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Relationship of the relativistic Comyton cross section to the momentum distribution of bound
electron states. II. Effects of anisotropy and polarization
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(Received 30 June 1975)

An approximate relativistic treatment of the differential cross section for Compton scattering from bound
electron states is discussed. A simple relationship between the Compton profile and the differential cross
section, valid for anisotropic momentum distributions and arbitrary scattering angles, is found. We also derive
a differential-cross-section formula for Compton-scattered polarized photons.

I. INTRODUCTION

During the last years we have seen an increasing
interest in the study of inelastically scattered pho-
tons. ' The Compton-scattered radiation may give
information about the electronic structure of atoms,
molecules, and solids. The reason for this is that
in the so-called impulse approximation ' the dif-
ferential cross section is (in the nonrelativistic re-
gion) simply proportional to the Compton profile!

Z(p, )= dp dp„p(y) .
Here, p(p) is the momentum distribution of the elec-
tron system before scattering, and p, is the compo-
nent of electron momentum along the scattering
vector. We have recently shown that the conven-
tional concept of a Compton profile also survives
when we use high-energy y rays, because they force
us to take relativistic effects into consideration.
We have formulated a simple relationship between
the differential cross section and the Compton pro-

,
file valid for all scattering angles, but restricted
to isotropic momentum distributions p(p). Here
we will show that a similar relation also can be ob-
tained for anisotroPic momentum distributions.

As mentioned above, the Compton-scattering
technique gives information on the momentum dis-
tribution and the electronic structure of the scatter-
er. As recognized fairly recently, however, the
experimental data must be corrected for effects of
multiple scattering. Such studies, based on the
Monte Carlo technique and the Klein-Nishina formu-
la, have been published by Felsteiner and co-work-
ers. ' Since the Klein-Nishina formula refers to
initial electrons at rest, we wiQ derive here a dif-
ferential cross section for the general case when
both the initial and final photons are polarized.
This formula describes the scattering of photons
against a nonstationary electron system better than
the Klein-Nishina formula. For materials of low
atomic number, the multiple scattering contributes
about 10% of the total scattering. ' It is therefore
necessary to use an accurate model for the yolariza-
tion dependence, if one wants to estimate the effect
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In these equations we have made the assumption that
E ~m. We want to develop Eq. (2) without making
approximations for the X factor, Eq. (4). We have
shown that the second term in the parentheses of
Eg. (5) can be written

P cosn=D(p,')+H(p„'),

where

v- e'cosa
ik-%'~ (8)

of multiple scattering in a particular Compton ex-
periment.

In Sec. II a relativistic cross section for aniso-
tropic systems is derived. Section III contains a
description of a relation between the differential
cross section in Sec. II and the Compton profile.
The problem of Compton- scattered polarized yhotons
is discussed in Sec. P7. Section V contains a sum-
mary. In what follows we use natural units, i.e. ,
c = 1 and @=1.

II. RELATIVISTIC DIFFERENTIAL CROSS SECTION
FOR ANISOTROPIC SYSTEMS

Much of the physics and algebra we use in this
section has already been described by other au-
thors. '~ With the use of the coordinate system in
Fig. 1 and a heuristic approach developed in detail
elsewhere, 4'~'~ we obtain as a starting point the
differential cross section
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dP.'R(P.',P.') . (14)

We separate Eq. (14) into two parts

~(p.') =~ (p.').~.(p.'),
with

0

dP.'R(p.',P.') (18)

and
40

~.(p.')= j dP.'R(P.',P.') .
0

(17)

We also define the functions

J.(P,'0)= ( , R',(D () )d„('',

and

FIG. 1. Coordinate systems (p„, p„, p~) and (p„', p„',
p,').

(19)~.(P.', P,') =,R(P. P,')dP. .

A partial integration of Eq. (13) with use of Eqs.
(15), (18), and (19) yields the result for the inte-
gral

&' sin8
i%- k'

I

(9)

(10)

Equation (7) is the key to the solutio~ of our prob-
lem because this yields for Eq. (4)

x(z, z')=x(p„', p.') .

RXdP„'= J'(P,')X(0,P,')+ J', (P„',P,') d, dP,'
a~co

0

~-(p.',P.') d, dP.',
where

(20)

It is easy to see that the integral in Eq. (2) can be
written

dP.'X(P.', P.')R(p.', P.'),

where

R(o'. , P, ) Jn(D. , P„D!)dD,=, (12)

with p(P', P„', P,') as the anisotrolnc momentum dis-
tribution for the electrons in the system considered.
If we know the solution to Eq. (12), we can write
down the differential cross section, Eq. (2), as a
single integral,

X(0, Pg)-=X=R/R'+R'/R

+ 2ms(1/R —1/R')+ m (1/R —1/R')
(21)

R -=(s[m —((s - (d' cose)p,'/ ~
k —k' ],

R' -=R —(s(s'(I —cosa) .
This is exactly the same X factor as for an isotropic
system. 4

The last two terms in Eq. (20) are very small
and we will estimate them. To do this we replace
the anisotrolnc quantities, Eqs. (18) and (19), by
their averaged functions

d Q' mr~&v'

d~'dO' 2(a[[E- R'[ —(&()- (0')p,'/m]

dP.'R(P.',P.')X(P.'6, .') .

