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Electron paramagnetic resonance in exchange-coupled systems with unlike spins*
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Electron paramagnetic resonance in exchange-coupled systems with unlike spins (i.e, different g
factors) is studied in the strong-isotropic-exchange limit. Arguments are advanced which show that in
the long-wavelength low-frequency regime the dynamic magnetic susceptibility has a hydrodynamic
component which can be identified with the dynamic susceptibility associated with the total spin. In an
applied field the dynamic transverse susceptibility for the total spin develops an exchange-narrowed
resonant peak. An expression for the effective g factor characterizing the resonance is obtained and
evaluated. An equation for the linewidth is derived and estimates are given for the width in the
infinite-temperature limit. Comparisons are made with previously published work on this problem, and
possible experimental tests of the theory are suggested. The implications of this work for the analysis of
the paramagnetic resonance of localized moments in nonmagnetic metals are discussed.

I. INTRODUCTION

The problem of characterizing the paramagnetic-
resonance spectrum of an ensemble of exchange-
eoupled spins was recognized soon after the develop-
ment of experimental techniques making possible
detailed measurements on such systems. In a clas-
sic paper, Van Vleck' established the general fea-
tures of the spectra in spin systems with both di-
polar and exchange interactions. In Ref. 1 the
distinction is made between systems with like spins
(all magnetic atoms having the same g factor) and
those with unlike spins. The development of the
theory of magnetic resonance in systems of unlike
spins (i.e. , different g factors) has proceeded
slowly. As will be discussed below, existing theo-
ries of paramagnetic resonance in systems with
unlike spins where the Hamiltonian is dominated by
the isotropie-exchange interaction are either incor-
rect or of limited applicability.

In this paper we will outline a theory of paramag™
netic resonance in exchange-coupled systems with
unlike spins which appears to overcome all the ob-
3ections which cRn be raised RgRiIlst tI1e plevious
theories. We derive a general expression for the
effective g factor which we evaluate exactly in the
high-temperature limit. We also investigate the
resonance linewidth obtaining a formal expression
for the width which involves time integrals of vari-
ous spin-spin correlation functions. By approximat-
ing the integrals we obtain an estimate of the width
in the infinite-temperature limit. Applications of
the theory to disordered magnets have already been
published. Further applications wi11 be reported
elsewhere.

In Sec. II we introduce the Hamiltonian. Having
done this we review existing theories for the effec-
tive g factor. In Sec. III we begin the development
of the theory. This is done in two stages. First,
the general problem of the low-frequency long-wave-

length spin dynamics in systems with unlike spins
is analyzed from a hydrodynamic point of view.
Second, the important features of the dynamic mag-
netic susceptibility in the hydrodynamic regime are
established. In See, IV we present a detailed anal-
ysis of the effective g factor and the linewidth. Sec-
tion V is devoted to a general discussion of the
theory and related experimental studies,

II. PRELIMINARY ANALYSIS

We begin this section by introducing the Hamil-
tonian for the system. With little loss in generality
we specialize to a system having two types of spins,
s& and sB, with g factors g& and gB, where g„&gB.
The Hamiltonian is written

2~~s~gs~a 's~g — Q 2~a~sgss~ 'esca
(Ai, Aj) (BIg Bj)

2J~;age~& ' ss,. +g~ysH g s'„,"
(g&, Bj) Af

+gBPB+ Bf +grani, s ~

The first three terms make up the isotropic Heisen-
berg exchange interaction, where (, ) denotes a
sum over pairs; 4„;„jis the interaction between A
spins, JB;» is the ineraction between B spins, and

J&~» is the interaction between A and B spins. Al-
so, p, B is the Bohr magneton and B is the applied
magnetic field. The symbol K„„denotes the an-
isotropic terms, which can involve both dipolar
and single-ion anisotropy.

