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Using the linear muffin-tin-orbital method described in the previous paper, we have calculated the electronic
structures of the hcp transition metals, Zr, Hf, Ru, and Os. We show how the band structures of these metals
may be synthesized from the sp and d bands, and illustrate the effects of hybridization, relativistic band shifts,
and spin-orbit coupling by the example of Os. By making use of parameters derived from the muffin-tin
potential, we discuss trends in the positions and widths of the energy bands, especially the d bands, as a
function of the location in the periodic table. The densities of states of the four metals are presented, and the
calculated heat capacities compared with experiment. The Fermi surfaces of both Ru and Os are found to be
in excellent quantitative agreement with de Haas —van Alphen measurements, indicating that the calculated d-
band position is misplaced by less than 10 mRy. Very small pieces of Fermi surface, which have not yet been
observed experimentally, are predicted for Os. The limited amount of experimental information available for
Zr can be fairly satisfactorily interpreted if the calculated d bands are raised by about 10—20 mRy relative to
the sp bands. This gives rise to a Fermi surface which is topologically equivalent to that recently found in Ti,
and which does not support open orbits when the magnetic field is sufficiently great that breakdown is
complete. It is suggested that the Fermi surface of Hf is probably similar, although very little experimental
evidence is available for this metal. Some comments are made about the calculational method, which has
proved to be physically transparent, accurate and extremely fast, and the adequacy of the standard potential,
which has now been successfully employed in calculations on the great majority of the transition metals.

I. INTRODUCTION

The hexagonal-close-packed structure is the,
most common among the transition metals, and the
combination of the uniaxial symmetry and the two
atoms per unit cell results in an electronic struc-
ture which is more complex than that of the cubic
metals. This complexity is reflected in the Fermi
surfaces, which have not generally been studied as
intensively as those of more straightforward met-
als. However, a substantial amount of detailed ex-
perimental information is now available and the
time seems ripe for an attempt at a quantitative
interpretation of some of these experiments in
terms of theoretical calculations of the band struc-
ture.

In this paper, we shall consider the 4d and 5d
metals, in which relativistic effects are impor-
tant, and report detailed calculations for Zr and
Hf and for Ru and Os. These elements will serve
as examples of the two groups, separated by the bcc
metals in the periodic table, into which the hcp
transition metals fall. A number of calculations
have previously been performed on the 4d and 5d
hcp metals. Loucks calculated the Fermi surfaces
of~ Y and~ Zr using the nonrelativistic augmented-
plane-wave (APW) method, while Keeton and
Loucks included the relativistic effects in their

study of Lu. The only case in which a detailed
comparison is available between experiment and

theory is Re. Mattheiss calculated the electronic
structure by the relativistic APW (RAPW) method,
and his results are in generally good quantitative
agreement with the de Haas-van Alphen (dHvA)
measurements of Thorsen et al. ,

~ the galvanomag-
netic experiments of Reed et al. , and the high-
frequency magnetoacoustic results of Testardi and

Soden, 7 although there remain some questions
about the small pieces of the Fermi surface. All
of the above-mentioned calculations were based
upon a non-self-consistent muffin-tin (MT) poten-
tial constructed from overlapping atomic charge
densities, ' with the Slater p' approximation for
the exchange and correlation. We have also used
this potential, which has proved extremely suc-
cessful in describing the electronic structure of the
cubic transition metals, ~ in our calculations.
We have used relativistic Dirac-Slater atomic
charge densities as our starting point throughout.
Altmann and Bradley, ~3 on the other hand, used the
cellular method for Y and Zr, with a potential
composed of a Hartree-Fock ionic term and a con-
duction-electron contribution approximated by a
uniform charge distribution in th'e unit cell. Their
results differ substantially from those of the APW
calculations.
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As well as providing an interpretation of certain
experimental results on the metals that we consid-
er, and a prediction of other properties, this paper
has a didactic purpose. We first show how the

