response function,
defined by Eq. (2.4) with the number density n(-q)
in place of the current J&.

To the first order in the impurity potential at R,

X'."(q ~) = - ~q.v&(- q)X.„(q, ~) e*'", (3.22)

where X„„is the density-response function of the
electron gas averaged over the impurity distribu-
tion, related to the dielectric function by

field theoretic notation correspond to these effects.
A typical process which corresponds to the residual
resistivity dipoles" is depicted by Fig. 3(b). The
part of the diagram from the point C to A. may be
regarded as a contribution to the electric field at
A. due to a charge distribution around the impurity
at R caused by the current. Alternatively, we
group the diagram from D to B as a screening of
the T matrix, described by Fig. 3(d).

Figure 4(c) is an example of the spatial-conduc-
tivity-modulation effect. ' The part from C to A
yields a spatially varying internal electric field
around the impurity at R. Electron-phonon scat-
tering in the neighborhood will be modified. We
again group such terms in the 7 matrix. In princi-
ple, we have the means to calculate these effects.
An exhaustive evaluation of such terms is, how-
ever, beyond the scope of this paper.

/go + ÃgZ (3.2V)

The rate of the momentum given to the electrons by
the electric field is —neE. The rate of momentum
given to the electrons by the phonons is —P/r, ~,
where P is the total electron momentum and v,~ is
the relaxation time due to the electron-phonon scat-
terings. In the steady state with a, current E/p, p
being the resistivity of the system including the
impurities,

P= —mE/ep . (3.2&)

The sum of the rates of momentum given to the
electrons by the electric field and by the phonons
must be equal to the rate of momentum given by the
electrons to the impurities, since in the steady
state the total rate of the electron-momentum
change must be zero. The average force on an
impurity due to the electrons is, therefore,

(-neE — /Pv', ~)/ , =n—(n —nopo/p)eE/n, , (3.29)

where po=m/noe 7,~ is the resistivity of the pure
system. Thus, the total force on the impurity is

E. Conservation of momentum

For impurities in a homogeneous electron gas,
there is a momentum-conservation argument for
obtaining the driving force in terms of the resistivi-
ties due to Das and Peierls and due to Landauer. '
We reproduce a simple version of the argument
here in order to show that the result is consistent
with the microscopic derivation in the previous
sections.

Consider a pure homogeneous electron gas with
density no including the effects of electron-electron
and electron-phonon interaction. A concentration
n, of randomly distributed impurities of valence Z
is added, contributing an additional density n,Z to
the conduction electrons. The total density of the
electrons is
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E= ZeE (—n —nopolp) eEln,

= —eEno(p p—o)/nl p (s. so)

when Eq. (3.27) is used for the total density n.
Equation (3.30) is consistent with the micro-

scopic result Eq. (3.17) if Eq. (3.18) is used to
give

While 5f(k) contains the effect of all other impuri-
ties averaged over their distribution, the T matrix
contains the effect of the impurity ion at R on its
own driving force. This expression is useful in
that we do not have to go back to microscopic argu-
ments to solve for 5f(k) without sacrificing the rig-
or of the microscopic derivation.

np —nopo = n~v~S, mz'e/ 2 (s. sl) IV. EFFECTIVE FORCE IN A CRYSTAL

Huntington's expression' for the homogeneous gas
case is

r = (Z np, /—n,p) eE, (3.32)

which is consistent with Eq. (3.30) only if we take
the defect resistivity p~ to mean

p„=n,vzS, m& ne 2 (3.33)

which is not really the difference between the total
resistivity of the pure system, p —po.

F. Use of the Boltzmann equation

From Eqs. (2. 1) and (3.4), it is clear that we
need the expectation value of the electron-density
component (n(q)) to the first order in the electric
field, not averaged over the position of the impurity
ion whose driving force is being considered. Das
and Peierls used the Boltzmann equation to solve
for the electron-density distribution in the presence
of the electric field and the defect potential at R
simultaneously. As was pointed out by these auth-
ors, the method treats the impurity potential in the
semiclassical approximation, i.e. , only the small
momentum transfer of the impurity potential c,(q)
is included. The method is not valid for the impu-
rity potential which varies on the microscopic
scale.

Nevertheless, the Boltzmann equation can be used
for the current vertex part A in Fig. 1. The Bethe-
Salpeter equation in Fig. 2, which may now include
the electron-phonon scattering, can be shown to re-
duce to a Boltzmann equation or a Landau-Boltz-
mann equation ' if one wishes to include the Fer-
mi-liquid effect. '6 The linearized Boltzmann equa-
tion includes the effect of the impurities averaged
over their distribution, and the impurity potential
at R is not singled out as in Das and Peierls' treat-
ment. Solution of the Boltzmann equation yields
the deviation of the electron-distribution function
5f(k) from equilibrium. Then by the arguments in
Sec. IIIA, the electron contribution to the driving
force on an ion at R is

lim y~&((u+ io)E&/i co
td wo

3 ~ 3 f

In a regular crystal lattice, the electron's wave
function is a Bloch wave P„» for band v and wave

vector k with energy S„~. The force operator on the
impurity ion at R is

(v'k'Iw Ivk&= d'my*„. , {r)A.(r)p„(r) .
Alternatively,

—BV/BRI =0 Q i(k' —k+ G)
vkv'k' g

(4. 2)

x (k' k G) -«»'-» +'~

x( 1k'
I

«»'-k+6) r
I
vk) (4. 3)

When an electron is scattered by the impurity from
the state vk to v'k', the momentum transfer to the
impurity is a weighted sum of all crystal-momen-
turn changes k' —k+ 6 for all reciprocal-lattice
vectors G. The current density operator is