We assume that there are non-negligible numbers
of both A and B spins and that the two types are
spatially intermingled. We do not make any addi-
tlonRl assumptions Rbout the relative positions of
the spins. They can either be located at random or
in a spatially ordered array. As noted, our analysis
pertains to systems with strong isotropic exchange
interactions. This will be the case if the exchange
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field seen by each one of the spins is large in com-
parison with the applied and the anisotropy fields.
In addition, we assume that the A. and 8 subsystems
are strongly coupled to one another so that

2Z~fs, s~f ~ ss, ».g„pBH g. s„'f
(.Ai, Bj ) Ai

1
tipoff 2(gA+gB) . (3)

Equation (3) shows no explicit dependence on tem-
perature or on the relative concentrations and mag-
nitudes of the A and B spins. It is rigorously cor-
rect only in so far as it applies to the case NA=NB,
sA sB and T =

Subsequently, Bloembergen and Rowland com-
puted g f f from the first moment of the Fourie r
transform of the magnetic moment correlation func-
tion. Their result took the form

g, f f = (g~N Jf +gBNB)/(NB+ NB),

where N„(NB) is the number of A (8) spine. How-

ever, as they point out Eq. (4) holds only for s„
= sB and & = ~. In Sec. IV we will give a general
expression for g,«which reduces to the Bloember-
gen-Rowland result in the appropriate limit and is
the proper generalization of their findings to finite
temperatures and unequal angular momenta.

An alternative expression for the g factor can be
obtained from the phenomenological equations for
ferrimagnetic resonance'

M &&(H+XM )A + B (5)

M x(H+XM )dt h ' A'

where & is a. molecular-field coupling constant, and

gBPBH ,Q sB;yÃ~fs. (2)
Bi

This symbolic inequality will be reformulated and

discussed in greater detail at the end of Sec. IV.
When the intersystem exchange integrals JA;»

are equal to zero (and the anisotropic terms are
small), the resonance spectrum is dominated by
sharp peaks at h~ =gA p, BH and h(d = gB p, BH. With
increasing coupling between the A and 8 spins the
lines broaden and begin to overlap. Finally, in the
limit shown in Eq. (2) the spectrum is dominated by
a single resonance at ken =g,«p. BII, where g,«de-
notes the effective g factor. The shift from a two-
peak to a one-peak spectrum is an example of ex-
change narrowing' which in this case is induced by
the exchange coupling between the two subsystems.

The first calculation of g,« in the exchange nar-
rowed limit was reported by Pryce. ' Treating the
difference between the spins as a small perturba-
tion he obtained the result

MA and MB are the magnetic moments of the two
subsystems:

MA gAI BZSAfq
Ai

MB=- gBPB S
Bi

The solution of the linearized version of Eqs. (5)
and (6) is characterized by a low-frequency reso-
nance with an effective g factor given by

where ( ~ ~ ~ )T denotes an average carried out at tem-
perature &. In the high-temperature limit, Eq. (9)
becomes

g„s„(s„+1)N„+gssB(sB+1)NB
jeff =

g„s„(sz+1)N„+gssB(sB + 1)NB
(10)

In this section we outline a hydrodynamic theory
of the long-wavelength low-frequency spin dynamics
in exchange coupled systems with unlike spins. In
the interest of simplicity we will at first omit the

It is apparent that Eq. (9) does not reduce to Eq.
(4) when s„=sB. The failure to do so is attributed
by Bloembergen and Rowland to the fact that the
linearized form of Eqs. (5) and (6) are applicable
only at low temperatures since they omit the effects
of fluctuations in the exchange field.