complicated band structures of the hcp metals are
constructed from the relatively simple elements
of the sP and d bands, emphasizing the characteris-
tics of the latter, which are essential for an under-
standing of the properties of transition metals.
For this purpose, we employ the atomic-sphere
approximation (ASA) of Andersen, ~4 which is briefly
discussed in Sec. II and described in detail in the

preceding paper, ~~ hereafter referred to as I. In
Sec. III we show the evolution of the band structure
as the hybridization between the bands of different
l character is taken into account and the relativistic
effects are included. In particular, we illustrate
how the mass-velocity and Darwin terms give rise
to quantitative shifts in the band positions, while
the spin orbit coupling produces in addition qualita-
tive changes in the connectivity of the bands. The
trends in the band structures as a function of the

position in the periodic table are discussed in Sec.
IV, together with the details of the band structures
and state densities of the four metals Zr, Hf, Ru,
and Qs, calculated by means of the linear-muffin-
tin-orbital (MTO) method, also presented in I.
These band structures are used in See. V as the
basis for an interpretation of the extensive dHvA

measurements on Ru, ' and Os. '7 Although the lin-
ear-MTO method has been checked by comparing
the eigenvalues for hcp Yb with those derived from
RAPW calculations, "the calculations presented
here provide the first published confrontation of the
method with experimental evidence. As we shall
see, the results are most satisfactory. Some com-
ments are made on the limited amount of available
experimental data on Zr, '9 but, to our knowledge,
no experiments pertaining directly to the Fermi
surface of Hf have been performed. In conclusion,
we summarize the results of our calculations and

their implications, and suggest some experiments
by which the electronic structures of the hcp tran-
sition metals might be further elucidated.

II. METHOD OF CALCULATION

The calculations presented in this paper were
performed using the linear-MTO method which is
derived in detail in I, and we shall be content here
with a brief description of its concepts and princi-
ples. In addition, we will discuss a few practical
details of the calculations.

In order to solve the band-structure problem for
a MT potential, we define, for a single atomic
sphere of radius S, the orbital

X~ (E, r)=i'1'g (r)

4,(E, r)+ D E &
(r/S)', r SD, (E) + l + 1

l

(/S) '', r~S.

Z&'., 2 e*'"X.(E, r-i-R)
lmq R

is an approximate solution of the Schrodinger equa-
tion if, for the specified E and k, the homogeneous
equations

(

gmq

n&
+~& m q~, tmq ~tmq=0

have a nontrivial solution. The approximation is
that the atomic polyhedra may be simulated by
spheres of the same volume and the condition for
a solution is that, inside any atomic sphere, only
the p, (E, r) terms of the corresponding orbitals
survive, while the (r/S)' terms are canceled by the

overlap from orbitals centered at the other sites of
the crystal. Hence the Hermitian structure con-
stants 8', . . .are multipole expansion coeffi-
cients, which are given explicitly in Paper I, Eq.
(4. 4V).

The Eqs. (1) are those of Korringa, Kohn, and

Rostoker, under the approximabon that the inter-
stitial region of the MT potential is taken into ac-
count by using the logarithmic derivatives at the
atomic rather than at the MT sphere, and when
E —V „is set equal to zero in the phase shifts and

structure constants. This latter substitution has
the important consequence that the structure con-
stants become independent of energy and invariant
under a uniform-scaling of the crystal. These
canonical structure constants may therefore con-
veniently be calculated once and for all throughout
the irreducible Brillouin zones of the common
crystal structures. Hence, the atomic-sphere ap-
proximation (ASA) makes possible a complete sepa-
ration between the potential and energy dependen-
cies, expressed in terms of the logrithmic deriva-
tive functions, and the dependence on the structure

Here, P, is the solution at energy E of the radial
Schrodinger equation for the atomic-sphere poten-
tail v(r), which is the potential in the muffin-tin

sphere, augmented by the constant V „in the shell
between the MT and atomic spheres. This orbital
is continuous and differentiable provided that D, (E)
is the logarithmic derivative function at the atomic
sphere, i.e. ,