This expression is useful if we want to calculate
the differential cross section from a known momen-
tum distribution, p(p„', p,', p,').

~.'(p.', p!)= (&,(p.', p,') &

R'(P. ,P!)dP. ,
&x

~'(p.', p.') = «-(p.', p.') &

t
&x

R'(P. ,p.')dp. ,

(28)

(24)

HI. COMPTON PROFILE
R'(P. ,P,) = (p(5)) dP, (25)

The Compton profile in Eq. (1) can be written in
the following way using Eq. (12):

The averaged anisotropic momentum distribution
is written (p(p)). Qf course we can write
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&P(r)&=a'(fl!)=P'(!P.'I, IP,'I, fP.'I)

Thxs symmetry relation gives us a connec '

( (
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which is easily shown from
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n rom the definitions. W'th1

,- -P„ in the last term of Eg.
', the result of Eg. (13) is
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X~(P') ' ~'(P' P')!— p"0 p dp
(28

An explicit calculation of the derivat friva aves of the X factor E .
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S-=(m -D)'-H'
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D and H are defined h E . (8y gs. ) and &9'

»H and (m —D —W)»H we
have good reasons to write

S=~m-= ( -D) and T = (m -D —W' (34)

p„=p sinn cosQ,

p„=p sinn sing,

p,'= p cosa= const,

«! p p'(p) (p' p.")dp . - (41)

A sample partial integration yield fs or Eg. (41)

and obtain after inte rati
I

grabon and the substitution
p, 'cosa-p for Eq. (39)

This gives, for Eg. (29)

dX(P „') dX'(- P„')+, " =4p„'c, (35)

c pJ'p dp,

(Peal

with

(42)
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&'(p) =! 2~p' &P(P') &dp'= &~(p) &,

which is the definition of the i.sotro

anisotropic Compton profile [Eq. (28

with C independent of p„'. The last tere last term in the
g. ( 8) is, with Eq. (35)

00
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or, with Eq. (23),
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d 0' mz20~I
d~'d0' 2&o[)E—E'( —(&o —&o')p,'/m]

x ixz(p,')+c . P V(P))dP),

IV. RELATIVISTIC DIFFERENTIAL CROSS SECTION
FOR COMPTON —SCATTERED POLARIZED PHOTONS

A. Derivation

We use the vectors and designations given in Fig.
The X factor for polarized photons is given by

Jauch and Hohrlich. 8

where the second term is very small compared to
the first. Equation (44) is powerful if we want to
calculate the anisotropic Compton profile from ex-
perimental differential-cross- section data. We
may observe that the second term in Eq. (44) can
be used in an iterative way to get a better value of
J(P,'). In most cases, however, we can neglect C
in Eq. (44) in relation to the other term. One may
mention the striking similarity between Eq. (44) and
the cross-section formula developed for the iso-
tropic case. The functional forms and the constants
are the same in the two expressions. Further-
more, it is interesting to note that Eq. (44) reduces
to the formula used by Eisenberger and Heed and
Manninen et al. if we put 8= 180'.

m(&e- &u')- (ou&'(I —cos8)
p cosp= ~K- k'i pg ~ (55)

dp dyP p(P)X(P, P, y)
oo "2'f

dpP p(P)
~

dyX(p, p. , y) . (57)
lP gl +0

It is possible to perform the angular integration,
and we get integrals of the form

2' sin'ycos"y
(b -If cosy)I dy

k=0, 1, n=0, 1, 2, 3, 4, /=1, 2.
In this way we obtain

dyX(P, P.', y)= 2sX. ((P-'-P.")"',P.') . .

0 (59)
We are now able to integrate Eq. (54) partially and
neglect the second small term4:

Because p cosp is constant, it is suitable to write

X(P.', P,',P.')

=X((P' P."-)'"cosy, (p' P."-)'"»ny, P!),
(56)

that is, we are able to write the integral in Eq.
(54)

X= 2 (K/K'+K'/K) —1

E' ~ pE' ~ p 6 e p6 ~ p
K K' (45) X-FACTOR(cU=1)

(K and K' are defined as before).
W'ith the help of Fig. 1 we see that it is possible

to express the different quantities in the (p„, p„,
p, ) system.

1220%

s = (costi, sing, 0),
sf= (0, —1, 0),
ss'= (cos8, 0, —sin8),

p=P(sino. cosg, sino.'sing, coso)
= (IP.'-».', P,', »'.+Ip.'),

N= ur' sin8/ ~% —k' ~-,

I.-=(~—&o'cos8)/ R —k'

k=(0, 0, ~),
k'= (~' sin8, 0, ~' cos8) .