Recently, Gulley and Jaccarino have used equa-
tions similar to (linearized) (5) and (6), but aug-
mented by damping terms, in order to character-
ize resonance in paramagnets with small concentra-
tions of impurities. Although they obtain reasonable
agreement with their measured values of g,« in
RbMnF, : Ni (5at. %) their approach is incorrect
whenever there is strong coupling between the two
subsystems. When the coupling is strong the fluc-
tuations in the AB exchange field in the paramagnetic
phase are sufficiently large [cf Eq. (2.)] as to pre-
clude characterization in terms of phenomenological
impurity-host and host-impurity cross relaxation
rates of the form employed. This is seen in the

, expression obtained for the high-temperature lim-
it of g,« in the presence of finite cross relaxation.
Using the equations of Ref. 6 we find

gps~(s~+ 1)NB+gssB(sB + 1)NB
g~s~(sg+ l)Ng+ gssB(sB + 1)NB

Like (10), Eq. (11) is in disagreement with the
Bloembergen-Rowland result when sA is set equal
to sB. The origin of the disagreement can be traced
to the cross-relaxation rates and detailed balance
condition, which do not take proper account of the
conservation of total spin. (This point is discussed
in greater detail at the end of Sec. V. )

III. SPIN DYNAMICS
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anisotropie and Zeeman terms in the Hamiltonian
leaving only the isotropic exchange interactions.

The Heisenberg Hamiltonian , „ is characterized
by the symmetry property that the total spin is a
constant of the motion, i.e. ,

SAf+ Saf ~

At

At finite temperatures the long-wavelength lom-fre-
quency response is governed by hydrodynamics. 7

In the paramagnetic phase the hydrodynamic modes
characterize spin and energy diffusion. To illus-
trate this we denote the (spatial) Fourier transforms
of the spin and energy densities by s(q, t) and e(q, t),
respectively [note 8=s(0, t), &,„=e(0, t)]. The cor-
responding hydrodynamic equations take the form

equations, (a, tI) is defined for operators (I and b by

(, 5) f=dh(e ~ae ~b) —„))(a),()) (1S)

m =(Pm +(1-(P)m (19)

The separation displayed in (1.9) leads to a two-
component expression for the dynamic magnetic
susceptibility y a a(q, &u), a function of wave vec-
tor q and frequency (d, " Denoting the imaginary
part by g", at small wave vectors me obtain the
limiting form

X I a(q, (()) (M, S ) DsIt
(dy„~ u(e (M', M )(S', S ) (d +(Dsq2)

where Z is the Hamiltonian and P = 1/KT, K being
Boltzmann's constant. Using Eq. (17) we can sep-
arate ~ into its hydrodynamic and nonhydrodynamic
components

=-D e's(q t) (14)
(M0. So')s

+ 1-~-~' ~
-- (d, 2O

where D~ and DE are the spin and energy diffusion
constants, respectively.

The operator of primary interest in magnetic
studies is the magnetic moment density. We define
its (spatial) Fourier transform m(q, t) by

m(q t)= —e '" &&ps
A

~1

Bi

with the total moment M(t) equal to m(0, t). Since
M=MA+M~ does not commute with X,„, it mould
seem as though there mas no hydrodynamic behavior
associated with m(q, t). However, this is not the
case. The essential point here is that M has a
finite projection onto S.@ This projection [or
equivalently, the hydrodynamic component of m
(q, t)] reflects the fact that the fluctuations in M are
correlated with flllctllatioIls lll 5 as ls evideIlt iI1
the nonzero value for the correlation function(S .M) r.

In order to obtain expressions for the magnetic
susceptibility which correctly incorporate the hy-
drodynamic behavior me make use of the projection
operator formalism of Mori. We designate the
projection operator into the hydrodynamic variables
by (3'. In the absence of a magnetic field w cou-
ples only to s (n =x, y, s). As a consequence it is
sufficient to take 6'~, the hydrodynamic com-
ponent of the magnetic moment, to be of the form

(Pm'=(m', s I)s /(s, s'I),

with j' denoting adjoint. In (1V) and subsequent

where y. n n(q) is the static magnetic susceptibility
and f(z) is a slowly varying function of q whose
integral over the interval —~ —+~ ~ is equal to m'.