D,(E) = Sy,'(E,-S)/y, {E,S) .
For a crystal with lattice translations R and with
equivalent atoms at positions. q in the primitive
cell, the linear combination
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and wave vector, contained in the canonical struc-
ture constants. This separation may be extremely
convenient, for example, in the consideration of
the stability of different crystal structures as a
function of electron concentration. ~0

We may diagonalize the ll subblocks of the struc-
ture-constant matrix and obtain canonical bands

8«, and eigenvectors U". ..„-, independent of the po-
tential and the atomic volume. If we then trans-
form (1) to the /i representation, the only off-diag-
onal matrix elements are the hybridization structure
constants 3„&, „, with l &l", the logarithmic deriv-
ative functions are invariant to this unitary trans-
formation because they depend neither on m nor q,
since all atomic-sphere potentials are equivalent
and spherical. If the ll' hybridization is neglected,
the band-structure problem in the ASA reduces to
that of finding the eigenvalues for a single atomic
sphere, subject to the l-, i-, and k-dependent
boundary condition D, (E)= Df „where

/

' (2/+1) sr; (2)
2(2/+ 1) —s,",

or, equivalently, to finding the solutions of

2(2/ + 1)—'
D (E) —/

The logarithmic derivative is a decreasing function
of energy, and the function on the left-hand side of
(8) therefore increases with energy, diverging at
the energies E„,(/) where D, =/. The extent of the
canonical band on the right-hand side of (8) is de-
termined to a good approximation by the empirical
Wigner-Seitz rule

(8) explicitly, and write (1}in a form which is lin-
ear in energy, whereby the problem of hybridiza-
tion can be solved by matrix-diagonalization tech-
niques. This is accomplished by using, instead of
the cancellation principle leading to (1), the varia-
tional principle for the Hamiltonian, together with
trial functions which are linear combinations of
energy-independent .MTOs. The resulting linear-
MTO formalism is also very well. suited for the in-
clusion of corrections to the ASA, and spin-orbit
coupling. In this formalism, we regard the loga-
rithmic derivative, rather than the energy, as the
independent variable, and in the atomic sphere,
the radial part of the trial function of logarithmic
derivative D is the linear combination

of the solution p,(E„,r), normalized to unity in the
sphere, and its energy derivative

The coefficient ~,(D) may be expressed as

(u(D) = u)(- / —1)+ 2SC'2(- / —1, S)[&/(I —ys)j,
(6)

where we have dropped the subscript l. The inde-
pendent variable D is related to 8 as in (2), and

1 4'(- / —1, S)
2(2/+ 1) C'(/, S}

In the linear approximation, the inverse function
of the logarithmic derivative function D(E) is then

0)D ) oo (4)
(C'(D) ~

—&'+ &(r) ~ 4'(D))

so that the solutions E( «D)2of (8), for a given /

but different values of n, lie in energy regions
which are separated by the energies E„,(/). More-
over, the center of gravity of the canonical band
is zero, so that

&'„=0 for all k and / & 0,

~",d 0=0 for /=0.

Consequently, the canonical l band S,&
is trans-

formed by the potential, or more specifically, the
l logarithmic derivative function, into unhybridized
n/ bands E„,(D„) centered near E„,(-/ —1) and ex
tending approximately from E„,(0) to E„,(-~).