(46)

(47)

(46)

(49)

(50)

(51)

(52)

(52)

1.15

1.10%

1.05%

—-Correct

Klein-Nishina

It is straightforward to express Eq. (45) with Eqs.
(46)-(53). Because X=X(p„', p„', p,'), we have to
restrict ourselves to isotropic momentum distribu-
tion and write for the differential cross section in
the spherical system (p, p, y):

d2 2 I
dp dyPp(p)X(p, ~, y), (54)

foe 60keU, S=150

1A)0 '~ \ ~ ~ s e e -=P,0 5 10 '5 (a.u.)

FIG. S. Comparisons between X factors for &f given
by Eqs. {65) and (66). Incoming radiation is unpolarized.
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Photon energy 60key

i~e=89'

FIG. 4.

s I
X5. (a.u.)

Ratio X~jX2 given by Eqs. (65) and (66) for incoming unpolarized 60-keg radiation

dPP p(P)»Xi. ~

~&o~

( ~P '.
~ ) .(o P l) .

IQein-Nishina X factor when P,'-0 (electron at
rest):

1 QP (d
XKl sin-Ni ahjna 2 I + + (~ ~ )2 QP (d

(66)

X2= —,'(It/It'+It'/It) —1 ' 2[cos8

+ C(l/a —1/a')]' cos'q for 6'=c2, (62)

pre easily get expressions for X'q, t(0, P,'), »meiy&

X,= —', (R/It~It'/It) —1+ 2sin rl for e'=&(, (61)

It is interesting to note that we obtain Eq. (65),
even for an anisotxopic system, if we neglect the
very small I/K and I/K' terms in Eq. (45) and use
the same arguments as in 3ec. III.

If we average over the polarization of the incom-
ing photon and sum over the two polarization states
of the scattered photon, we obtain for Eq. (65)

g ] + 8 (63)

8'
X=—+——sin 8 (67)

8 and B' are defined by Eqs. (22a) and (22b). One
can show that

1 1 (dGO p

x 1+ ---; sin 8 1 —cos8

(64)
which is a very small quantity. We therefore have
good reasons to neglect it and write, as a final re-
sult for Eqs. (61) and (62),

X=— —+——1+2(t ~ e )
e 3 (65)2Z' Z

This is an important result because we can see how
the polarization of the photon affects the differen-
tial cross section when we consider a bound-state
system. Equation (65) reduces to the correct

which is very close to the correct X factor for un-
polarized radiation given by Eq. (21).

B. Comparisons with Klein-Nishina

Because the Klein-Nishina X factor, Eq. (66), is
used in many applications, for instance in multi-
ple-scattering calculations, even when the target
electron is nonstationary, it is interesting and
necessary to study differences in the two expres-
sions, Eqs. (65) and (66). Figure 3 shows the val-
ue of the X& factors if we consider e& and the in-
coming photon is unpolarized. The difference be-
tween the curves increases with increasing momen-
tum of the electron and cannot be neglected. Fig-
ures 4-6 show the ratio X, /X'2, which is also the
ratio between the intensities of scattered radiation
with polarization vectors c~ and ez, respectively.
The deviations are especially significant for scat-
tering angles close to 90'. The incoming unpolar-
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Photon energy $60keu Photon energy 330kev

15»

40~ Correct

Klein-Nishina

10e

20

10
+8=70

8=110'

&e=so'
0

0
I I ~ I ~ I I

5 10 15 {a.u.)

I"IG. 5. Ratio X~/X2 given by Zqs. (65) and (66) for in-
:coming unpolarized 160-keV radiation.

Ne have developed a useful method for calculating
the anisotropic Compton profile from experimental
differential-cross- section data. This method is
not limited to scattering angles close to 180 . As

ized radiation will not be so strongly polarized as
predicted by the Klein-Nishina formula if the target
electron is in movement. The conclusion must be
that Eq. (65) shall replace Eq. (66) when we handle
systems with moving electrons.

V. SUMMARY

- ~8=50'

r e e ~ i e ~ ~ ~ w ~ ~ s ~PZ0=
0 5 19 (a.u.)

I'IG. 6. Ratio Xq/X2 given by Eqs. (65) and (66) for in-
coming unpolarized 330-keV radiation.

a result, this allows us to analyze in a simple way
Compton experiments with lower scattering angles
also. This is advantageous because lower scatter-
ing angles result in decreasing backscattering ef-
fects from the chamber.

In our opinion there are good reasons to use the
present theory, especially since it is not more dif-
ficult to handle than earlier ones. %e have also
shown that it is possible to replace the Klein-Ni-
shina X factor, Eq. (66), by formulas, Eqs. (60)
and (65), which describe the polarization depen-
dence better, and therefore are useful for multiple
scattering calculations. '
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