The first term in (20) reflects the coupling to the
total spin; the second is the remainder associated
with the nonhydrodynamic part of m. The functional
form of f(~) is not predicted by hydrodynamics.
Homever its width in frequency 4w, can be esti-
mated from the second moment of the autocorrela-
tion function for the operator (1 —(P)M,

([(1-(P)M,X.„][X,„, (1-(P)M ]), "'
((1 —(P)M (1-(P)M")

The diffusive form of the first term on the right--
hand side of Eq. (20) is a consequence of the fact
that S is a constant of the motion for the Heisenberg
Hamiltonian. The presence of (weak) anisotropy
in the spin Hamiltonian is accounted for by the re-
placement

where 72 is identified with the spin-spin relaxa. -
tion time. (Were spin-phonon interactions of im-
portance, but not dominant, their contribution mould
aPPear as Dsqs+1/Ts" + res L, where &u» is the syin-
lattice relaxation rate. )

The presence of an applied field modifies the
above picture in two mays. First, there is a cou-
pling between the energy and the longitudinal-spin
diffusion modes which results in a spectrum for the
longitudinal magnetic susceptibility which is char-
acterized by tmo diffusive central peaks. ""
Second, for sufficiently large fields the hydrody-
namic part of the transverse magnetic susceptibility
develops a resonant peak at a frequency proportional
to the field. The location and width of this peak
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will be discussed in Sec. IV.

~,".„-(~) (M;S )' )i,",-( )
(M', M-)(S', S ) (~q...

(M', S )0

M', M 8', 5 (23)

where uses ((d) is the dynamic susceptibility asso-
ciated with the total spin S. The first term in (23)
arises from the projection of M onto S and is seen
to be the generalization of the diffusive term in
Eq. (20). In the second term, f((d) has a width on
the order of Jz~ and does not contribute to a sharp
resonance line in the usual cases [see Eq. (49) and
the discussion following Eq. (50)].

In order to determine the location of the reso-
nance we relate ys.s-((d) to the relaxation function
(S'(t), S ) through the equation'0

s,"., -(~) = a zs) she (s (t)s"),'', (24)

where Re denotes real part. Resonant structure
in y~, ~ is equivalent to an asymptotic time depen-
dence of (S'(f), S ) of the form

(Se(f) S -) (S+ S-)si e) 0t -y( t l

y etc)0t xl t l- (25)

having used the well-known expression for the sta-
tic susceptibility y~ = (a, ft)

Equation (25) will be appropriate if the linewidth

y is small in comparison with the exchange fre-
quency, a condition which will be discussed in
more detail below. In the meantime, assuming
(25) to be valid, we obtain an expression for the
resonant frequency co, from the equation"

, , S (S', S ) =--„([S",S 1&,
. dS' , 1

having used the identity'

(s), s) =
e (I, sl), .

8(S,S-} '

Equation (26) is one of the principal results of
this study. It expresses the resonant f requency
as the ratio of the expectation value of the total

IU. RESONANT FREQUENCY AND LINEWIDTH

The function of interest in paramagnetic reso-
nance studies is the dynamic transverse magnetic
susceptibility at q = 0. In Sec. IG it was pointed
out that in a magnetic field the transverse suscep-
tibility develops resonant structure whose charac-
teristic frequency is proportional to II. In order
to see this we introduce the rotating wave, q = 0
susceptibility y„+B ((d) =}1 + -(0, (d) (M' = M" + iM').
Analogous to Eq. (20) we have

spin to the transverse spin susceptibility. By
making use of the (approximate for noncubic sys-
tems) equality

(Sx Sx)0 (Sx Ss)0 (Sz Sz)0 (28)

where (, ) denotes evaluation in zero applied
field, we can extract the effective g factor for the
paramagnetic phase. In the small-field limit we
flnd

h(d0 (S; M')
getf

~ 0 ~ (Sz Sz)0 (29)

having identified (Sz)r with (S', M') H. Equation
(29) is to be compared with the g,«obtained from
Eq. (9), which we can rewrite as

g.ii = -(M )r/ltB(S )r (9')

In the paramagnetic phase, where (M' )r and (S')r
are proportional to If, Eq. (9') becomes

g =-(M M')'/lt (S M )'

a result which is similar, but not identical, to
Eq. (29).

