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The linearized integral equation obeyed by the irreducible vertex function associated with the density

fluctuation is solved exactly up to second power in the wave vector. This is used to compute the static
yolarizability of the homogeneous electron system up to this order. It determines the gradient expansion

coefficient in the density-functional formalism for the inhomogeneous electron system. The result is compared
with existing approximate caclulations. The method of solution is applicable to irreducible vertex functions
which appear in the determination of other correlation functions of the homogeneous systems. Our gradient
term vanishes for both extreme high- and low-density regions, unlike the results of Kleinman and Sham.

I. INTRODUCTION

Almost a decade ago, one of us developed meth-
ods of investigating the integral equation obeyed by
an irreducible vertex function I'„(h;q) associated
with the transverse spin susceptibility of an itiner-
ant magnetic electron system. In the long-wave-
length limit q-0, it was found that one may expand
this vertex function in a power series in the wave
vector, the coefficients of each power of which is
a spherical harmonic expansion. In this way, the

q coefficient of the spin-wave dispersion is found
to be an integral over I",'0"(h), where the super-
script indicates the coefficients of q in the I'„(h;q)
expansion and the subscripts 10 mean the p-wave
part with zero projection in the spherical harmonic
expansion. It was then found that I",o"(h) obeys. a
linear integral equation which in turn was solved
by a variational method, since a series solution in
4 of this equation was not found satisfactory. In
this manner, the effects of interactions (including
all renormalizations) among the electrons are
taken into account almost completely within the
scheme of the linearized-vertex-function formal-
ism. To investigate the spin-density-wave (SDW)
instability of this system, the solution of the static
part of this same vertex equation for finite wave
vectors is required. To examine this, we developed
a variational method for I"„(h;q) directly and de-
duced from this a simple criterion for the SDW in-
stability. The latter method was found very power-
ful in dealing with other vertex functions, and the
author arith hi:s collaborators has examined other
proyerties of the interacting electron system, '3

as well as its relationship with other methods such
as moment-conserving schemes. '

In the density-functional approach to the inhomo-
geneous electron systems, one finds that the bet-
ter the knowledge of various correlation functions, 9

the better the description of the inhomogeneous sys-

tern. For instance, in Ref. 9, we used the Yukawa
interaction model in the limit of large screening to
deduce the spin splitting of energy bands in ferro-
magnets. In the paramagnetic case, in particular,
Sham' has given a calculation of the static density-
correlation function up to q~ terms by solving the
integral equation obeyed by the associated irreduc-
ible vertex function by one iteration. The purpose
of this paper is to use the methods of Ref. 1 to
determine the same quantity that Sham computed
both by an exact solution of the vertex equation and

by the variational method for which the general
expression for all q for the quantity of interest al-
ready exists. In contrast to the spin-wave calcu-
lation, it is found here that the vertex equation can
be solved exactly in this lAnit. All the integrals
appearing in the theory can be done generally for
a wide class of static interaction potentials. The
detailed calculation for the Yukawa potential is de-
rived from the general expressions. This there-
fore serves to determine how good the simple vari-
ational answer is to this order, as mell as derive
sn exact expression for the coefficient of the square
of the gradient of the density in the theory of the
inhomogeneous electron system. Kleinman" has
very recently developed a solution to the vertex
equation to this order. He has criticized Sham's
work in the light of the results he has derived. We
will here make a critical assessment of the situa-
tion.

In Sec. II, we give only a brief description of
the solution to the vertex equation appropriate to
the problem at hand. Elsewhere' we will give a
complete account of this method and its application
to other properties of the system. In Sec. III, the
variational solution is given to this order. The
results are compared with each other in Sec. IV.
In Sec. V, we specialize the results for the Yukawa
interaction model, and we give a critical assess-
ment of these expressions in relation to the works
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to the screening being a function of density in the
form specified in Sec. V. Even more important,
the antiparallel spin correlations are not taken into
account in a linearized vertex equation, and only
recently have we made progress in a variational
solution to the nonlinear vertex equation. ~4 We
also present here a short summary of the results
obtained.