For each value of l, we are generally only inter-
ested in one of these bands, with n=v. For the 4d
transition metals, for example, we will consider
the 4d, 5s, and 5P bands. In the vicinity of the en-
ergy of interest E„, we may then parametrize the
logarithmic derivative function so that we can solve

(u(D)
v+

1 g2) 2(D) (8)

and the potential parameters ~,(-/ —1), S@2( / —1, -
S), y &, and (p'„,) can either be obtained by the fit-
ting of (8) to the computed logarithmic derivative
function or, according to (6), from the solution

p, (E„,r) and its energy derivative. The linear ap-
proximation is seen to be limited to the region of
width (P2) ~t2 around E„. If in (6) and (8) we use
D=D«and hence 8 =3",

&, we may conclude that the
unhybridized energy-band structure is derived
from the canonical band structure by fixing the
band position through E(- / —1)= E„+&o(- / —1),
scaling it by

l dE I d(o

pS 2ctD gg 2' =2 Scf (-/ —],, S), (9)

which is proportional to the probability amplitude
at the atomic sphere, and distorting it nonlinearly
by y and (@2). The values of the potential parame-
ters for Zr, Hf, Ru, and Os are given in Table I.
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TABLE I. Parameters from which the band structures of Zr, Hf, Ru, and Os
were calculated.

Atomic number

Conf iguration

Lattice constant (a.u. ) a
c/a

40

4d '5s'

6.1061
1.5931

72

5d 26s

6.0369
1.5811

4d ~5s

5.1028
1.5824

Os

5d '6s'

5.1692
1.5790

Potential parameters
Z„- V „(Ry)

.S

p
d

0.600

—0.133
0.650
0.118

0.600

—0.236
0.647
0.168

0.900

—0.249
0.821

—0.213

0.900

—0.408
0.798

—0.159

10SC 2(- l —1, S) (Ry)

@(-I—1, S)
4(r, S)

(y2) 1/ 2 {Ry)

S

p
d

p
d

2.606
2.460
0.514

0.854
0.722
0.161

3.4

1.08

2. 550
2. 508
0.596

0.838
0.714
0.206

3.0
4.6
1.26

3.754
3.442
0.566

0.851
0.707

—0.063

4.7
6.1
1.07

3.540
3.392
0.640

0.836
. 0.707
0.021

4.0
5.1
1.25

((D„) (Ry)

(u(al ) , y)

0.027
.0.0036

p —21.
GLT —1.0

0.094
0. 014

—10.
1~ 2

0.045
0.013

0.150
0.042

11~

—2. 0

The parameter p, introduced above is unity for free
electrons of all nl and S [provided D, (Z,)= —f —1],
and since it is inversely proportional to the band-
width, we name it the intrisic band mass. It is
also illustrative to compare the relative band posi-
tions of crystalline and free electrons. For this
purpose we use the parameter

c„,=-[z,(-f —1) -z, , (-f'-1)]s', (1O)

which for free sP electrons takes the value km

=7.40. If, at the center of the band, the kinetic
energy is negative in the outer region of the atomic
sphere, as is the case for the d electrons in transi-
tion metals, then 42(-f —1, S), and hence, the
bandwidth and the distortion y, are small. The
d-band mass for the metals considered in Table II
is around 4, and according, ' to (4), (6), and (9), the
d-band width is approximately 25/p, S .

The linear-MTO matrix equivalent to (1) may be
expressed as

k k (11)

where the formal one-center term of the Hamilto-
nian matrix, or rather H-E„O, is

~i(&t;) f'~r ~ ~*.' (12)

and the formal one-center term of the overlap ma-

trix is

[1+&5'.i&~i(D"r~)) f» f'«

The formal two- and three-center terms are, re-
spectively, linear and quadratic in the hybridiza-
tion matrix

(g~ S)4,(—l —l, , S)

(&'S)C'i (- f'-1, S)
lip l~i~ &-&l &l i

which vanishes for I'=l. The hybridization is thus

proportional to the geometric mean of the band-
widths.

The relativistic effects originate in the regions
close to the nuclei, where the electron velocity is
high, and they can be neglected in the outer regions
of the atomic spheres. When solving the relativis-
tic band-structure problem, we may therefore
formally use orbitals which are Pauli central-field
spinors, but employing the logarithmic derivative
functions

a„(z)= —(1+~) + scf„(z, s)/g„(z, s)

derived from the radial Dirac equations. As usual,
~ is the combined quantum number for j and l~o,

and c is the velocity of light. Furthermore, for
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TABLE II. Potential parameters for hcp transition metals, calculated as
described in. the text. The values under Ru (NB) and Qs {NR) were calculated
with the same potential construction, but omitting the relativistic effects in

the solid. The values under Os (NRA) were calculated with the omission of all
relativistic effects, both in the atom and the solid. For comparison, the results
of the free-electron (FE) model are included.