Exact evaluation of Eq. (29} is possible only in
the 1nflMte temperature llmlt. As 7 ~ we have

gASA(SA+ 1) A+gB SB (SB + 1)NB

s„(sA+ 1)N„+ sB(sB + l)NB
(30)

In the appropriate limits, Eq. (30) is seen to
agree with Eqs. (3) and (4) but differs from Eqs.
(10) and (ll). We regard the agreement with the
expressions of Pryce and Bloembergen and Ho+'-
land as strong evidence in support of the overall
correctness of our approach.

Some indication of the temperature variation of

g f f is provided by an evaluation of Eq. (29) in the
molecular-field approximation. As an example
we consider a spatially ordered AB array with
nearest neighbor exchange integrals J~~, J», and
J„~. Defining functions C„C2, C~, and C4 by

C =[3&T—2Z(&, I3)~, s (s +1)1S,(s +1),
(31)

C, = [3KT —2Z(A, A }J'„„s„(s„+1)]s (s + 1),
(32)
(33)C0=2Z{A, B) J„BsA(sA+ 1)sB(sB+ 1),

C, = 2Z(B, A) J„,s (s, + 1)s„(s„+1),

where Z{x,P) denotes the number of nearest neigh-
bors of an X spin which are of the type Y', we
obtain the result

1 gA+ CSgB }NA+ (C0 gB + C4 gA)NB

(C, + C0) N„+ (CB+ C4)NB

indicating a temperature dependence of the form
(x1+ xBT)/(x0+ x4T). Also, wllell C1 =- CB, C0 ——C4,
and N„=NB, Eq. (35) reduces to the Pryce result,
Eq. (3), independent of the temperature.



EI ECTRON PARAMAGNETIC RESONANCE IN EXCHANGE-. . .

As noted, the appropriateness of Eq. (25) re-
quires that the damping be small relative to the

exchange frequency. To establish the conditions
under which this is true we use a general expres-
sion for y given by Mori'

~a= (1/h) [V, a].

Since [S',K,„]=0, a nonzero value for y reflects
the presence of the Zeeman and anisotropy terms
in the Hamiltoni. an. Although not contributing to
dS'/dt the isotropic exchange interaction does in-
fluence the dynamics through the time evolution
operator exp[it(l-6')7]. As a consequence the
resonance is strongly exchange narrowed. Be-
cause the Zeeman and anisotropy terms contribute
independently to the damping (cross terms linear
in the field give rise to a small frequency shift)
the contribution of the former can be estimated
from the zero-field relaxation rate

=l(s's) l' D(
'

) ru

where the factor (1 —0 ) has been omitted from the
time-evolution operator leaving

„,ds' ds'(t)
dt dt

which is usually satisfactory as a first approxi-
mation,

The calculation of the field-dependent part of
the linewidth contains several novel features.
From the commutator of S' with the Zeeman in-
teraction we have

dS g PBH(1 — ) =
~ ~gAsss+~ gBssy

, S S' S', S

d

~

~

~
~
S
~

~

1

~

I ~ ~
t

t

~
~ (40)

Using Eqs. {26) and (29) we can rewrite (40) and
obtain

x exp g$ 1-6 2 1-, 1-6dS+ dS
dt dt

(36)
where 2 is the Liouville operator defined by

ys= '. o i «{OgA-g,«)expbt(l-tp)~]S;(PBH/8)

+(g. -g.„) pl t(1-~)~]s:),l(g, -g.„)s,
+ {gB —g.ff)SB])', (42)

@ys = t"BH @ [(g,gf
—gA) fst s„(s„+1)T„

+ {g.ff -gB)'&BSB(SB+1)~8]