II. SOLUTION OF THE IRREDUCIBLE VERTEX
EQUATION

The longitudinal static dielectric function may
be expressed in terms of the irreducible density-
correlation function and the associated irreducible
vertex function as

& (q) = l+ (42/q')X(q),

where

0
0
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y(q) =2e' F(k, q)&(k;q)[d'k/(25)2].

F&G. 1. Graph of 0 as a function of 1tkz in Hartree
units Sham's: dashed curve Kleinman's: dot-dashed
curve; exact, Thomas-Fermi: solid-triangle curve;
exact, self-consistent: solid-line curve.

of Sham' and Kleinman. In this section, we also
point out the adequacy of the schemes for calculat-
ing the screening parameter in the Yukawa model. ~3

This is because with a pure Coulomb potential for
the electron interactions, there is a divergence
characteristic of the long-range nature of this po-
tential. ' A standard way to handle this is to
introduce a screened Coulomb potential instead; if
the screening is treated as a density-independent
parameter, in the limit of it becoming zero, this
divergence persists as Kleinman has shown, which
is also borne out by our analysis. The forms of
the screening as a function of density, however, can
be treated in some schemes which are discussed
in Sec. V. The quantity of interest in the gradient
expansion is 0 (in the notation of Sham' ) as a func-
tion of density, and it is given in Fig. 1. For com-
parison, we have also plotted on the same graph
those given by Sham and Kleinman. As shown in
this paper, Sham's analysis is exact for high densi-
ties and is zero in this limit; we are in agreement
with this result in contrast to Kleinman. For low
densities, Kleinman s analysis is correct within
the density-dependent screening model where 0
again approaches zero. Sham's procedure is in-
applicable here, as his analysis was specially de-
signed for high densities, as shown in Sec. V.
These features are brought out explicitly in our
analysis. Section V also contains details of these
calculations. These various features are due to
a proper combination of the renormalizations and

Here F(k, q) is given by

(
f()(ky —,

'
q) -fo(k —2 q)

~%+1/2q 6g 1/2'

with E, the noninteracting one-electron energy, and
f0(k) the Fermi function associated with the inter-
acting electron of state k. I'(k;q) obeys the linear
integral equation in the random-phase approxima-
tion when the antiparallel spin correlations are
neglected, "
I"(k;q) =1 V, ((k —k, ))F(k~, q)

l'(k ~ ) 4+& "1-~/ l (k )
& (4)

KII~if/2 e I(-()/2
' (2 2)

This equation is the same one that Sham and
Kleinman' considered except that we have written
it in such a way as to display in an explicit way
the correlation contribution to the one-electron
energy. It is for this reason we use the notation
I' instead of their ~. The advantages of doing this
will become evident shortly. The interaction poten-
tial U, (Ik-k, I) represents the statically screened
electron-electron interaction. It is for this reason
I'(k;q) does not depend on the frequency part asso-
ciated with k. We shall not specify its form here.

We will now express these equations in dimen-
sionless form, as is done in Ref. 1. Thus, in the
notation of Ref. 1, we have
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Here

x, '"cose„,
)&6:(x;y) r(x;y)- —' 8"'r(x'y) .

x

(6)

4 2

~,(if f, i)= ", V, (ix-x, i)
F

4 2

Q V,"'(x;x,) Y, (x) Yf„(x,), (7)
~F l2m

where we have put I x l =x, etc. Here x, is the
usual dimensionless electron-gas parameter re-
lated to kF via Q.z,aokF = 1, ao being the Bohr radius,
n = (4/9») /2.