S (a.u. )

Cps

(„(mRy)

3.761

8.52
4.07

0.73
0.81
3.62

3.3

3.347

8.61
2.79

0.69
0.77
3.61

4.4

Tc

2.840

8.38
0.74

0.67
0.77
4.41

2.791

8.21
0.34

0.69
0.79
5.13

10

Ru (NR)

. 2.791

8.02
—0.20

0.66
0.76
4.93

FE

7.40
17.72

Lu Hf Os Os (NR) Os (NRA)

8 (a.u. )

Cps

~s
Pp,

pg

(q {mRy)

3.624

9.27
5.39

0.76
0.78
3.28

3.301

9.47
4. 36

0.73
0.78
3.25

18

2.872

9.57
2.42

0.71
0.75
3 ~ 71

31

2.825

9.37
1.97

0.73
0.79
4. 11

2.825

8.66
0.12

0.64
0.74
3.68

2.825

8.40
—0.61

0.65
0.74
4.40

the 4d and 5d metals, the spin-orbit separation
between the energy functions inverse to (14) and

corresponding to the same value of l

&.= & ~(D)-&, ((D)=(f+') &i(D) (15)

is much smaller than the bandwidths E„(~)—E„(0),
and the dependence of the spin-orbit coupling pa-
rameter in (15) on the logarithmic derivative is the

same as that of the mass-velocity and Darwin band

shifts, since it is a nonrelativistic normalization
effect, which may be accounted for as follows. If

4( ', )=e(., ) ( ')5(., ) (16)

((D)
[1—~(D)I~(D')]'

t(D ) (1V)1+&4!&~'(D)

The logarithmic derivative D is easily computed
as described in I, where it is also shown that the
results of (15) and (1V) are in good agreement for
P t, the heaviest transition metal. Consequently,
we shall use the Schrodinger representation with
the orbitals X „.l 0) and g„ 1 &), rather than the Pauli
representation with its central-field spinors, and

is that linear combination which varies as r '3 near
the nucleus, we may assume that matrix elements
involving this function of any relativistic operator
in the Pauli Hamiltonian vanish. The dependence
of any relativistic shift or splitting on the loga-
rithmic derivative is then simply obtained by using
(16) to eliminate P in (5). For the spin-orbit cou-
pling parameter we obtain

shaH not therefore transform the canonical bands
and hybridization structure constants. As de-
scribed in I, the potential parameters &u,(- / —1),
&4",(- & —1, &), y„and (p,) are obtained by fitting
to

[(~+1)E,= i-g(D)+1&.=&(D)]/(2f+1) =E~(D)

using the Dirac logarithmic derivatives, including
the mass-velocity and Darwin shifts. Similarly,
the two spin-orbitcoupling parameters k, (D„,) and

v, (D,) are obtained by fitting to (15), and we add

the spin-orbit coupling matrix [1, (5.V)] to the Ham-
iltonian matrix (11).

In the practical computations, we used the full
linear-MTO formalism as described in I and, since
the combined correction term and spin-orbit cou-
pling were both included, we used the lmq rather
than the li representation, thus avoiding the k-de-
pendent U transformations. The latter procedure
complicates the programming but speeds up the
matrix diagonalization. In the hcp structure there
are two atoms per unit cell and we included only
s, P, and d waves, so that max(lmq) = 18. The 50
structure constants [1, (4. 48)] were computed by
an EwaM technique, the 171 structure constants
[I, (4. 1V)] of the correction term were computed
directly, and both sets of constants were stored on
magnetic tape for 2541 points in the irreducible
BriQouin zone. For the band structure shown in
Figs. 3-9, the lattice parameters in Table I were
used, but for the calculations of the state densities
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and Fermi surfaces a common c/a ratio of 1.58
was adopted, in order that a single set of structure
constants could be used. Test calculations for the
lowest 10 bands at 90 k points showed that this pro-
cedure led to an rms error ranging from 0.3 mRy
for Ru to 2 mRy for Zr.