& [&ABA(sA+ 1)+&Bss (sB + 1)1

where 7 A and TB are given by the integrals

(44)

dt (exp[it(l —0')Z]s'As„)B,
~&AsA(A+ 1& "g

(45)

78=,
~

dt (exp[it(l —6')2] SBSB)
BSB SB+ / ~ 0

(46}
After making the Gaussian apprc ximation to the
integrand (f(t) = f(0)exP[Bf (0)t ]), we obtain
the equations

having omItted the factor e '"o' since the xntegrand
has a decay rate which is large in comparison with
the Larmor frequency (in three dimensions).

From Eq. (42) it is apparent that ys is propor-
tional to H2 and involves the difference between
ge«and the g factors of the two subsystems. In
addition, since SA (SB) commutes with the AA (&8)
exchange interactions, y~ is large when the AB
interactions are small. Furthermore, Eq. (42) is
seen to be a generalization of the expression for
the width in the two-frequency stochastic model
where the resonance frequency flips from gA tlBH/fi
to gB pBH/fI at a rate which is rapid in comparison
wltll l gA —gB I ties H/Al.

Quantitative estimates of the magnitude and tem-
perature dependence of the linewidth can only come
from detailed analyses of Eqs. (38) and (42). Such
studies are beyond the scope of this paper. How-
ever qualitative estimates appropriate at infinite
temperature are easier to come by. In the case
of y „we have

@y l. = g.fftls &H'l. ). (H.'.):"", (43)

whe re (H ~„)„ is the me an- square anisotropy f ield
and (H,„)„is the mean-square exchange field. The
estimate of y„ is not quite the analog of (43) be-
cause of the special role of the AJ3 interactions.
%'e find

(1 )
ds 'LPBH.
dg

gA gef f SAj+ 8 geff SBj ~

Aj Bj
(41)

1/2 -1/2
Z Aiss 8{8+

A AieBj

sg/2l -j.j2
~A; BjsA s„+1

(47)

Equation {41) leads to an approximate equation
for the field-dependent part of the linewidth ~,„
which is of the form

which, when NA =NB,and sA ---sB, lead to an expres-
sion for y„similar to that obtained by Yokota and
Koide. "
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In order to have slow exponential decay of
(S'(f},S ) it is necessary that y „„and ys be small
in comparison with the decay rates of the inte-
grands in Eqs. (38) and (42). ' Generally speaking,
this condition will be satisfied if the Hamiltonian
has the properties postulated in Sec. II. In addi-
tion, if y,„,,+y„«~0, the resonance in ys.s (M}
will be sharp. Also, we note that if the Zeeman
interaction is characterized by anisotropic g ten-
sors, Eq. (26) is still applicable provided the z
axis is identified with the direction of the thermal
average of the total spin rather than the direction
of the applied field.

Our final comment pertains to Eq. (2), the sym-
bolic inequality relating to the strength of the AB
exchange interactions. An equivalent statement
of the inequality is that the breadth of the frequency
distribution of the nonhydrodynamic part of
g „.s ((u), f (co), is large in comparison with the
breadth of ys', s (e). From Eq. (21) we obtain the
corresponding mathematical statement, appropriate
when +o~~panis+ YH )

8[N„S„(s~+1)+Nsss(ss+ 1)]
9N~NB

Ai ~Bj
~Ai BJ gef f ~B +2 2 2 2 (49)

by evaluating the traces at infinite temperature.