We mould like to draw attention to one necessary
approximation that seems to be made by all without
much comment except for Kleinman, ' who seems
to make the approximation too when it comes to the
actual evaluation of integrals. The expression for
the one-electron energy is itself a complicated non-
linear integral equation of the Hammerstein type,
even in the Hartree-Fock (HF) approximation. Re-
call that in the HF scheme, the one-electron energy
has for the interaction contribution, an integral
over the interaction potential in momentum space
over an energy surface specified by the exact HF
energy due to the appearance of the Fermi function
f00'2). We have shown elsewhere'( that, to a very
good approximation, one may take this f~(k) to be
the one for the free-electron states; in fact, this
approximation is a variational one, but the energy
renormalization is taken care of in the following
way. It is the second term in square brackets in
Eq. (6), which takes into account the one-electron
energy renormalization, an important feature
which is responsible for making all the integrals
devoid of divergences in the subsequent analysis.
This feature of the rewriting of the irreducible ver-
tex equation has therefore incorporated the single-
particle energy renormalization appropriately.
(It may be noted that the difference of the actual

one-particle energy and Fermi energy in the HF
scheme for the Coulomb gas, for instance, can be
shown to be a product of a positive function of the
wave vector times the differ ence in the wave vec-
tor and the Fermi wave vector. In spite of this,
one cannot hope to get an exact solution of Eq. (6)
without solving the one-electron energy exactly
also, which is impossible. But for making this
important observation, we shall not dwell on this
point again in subsequent discussions. )

In the long-wavelength limit, to order q, we
have (see, for instance, Ref. 2} (q=—ykz),

6'(x, y) = 5(x —1)+ 8 y [5'(x —1)+ Sx cos 6)„5"(x —1)],
(8)

where the primes denote differentiation with re-
spect to x. We now write to this order (in view of
spherical and inversion symmetries in the homo-
geneous system),

r(x; y) = g [r(0&(x}+y'r&„"(x)j Y,„(x).
l2m

(9)

Using the standard formulas concerning spherical
harmonics, etc. , putting these in Eq. (6), and

equating like powers of y on both sides of the re-
sulting equation, we obtain the ones for I",„"(x);
that is

y(l) x. 1r(0)( ) (4 )1/26 6 i

rs
i

r(0)(1) 8 (x2

2l+ 1

V&'&(x; 1)
lm &X~ ~

x 3
(10)

This can be solved at once. We introduce the fol-
lowing abbreviations:

r(0&(x) = (47/)'/2rr(x)6,

where

I'= I/(I —(2&2r /w)[V, &(1; 1) —8 V, &(1; 1)]]2 (12)

and

1 —(2or, /»)[V(0&(1; 1) —V(0&(x;1)]+(2&2r, /&() —,'V(~&(1;I)
1+ (2 r,/(2) »x28 V,"'(x;1)

Observe that I'(x=1) =1. This solution is obtained, provided that

2ar, )r,"'();1) )r, '(1;1))
m 2l+1 3

(14)

I' is recognized to be the vertex renormalization constant at the Fermi surface. I',„'(x) is thus zero for ail
but l =0, m =0, a result which helps us enormously in the subsequent analysis.

Similarly, we obtain, in view of Eq. (11), the equation obeyed by r&&2&(x) also as an algebraic equation,

y(l )(x.1) V&')( 1r(2)(x) 8 I &2&(1) 8 ( 2 / x-(/2 8 ( 2 }I (2)(x)

rs
it

&/2 r(0)(x ) V&0&(x.x )
x( r&0)( )

8 (x2x&/
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3/2 p(0)(x )V(0)(x.x )
1 p(0)( ) s (xjxi) xl I (0&( )

s (xjxli

X]

2n I'& ' 1 4 '"V"'x-x 1 x '" 4 '"rs( d X3/2 p(0)(x )
s (xjxl) 1 ~(0&( )

Vs (xjxl)
v ~6d', ' 3" ' 6 6 Sx " 6 1,2 m, 0

Once again, provided that Eq. (14) holds, we obtain an explicit solution for I" (&2&(x) z//tucI(is nonzero only
for I =0, 2 and n&=0.