The potential was constructed by overlapping
Dirac-Slater self-consistent relativistic atomic
charge densities, which we calculated separately,
using the Slater p approximation for exchange
and correlation, with a = 1, The potential parame-
ters were obtained as described in I, by fitting to
the Dirac logarithmic derivatives for the MT poten-
tial at the atomic sphere of radius (3Q/8z)~~3. The
values of E„were chosen to be not too far from the
estimated Fermi levels and the resulting parame-
ters, from which our band structures may be re-
produced, are shown in Table I. The eigenvalues
were determined by a standard procedure involving
Cholesky factorization of the overlap matrix and
reduction of the transformed Hamiltonian to a real
symmetric tridiagonal matrix. Even though this
procedure is very efficient, it is the most time-
consuming factor in the calculations, and deter-
mines the speed of our method. With two atoms
per unit cell and the inclusion of spin-orbit cou-
pling, the matrices are complex and of dimension
36&&36. With an IBM 36O/V5 computer, all 18
Kramers-degenerate eigenvalues for a particular
k were obtained in about 1.5 sec. For the fcc and
bcc structures, with one atom per unit cell, using
the li representation and neglecting spin-orbit cou-
pling, the nine eigenvalues per k point are obtained
in about 0. 1 sec, corresponding to approximately
1Q msec per eigenvalue.

The accuracy of the method has been discussed
in I, where the empty-Iattice test for free electrons
is also considered. A few eigenvalues for the fcc
transition metal Pd have been compared with APW
calculations, "but more relevant for the present
application is a comparison between the linear-
MTO method and the relativistic APW method at
50 k points for the four lowest bands of hcp Yb. "
It was found that the linear-MTO energies were on
average 3 mRy higher than the RAP% energies,
which is in accord with the variational principle,
that the rms fluctuation about this average was less
than 3 mRy, and that the maximum deviation from
the average was +6 mRy. Considering that the use
of the linear-MTO method in this case increased
the computational speed by more than two orders
of magnitude, this agreement must be considered
very satisfactory.

The Fermi levels, state densities, and extremal
Fermi-surface areas were computed automatically
with a linear interpolation technique employing tet-
rahedral microzones. ~ For Ru, the eigenvalues
were computed at 2541 points in the irreducible

zone, which was therefore divided into 12000 tetra-
hedrons. This mesh is so fine that the error in all
Fermi-surface areas due to the linear interpolation
is negligible. In order to limit the use of compu-,
ter time, we used only 396 points and 1500 tetra-
hedrons in the irreducible zone for the other metals.
Comparing the results for the two meshes in Ru,
we conclude that the use of the coarse mesh may
lead to errors of up to about 1 MG. This is negli-
gible for large Fermi-surface areas, but may be
significant for small sections. The use of the
coarse mesh was as much dictated by the speed
of the linear interpolation procedure as by the
speed of the linear-MTO method. Hence, with this
method, there is no incentive to use an intermedi-
ate interpolation scheme of the type frequently em-
ployed in connection with the APW and KKR
methods.

K~———e-———
T J(
X', I o

i

f

iM

A

H

FIG. l. Brillouin zone for the bezagona. l structure.

III. GENERAL FEATURES OF BAND STRUCTURES

In this section, we shall consider how the band
structure of an hcp transition metal is constructed
from its constituent parts and illustrate the effects
of hybridization, relativistic band shifts, and spin-
orbit coupling through the example of Os.