~ =(-e/m) 2 (v kIP Ivk)c„.,c„»,
vv'g

where p is the electron momentum, and2~

(4.4)

QA-=~ s)
0

= g ("k'I sv, (r-R)/B-R
I
vk&c„', c„„(4.1)

vgv'g'

where c„„is the annihilation operator for the Bloch
state vk and (v'k'lA. !vk) denotes the matrix element

x [lmG(k', iO)]~f(k} . (s. s4)
FIG. 5. Diffusion paths in a crystal: AB for an inter-

stitial and CD for a vacancy.
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m '(vklp vk)=88„,/sk =() (vk), (4. 5)

the velocity of the Bloch electron.
The driving force on the impurity ion given by

Eqs. (2. 3) and (2.4) is a function of the ion posi-
tion R. The effective force for the ion diffusion is
an average over the migration path. ' To be spe-
cific, we may consider the average over the path
AB in Fig. 5 for the interstatial impurity or the
path CD for the vacancy along a principal crystal
axis. We are neglecting the important effect of
crystal-lattice relaxation around the defect which
affects its potential.

Evaluation of the force-current response function
in the crystal follows the same lines as in Sec.
IIIA. The term of first order in the impurity po-

tential is shown in Fig. 1(a). The impurity posi-
tion dependence is in the factor (vkl —», (x-R)/
aR I v'k) whose path average is

~- lldR. &vkl-» (~-R)/». Iv'»

=I-' dR~ vk e' ' v'k e' "sG~v, GQ'

(4. 6)

where I. is the path length.
The term of second order in the impurity poten-

tial at R is given by Figs. 1(b) and l(c). The path
average of the R dependent factors in Fig. 1(b) is
given by

P (Ok, v'k')=O'I, ' dR (Okli», /BR„lv'k')(v'k'lv, lOk)

(()(-)('+o)~ 1
l

1ki)( 1k1
l

i()('-)(-6) ~ r
l

OI )

xv, (k' —k —Q)(), (k —k'+G')(k —k'+G') ho o. eG'e, &n (4. V)

0 I '
~

dR (Ok
l v,

l

v'k')(v'k' li »,/BR „l
Ok)

=-P (Ok, v'k') . (4.8)

Now the two diagrams can be evaluated as before,
giving the average driving force,

dk dk'

where v = 0 is taken to be the conduction band and
H,„etc., are the vectors perpendicular to the diffu-
sion path. Similarly, for the R dependent factors
in Fig. 1(c),

l

purity is still given by Eq. (4. 9) or Eq. (4 11) with,
however, the path-averaged transition probability
given by

P (Ok, Ok') = & I '
l

dR

x&0k li»(-iO)/». IOk')&Ok'I T(;0)10k).
(4. 12)

These formulas are similar to the one given by
Fiks'2 and by Feit. ~6 What Fiks calls the transi-
tion probability with momentum transfer k —k'+6'

xP. (Ok, v'k')
I fmG(v'k', iO)]~f(ok), (4.9)

where 6f(Ok) is the deviation from equilibrium of
the electron-distribution function obtained from
solving the usual Boltzmann equation.

With the relaxation-time solution,
Im z=o

5f(0k) =- —er(0k)v(Ok) E5($ ),
the driving force is

(4. 10)

E~ = eEg Z5~() —4m' '

(2 )3-
(
—

)

x), ', -1'„(M,ok')v, (ok)r(01)), (4. 11)

where r(Ok) is the relaxation time at k on the Fermi
surface, and k and k' are integrated over the Fermi
surface ~

Summing over the terxns of all powers in the im-
purity potential at R, the driving force on that im-

FIG. 6. Contours in the z plane for the integral in Eq.
(A2)„x denotes a pole of tanh(z/2T).
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is given by Eq. (4.V) within the Born approxima-
tion. The T-matrix modification is rather more
complicated but can be deduced from Eq. (4. 12).

If the Fermi surface is a hole surface, the elec-
tron-wind force on the ion is opposite in sign to the
one for an electron Fermi surface. '3 For a small
Fermi surface near a band extremum, such as in
a degenerate semiconductor, this result follows
from Eq. (4. 11). For then by the effective-mass
approxxmatlon,

fl(a
i
iso /af~

~

I ') = (k —k') v (k —k') 8 ""-"""
(4. 13)

For a crystal with cubic symmetry, the electron-
wind term in Eq. (4. 11) has the same sign as
(k' —k) v(k) on the Fermi surface —negative for
an electron surface and positive for a hole surface.

APPENMX

In the evaluation of the Feynman diagrams for
the impurity force and current response function,
the electron frequency sum of the following form
is frequently encountered:

X(i(o,) = . tanh E(z, a+i(o, ) .dg 8

r 4' (A2)

Usually, the function I' is analytic everywhere
except for the cuts along the lines Imp =0 and Imz

The contour I can be deformed into lines
just above and below these cuts. On continuing i&,
into co+i0 where co is real. ,

X(&a+iO) =
~

.tanh [E(x+iO, x+ &a+iO)
dx

w ~gQ 7Tz

"" dx—E(x —co —i0, x —iO)] +
~ „4mz

X+ (dt Xx tanh —
~

—tanh —E(x —iO, x+ td+ iO) ~

2T j 2T
(A3)

In the zero-temperature and low-frequency limit,

X(&@+iO)= . (sgnx)[E(x+iO, x+ &o+i0)
dx. „471Z

—E(x —ur —iO, x —iO) ] + ~E(- iO, iO)/2mi ~

(A4)

X(i&a,) =TQE(iZ„, is„.,) . (Al)
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