We now obtain for x(q) the expression calculated to second order in q,

x(e)-=( 4, ' (s~)'" ~(('(()+)" ~
&&(

)(--—(~'"~&('(~)I+(()s a(~"'~Pa'(~)I+(8 s[~ "~(a (~)

In view of the solutions obtained above, we finally express in the form

d
)

x(q) -=, I'
l
1+—

l

-—[x'"f(x)]+-,[x'"I'(x)] + ' I" ——x'"I (x) V,"'(x;1)

)',"'(x() 2 s' &is-. . (g), , 4 s)","'(x() 9, )'"'(x())
I) (16)

This is the result of an exact solution to the irreducible equation, Eq. (6). In Sec. III, we will merely give
the variational result calculated to the same order, and compare it with Eq. (16).

III. VARIATIONAL RESULT AND COMPARISON WITH OTHER RESULTS

In Ref. 3, the vertex equation, Eq. (6), is solved by a variational method, and X(q) is computed for gen-
eral wave vector q, frequency . In this, we set ('=0 and compute the static expression up to q2 order.
Without giving the details of computation, we quote the final result here, in the present notation,

(q)=
l

I'l 1+———+—I+ -- ' I" ——2x V,' '(x;1) —(x+1)
fnM'j32 ( y' 2 1 2~rs d „2 (0) V,"&(x;1)

4 3 3 m
~

dx 3

2 d 3/2 (0)( 1)
9 2 Vs (xjl) Vs (xjl) 4 2 Vs (xjl)))

It may be of interest to point out that the variational
solution to the vertex equation has the structure

Here

Z, =1/[1~ (2(2r, /~)-', V,"&(1;1)]. (20)
I', (x;y) = I(y)/[E(y) —d(y)],

E(y) = x'/ dx J/dx 6'(x;y)

r
J'(y) = (a.r, /2m')

ll

x'" dx dx
l

x',"dx, dx,

x6'(x, y)6'(x» y)V, (lx-x, l)

(16a)

In deriving Eq. (19), one makes use of many sim-
plifying properties that I'(x) enjoys, even though
the actual computation is somewhat tedious.

In Sec. IV, we will discuss in detail the various
aspects of a very popular model for V, (lx —x, I),
namely the Yukawa potential.

IV COMPUTATION OF gxc OF THE GRADIENT

EXPANSION

x [1-(x,/x)"2 cos6„,/ cos 8„]. (18b)

Observe that the trial solution I'„~(xjy) has no x
dependence at all. When we compare Eqs. (16)
and (17), we will be surprised to find that the dif-
ference between them has a simple form:

9

V" ~x l~'I '
v' '(x. l) —x'2 ' ' ' '

l
. (19)

Sham has shown that if one writes x(q) in the
form (we use the notations as in Sham's paper)

x(q) =- x"'+ q'x"' (21)

then the coefficient g~(, &(n) of the gradient expansion
in the theory of the inhomogeneous electron sys-
tem is

a'"(n) = [x"'/(x"')' —x"'/(x"')']

where the subscripts 0 indicate the same quantities
for the noninteracting system with the same density.
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If E„,[n]is the exchange and correlation energy
functional, Kleinman defined '

Xshsm((I) (m/3Fe /4 &)/[I(y) + cI(y)] . (24)

Even though the variational solution is of the form
(18), in contrast to the iterative solution (28), we
observe that y, ((I) is found to be

where e„,(n) is the exchange and correlation energy
per electron in the uniform gas. This serves to
define gc,). The latter are easily calculated be-
cause in the expressions for gc ', yc ', if we set
the terms containing V,"' zero, we obtain yoc ', go ',
respectively.

We first make the observation that if we employ
the first iterative solution to the I"(x;y) equation as
was done by Sham, ' we obtain

I'(x;)')—= (+ ( ()) x, dx, f dx, )',(l* *il)

x s'(x„) ) ( —
(
—') *' . (2$)

Using this in Eq. (5) and the notations (18a, 18b),
we obtain

Sham's procedure is equivalent to expanding )('(q)

up to first order in nr, /&/, and so expanding g, ((I)
up to this order. We observe this to be the same
exPxession as Sham's.