The Brillouin zone for the hexagonal structure
is illustrated in Fig. 1. On account of the screw
axis along [OOOI j in the hcp structure, all bands
on the hexagonal face are at least fourfold degen-
erate (including spin), when spin-orbit coupling is
neglected. It is therefore possible to adopt a dou-
ble-zone representation, in which the number of
bands is reduced by a factor of 2, by allowing each
to extend over twice the distance to the zone face
in the hexagonal axis. However, spin-orbit cou-
pling lifts this degeneracy, except along the line
R, joining & and L, and we shall therefore consis-
tently use the single-zone representation, bearing
in mind that magnetic breakdown may be impor-
tant for k-space orbits intersecting the hexagonal
face of the zone, especially near the line R. The
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10
5

K T N

4+

r a A K p H S L R S

0
5

6 6
3

FIG. 2. Canonical d
bands d; for the hcp struc-
ture with the ideal c/a
ratio.

—10

2

basis of two atoms per unit cell ensures that all
hcp metals are compensated, i.e. , the total volume
of the electron Fermi surfaces is equal to that of
the hole surfaces.

The canonical d-band structure 3„,. is shown in
Fig. 2 along the symmetry lines of the zone, for
the ideal c/a ratio of 1.633. The degeneracy on
the hexagonal zone face is apparent in this figure.
In general there are ten bands, derived from the
five possible m„states of the two atoms per unit
cell. In Fig. 3 we show the band structure of Os
in the ASA, neglecting all relativistic effects, and
also eliminating the hybridization between the sp
and d bands by setting the nondiagonal structure
constants involving l =2 equal to zero. The d bands
bear a strong resemblance to the canonical d bands,
located in energy by the potential parameter C~ of
Table II, and scaled uniformly by the parameter

The nonuniform distortion represented by y„
and ($3„„)of Table I is small. The difference be-
tween the ideal c/a ratio and the value l.679 ap-
propriate for Os results in some relative changes
in the levels, e. g. , the Fs and I'„ levels are in-
terchanged. The sp bands are much broader than
the d bands and indeed are about 30% broader than
those of the free-electron model, as may be seen
from the mass parameters p., and p~ of Table II.

The effects of hybridization on the band struc-
ture may be appreciated by comparing Figs. 3 and
4, since all nondiagonal structure constants are
included in the latter. In addition, the effect of the
correction term on the purely d-like levels may

also be observed, since it is included in Fig. 4 and
omitted in Fig. 3. We may distinguish between
strong hybridization in which bands of the same
symmetry, which cross in the absence of hybrid-
ization, mix with each other to produce energy
gaps, and meak hybridization in which bands of the
same symmetry repel each other but do not cross.
The drastic effect of strong hybridization is illus-
trated for the sp bands by the thick lines in Fig. 4.
Except at certain symmetry points, aQ bands hy-
bridize either strongly or weakly, in contrast to
the cubic metals, in which bands of purely d char-
acter exist along certain symmetry lines. The
lowest-lying 14, M,+, and L,, d states all hybridize
with s states, leaving K~ as the lowest unhybridized
d level. I 5- I 6 K4 Ml- and Mp are also pure

d states. I"„and the high-lying I'~ are pure p
states, while all others are hybridized.

The relativistic effects on the band positions are
illustrated by a comparison of Fig. 4 with Fig. 5,
which shows the band structure of Os including the
Darwin and mass-velocity shifts, together with the
correction of the ASA described in I. The combined
effect of the mass-velocity lowering and the Darwin
raising of the center of the s band produces a net
lowering of 0.33 Ry with respect to the fixed po-
tential, which is consistent with the value found for
Re by Mattheiss. The mass-velocity correction
lowers the centers of the p and d bands by 0.25
and 0.10 Ry, respectively, while the Darwin term
is negligible for nonzero l. The result, as may
be seen from Table II, is that the d bands rise
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relative to the sp bands, and at the same time the
normalization effect discussed in Sec. II causes all
band masses to increase by roughly 10%, leading
to a relativistic narrowing of the bands.