V. DISCUSSION

The most significant aspect of the theory out-
lined in Secs. III and IV is the appearance of the
dynamic spin susceptibility in the expression for
the dynamic magnetic susceptibility. The pres-
ence of g s+s-(&) can be understood with the help
of the fluctuation-dissipation theorem which re-
lates g'„'+~ (~) to the Fourier transform of the mag-
netic moment autocorrelation function. '4 Since
fluctuations in the total moment are correlated
with fluctuations in the total spin there is a con-
tribution to the transform which can be identified
with the spin-spin autocorrelation function. Such
an identification is possible because the total spin
is an approximate constant of the motion so that
in zero field its Fourier transform is sharply
peaked about ~ =0. The relative weight of }fs,s (~)
(M', S }'/(M', M ) (S', S ), which is less than
or equal to one by the Schwarz inequality, is
typically a slowly varying function of temperature
with the limiting value

(M', S-)' [gpss(s„+ 1)N„g+sss(ss + 1)NS]
(M M )(S S ) [gpss(sg+ ) g +gsss(ss+ 1) s] [sg(sg+ 1)Ng+ss(ss+ 1)NS]

(50)

as T-~. For realistic values of g~, gB, s„, and

ss, Eq. (50) indicates that the hydrodynamic com-
ponent has a large fraction of the total spectral
weight. (In the case of like spine M=-gpsS so
that the hydrodynamic component has all the spec-
tral weight. )

An applied magnetic field induces resonant struc-
ture in the transverse magnetic susceptibility.
This structure appears only in y s'+s (&u). Because
S commutes with the isotropic exchange inter-
action the peak in y s'+s (~) is exchange narrowed.
In contrast, the nonhydrodynamic part of gs'+sr-(&)

[f(&u) in Eqs. (20) and (23)] is not expected to show

any resonant structure. That part of M, (1 —(P) M,
which is orthogonal to S is characterized by an

autocorrelation function with a broad frequency
distribution [cf. Eq. (49)]. Any resonant struc-
ture is washed out by the fluctuations in the ex-
change field since exchange narrowing does not
come into play.

The expression obtained for the resonant fre-
quency, Eq. (29), is of the standard hydrodynamic
form; namely, it involves only equal time corre-
lation functions. In contra, st, the expression for
the width, Eq. (36), is seen to involve time-de-

pendent correlation functions. The distinction
between time-dependent and time-independent
functions is analogous to the situation occurring
in the hydrodynamics of fluids, where the sound
velocity is expressed in terms of thermodynamic
functions and the damping is related to time in-
tegrals of various autocorrelation functions. '

The hydrodynamic model which has been postu-
lated in the development of the theory is itself
phenomenological. However, we believe its ap-
plicability to the paramagnetic resonance problem
is justified when the AB exchange field is large.
Also, the theory does make a number of detailed
predictions. In particular, the high-temperature
limit for g,«, Eq. (30), is exact within the hydro-
dynamic approximation. Measurements of the
paramagnetic resonance spectra of strongly ex-
change coupled systems with unlike spins seem so
far to have been limited largely to the case of crys-
tals with two inequivalent magnetic sites where
there are equal numbers of identical magnetic ions
on each of the sites. ' '4 In all of these cases the
Pryce theory is applicable so that g,« is given by
Eq. (3) or its appropriate generalization in the
case of anisotropic g tensors
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1@+o= 2 Ps I gg ' H + g~ ~ H (51)

Measurements on systems with s~ t s~ wouldbe an

important test of the theory outlined here as dis-
tinct from the analyses of Refs. 3 and 4. Further-
more such measurements, if sufficiently accurate,
would establish the validity of our approach as op-
posed to alternative theories [e.g. , Eqs. (10) and

(11)].
Although the analysis up to now has been confined

to the paramagnetic phase, Eq. (26) applies equa, lly
well to the ordered phase. This is verified in a
calculation of (S', S ) in the zero-temperature
limit, where linearized magnon theory is appro-
priate. In the case of a two-sublattice ferrimag-
net we have

—2(S &o((Sx&o+(Sa&o)
~off(g~(S~ &o+ ga( Ss&)

' (52)

which, when introduced into Eq. (26) yields a re-
sult identical to the zero temperature limit of Eq.
(9).