On the other hand, if we use )/„(q) to compute it
to order qa, we obtain

ICa) IC2) J(2)
X (d)= 4

~ + d)(D) dto) y|M

(26)
and Sham obtains

3 J(0) I C2) JC2)
)/sh ( I) 4 3 I + I (0&+ I (0&+ I (0)

(27)
This essentially means that the vertex renormali-
sation I" [—= (1 —J' )/I(0)) '] is set equal to 1+ 8( )/
I' ' in Sham's procedure. Since setting J=O and
I' = 1 imply that we are dealing with the noninteract-
ing system, we obtain for g„',' the following expres-
sions (in our notation):

g„",'(var) = 4)/3/m)3~2I (0)r
&&(2(I(')/I1'))[(1 —1)/I']+ J")/I")j, (28a)

2I(0&f 2I&0& & +I&0&+
' Z, ~ V, (1;x) —x-

mk„e I 1" I l" I 7r - x=1

=g„, (var)+ 2 &»Z
' &, —V, (1;x)-x-(2& v r d to& 1. -1/2 V (1 x)

mk&e I & g=i

Now from Eq. (17), we may deduce

I(0) 4 I (2&/I (0&

2er= 1 — ' [V"'(l l) —-'V"'(11)]

(28b)

s . 2 1/2V(0)(l. x) (1+x) s ( d ) d
2 3/2V(0)(1. )

2 s '( dX)2Q 1 VC1) 1.~ 1 3 Ci) 1.

4 + V&»(1;x) V,"'(1;x)
&~

Thus we see that the variational result is ob-
tained when Z, is set equal to zero, and Sham's
answer is obtained when Z, is set equal to zero,
and I' equal to 1+J'10)/I(0), and working to first
power in nr, /)/ (high-density limit) in the exact
expressions. The correction to the variational
answer is thus seen to be of order (nr, /)/)2 includ-
ing powers of nr, /&/ in Eq. (28b) without those ap-

pearing in ~ and Z„as they are of magnitude unity
plus corrections of order nr, /)/ provided that the
expressions multiplying them are finite in this limit.
In Sec. V, we will specialize the above results in
terms of a Yukawa form for V, (lk- k, I) and dis-
cuss the expressions in various regions of validity
of such a model. We may state here that by ex-
pressing our results in terms of V,"' as above, we
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have made a contact with Fermi-liquid-theory
parameters, which are being experimentally mea-
sured these days.

V. YUKAKA INTERACTION MODEL AND DISCUSSION
OF THE RESULTS

V"'(x x) 1 x+x +8
2l+1 2(xxi) / ' 2(xxi) / (31)

where Q, is the usual associated Legendre function.
We then obtain

nr, ]' 4lX'=1 1 — ' 1-—ln 1+~
m 4

or, 1 $' 4g =1 1+ ' — 1+—ln 1+—1
m 2 2 $2 t (82)

1 ur. 36 32
(0) qp gz 4 (gz 4)2 0 I +~() j

(33)
and

We will consider the effective interaction poten-
tial between the electrons to be of the Yukawa
form, which enables us to perform all the calcu-
lations explicitly in terms of one parameter, the
screening parameter. Thus,

V, (~ x —xz)=1/[x+ x~ —2(xx&)~/ cos8„„+P],
(30}

and so,

kz). A similar result is also obtained by Klein-
man. " But Kleinman takes g to be the Thomas-
Fermi expression, i.e. , f =4ur, /m and claims
that now there is no divergence, as r, -0. Hence,
as long as $ is treated as an independent parameter
not depending on the electron density, one has a
divergence, while if it depends on x„ this diver-
gence disappears. Now $-0 implies in the Thomas-
Fermi model for screening that x,-0; and so, the
only inference possible is that in the high-density
limit, the corrections to the variational answer are
again zero. Also, we may point out that Sham's
result is not expected to be correct for low densi-
ties, where r, -~ (or kz- 0).