We have established that Eq. (9) is valid in the
low-temperature limit and invalid in the high-tem-
perature limit. Thus the question arises as to the
temperature where Eq. (9) breaks down and re-
course has to be made to the more general result,
Eq. (26). From the discussion in Sec. III we ex-
pect this to occur when the fluctuations in the AB
exchange field become large. An equivalent crite-
rion involves the exchange mode (q =0 optical mag-
non), which is the high-frequency resonance as-
sociated with Eqs. (5) and (6). The frequency of
this mode, (psX/K)(gg(Ma&r+ gs(Ms&r), is pro-
portional to the mean AB exchange field. When
there are large fluctuations in the AB field the
mode will be overdamped and the linearized form
of Eqs. (5) and (6) [and hence Eq. (9)] will no

longer be applicable. In most systems the high-
frequency mode will become overdamped near
the Curie temperature.

Also, we remark that the two components of the
linewidth y „and y~ reflect fundamentally differ-
ent aspects of spin dynamics. The former is re-
lated to the time integral of a four-spin correlation
function, whereas the latter involves only integrals
over two-spin functions. By making measurements
at different frequencies it may be possible to iso-
late the two components thus inferring separate
information about the two-spin and four-spin cor-
relations. "

As a final comment it should be pointed out that
the analysis in this paper appears to have impor-
tant implications for the interpretation of the elec-
tron-paramagnetic-resonance spectra of magnetic
impurities in metals. Previous analyses often
have been based on linearized Bloch equations sim-
ilar to (5) a,nd (6), but augmented as in Ref. 6 by

phenomenological damping terms. The a,rgu-
ments in this paper suggest that such an ap-
proach is fundamentally incorrect;:for unlike spins
when there is a strong isotropic exchange inter-
action between the conduction electrons and the
local moments. Provided the system is para-
magnetic the effective g factor in our theory is
given by Eq. (29). In order to bring out the dif-
ferences in the two approaches we introduce the
spin susceptibilities of the ions and electrons,
X,. = (S„S;+S,) and X, = (S„S,. +S,). Equation (29)
then becomes

g « = (g'8 Xe +g; X; )/( X, + X; ) (53)

Equation (53) is not the same as the expression for
g f f obtained from the phenomenological equations
of Refs. 26-29. In the absence of spin-lattice
coupling this approach leads to the result

g'e« = (ge Xe + g'; X; )/( Xe + X; ), (54)

where y~and y, are the vsagnetic susceptibilities
of the ions and electrons, X

~= (M, , M~ +M, ) and

X, = (M„M;+M,). Note that (54) reduces to Eq.
(11), whereas (53) is equivalent to Eq. (30). The
difference between Eqs. (53) and (54) is small for
g, =g„but may be important when the mismatch
in gyromagnetic ratios is large.

When the electron-ion interactions are treated
in the molecular-field approximation equation (53)
is equivalent to the g,«obtained from the Bloch
equations derived by Barnes and Zitcova-Wilcox
for an isotropic microscopic exchange Hamiltonian.
In the molecular-field approximation we have

. X."[I+(g;/g.)»."]
X' 2 2 (1 x2

X
No XNp} (55)

x.'o [1+(g./g;) x x,"]
(56)

where g, o and g ~o are the electronic and ionic mag-
netic susceptibilities in the absence of electron-
ion interactions and A. is a molecular-field constant.
The agreement between the two theories comes
about because, unlike Refs. 26-29, both approaches
take proper account of the conservation of total
spin. 3 In Ref. 30 this leads to a modification of the
cross relaxation rates and the detailed balance
condition relative to the expressions used in Ref.
28. It should be noted that this agreement does
not imply that Eq. (1) is in any sense an appropri-
ate Hamiltonian for the impurity problem. Rather,
it is a consequence of the fact that Eq. (29), dis-
playing no explicit dependence on the microscopic
details of the Ha, miltonian, is equally applicable
to both metals and insulators provided the domi-
nant interactions are isotropic and the system is
in the hydrodynamic regime (KT»g, «p, sH).
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