(iii} In Ref. 18, we have developed a self-con-
sistent scheme to determine g . The argument
runs as follows. We know that in the limit of zero
q, q cz, (q) gives $ . We have computed cz, (q) using
a Yukawa interaction, and this new expression for
it should be consistent with the above general. re-
sult. Thus, we obtain'3

$„=(4m/kr ) lim g(q} = (4m/kr ) x'0',

4nr, (4ar, li(
I i

ar,
)

SC

This may be rewritten in the form

—
I V'"(1 x)-x-"' ' =(a g./[I+~ C. -105.'.In(I+4/P. .)]. (36)

—1 —
2 0 + —+ ln I+~ . (34)

Several features of this model may be of value and
so we record them here:

(i) In the large $ limit (i.e. , short-range model),
the vertex equation can be solved exactly and one
has to observe that the coupling strength is now

er, /m5 which is held constant. In this limit, we
have Z~ =1, but [d(V,' '- —', x ' V,"')/dx], , = 0(1/$4),
and so the variational result coincides comPletely
saith. the exact answer, as is to be expected.

(ii) In the limit of Coulomb interactions, i.e. ,
5-0, we observe that Z& goes to zero like

1/ ( ') In(4/f')

(
2ar 2

s
~ ( V(0) x 1/0 V(1&/8)

m ] dx

diverges like (nr, /2m) [ln(4/g )] so that the cor-
rection to the variational answer diverges like
(nr, /2w) ln(4/$ ). In the strictly Coulomb limit,
one has therefoxe a divergence for a fixed r, (or

This equation can be solved graphically to deter-
mine $„as a function of nr, /m. We observe that

g, - 0 only if or,/v- 0, i. e, only in the very high-
density limit. Thus the Thomas-Fermi relation-
ship is reliable only for very high density of the
electron gas. Also, for g -~, we observe the
right-hand side of E01. (36}becomes proportional
to —,(g„/4). Thus in the low-density limit, the
screening, though similar to the Thomas-Fermi
expression, is different by a factor —', . This is
not a reliable answer since one expects for very
low densities zero screening.

It is worth noting that A(kz) —= —(k+0/v0)gN', cal-
culated using our formalism, vanishes in the two
extreme limits of 7/kz-0 (low density) and mkz-~
(high density) in contrast with the result of Klein-
man. " Kleinman obtained a constant value for
A(kz) for eke —~ (high density). To check if this
would obtain in our formalism too, if we took P
to be the Thomas-Fermi value 4nr, /m, we made
a similar asymptotic calculation from our expres-
sion for Q(kz), and we found this to vanish. For
eke- ~, we have the extreme high-density limit
where Sham's procedure is certainly valid, as is
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also evident from our analysis. Sham found that
A(kz)- 0 for mkz- ~, and we are in agreement with
him. For mkz- 0 (low density), we agree with
Kleinman's result that Q-0 again, whereas Sham's
result is divergent but inappropriate in this limit.
In view of the various comments made on the
Yukawa model, it sppears a calculation of A(k~)
with a more realistic momentum-dependent inter-
action potential should be made. In Fig. 1 we have
displayed our results. It is found that the variation-
al results are in excellent agreement with the exact
results for both high and low densities, except the
position and height of the maximum are slightly
different. We have therefore displayed only the
exact results for the self-consistent and Thomas-
Fermi schemes for $ . The other contrasting fea-
tures with the results of Sham and Kleinman are
evident from this figure. A numerical table of 0
vs eke may be obtained on request, from either
of the authors.

Professor Kleinman has informed one of us
(A. K.R. ) that he has now verified that his A also
vanishes for ok~- ~, in agreement with Sham and
our result. The general shape of his curve of Q
vs ok~ now is the same as ours but seems to have
some small differences in detail. We thank Pro-
fessor Kleinman for informing us of his new finding
and for pointing out a sign error in the definition
of 0 in terms of g„',.' We must mention that we have
also come across a paper by Geldart ef al. [Solid
State Commun. 16, 243 (1975)], where a rigorous
analysis of the g'~'is also made, and their con-

.clusions in certain limits seem to be in general
agreement with ours. These authors do not give
a graph of Q vs ok~.
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