Figure 6 is the same as Fig, 5, except that the
spin-orbit coupling has been included by the method
described in Sec. II. By altering the symmetry of
the Hamiltonian, it has the effect of lifting the de-
generacy on the hexagonal face of the Brillouin
zone except along the line R joining A and L, and
also of removing most of the accidental degener-
acies along the symmetry lines. Band crossings
remain possible in the 4, P, S, and S directions,
however. Because of the combined effects of time-
reversal symmetry and the center of symmetry in
the hcp structure, all energy bands are at least
doubly degenerate (including spin), even when spin-
orbit coupling is taken into account.

IV. POTENTIAL PARAMETERS, BAND STRUCTURES, AND
STATE DENSITIES

The most significant potential parameters for
the 4d and 5d hcp transition metals are given in
Table II. They are defined in (9), (10), and (17)

with D =- l —1, and were calculated using the pro-
cedure outlined in Sec. II, with the lattice con-
stants given by Pearson. ~~ The 5s' and 6s2 con-
figurations were used for the two periods. These
were calculated to be the atomic ground states,
and the difference may be attributed to the larger
relativistic lowering of the s level in the 5d ele-
ments. The use of the 5s and 6s' configurations
for, respectively, Zr and Os changed C„, by, re-
spectively, —32 and +33 mRy.

The relative positions of the s- and p-band cen-
ters arq not too far from those of the free-electron
model. For the 4d metals C~, is about 15% larger,
and for the 5d about 25% larger than for free elec-
trons. Similarly, the bandwidths are (20-30)%
greater than those of the free-electron bands, and
the masses p., and p~ correspondingly lower. Al-
though the sp bands resemble a scaled version of
the free-electron model, therefore, their precise
form is difficult to reproduce with a weak local
pseudopotential. The d bands lie much lower than
the free-electron d bands, as is characteristic for
transition metals. As the atomic number increases
within a given period C„, decrea, ses, on account of
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culated by the linear- MTO
method, including the cor-
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3 ized bands. The remaining
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the increasingly negative effective potential ex-
perienced by the d electrons, and for Ru the cen-
ters of the s and d bands lie very close. A con-

comitant increase occurs in p,„, so that the d bands
tend to narrow as they fall in energy. Because of
the large relativistic lowering of the 6s levels
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FIG. 5. Relativistic band structure of Os neglecting spin-orbit coupling. The lowest-lying I
&+ state is essentially z

like, I &, is p like, and I'& and I'6+ are purely d like.
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FIG. 6. Relativistic band structure of Os, including spin-orbit coupling, calculated by the linear-MTO method.

mentioned earlier, the 5d band lies relatively
higher, and the center of this band is always sub-
stantially above that of the Gs band. The 5d masses
are also somewhat smaller than the 4d. As may be
seen by comparing the parameters for Ru and Os,
the relativistic band shifts in a particular column
of the periodic table are roughly three times great-
er for the 5d than for the 4d metals. This is also

true for the spin-orbit parameter g„~, calculated
at the center of the d band, which increases rapidly
with atomic number on account of the increasing
effective nuclear charge near the nucleus, where
relativistic effects are particulary important.

These band parameters are reflected in the elec-
tronic structures of the four metals Zr, Hf, Ru,
and Os, shown, respectively, in Figs. 7, 8, 9, and

EF-

I T K T'M E I hAMULKP H S' L R A S
FIG. 7. Relativistic band structure of Zr.
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FIG. 8. Relativistic band structure of Hf.

6, which have been chosen as being characteristic
of the two classes of hcp transition metals. The
state densities for these metals are shown, respec-
tively, in Figs. 10, 11, 12, and 13. They are
composed of a relatively small sp contribution on
which is superposed a large d component with
pronounced structure. As may be seen by com-
paring Figs. 13 with Fig. 14, which shows the state

density of Os when all nondiagonal structure con-
stants are neglected, hybridization between bands
of different l values has a profound effect on the
structure in the density of states. Near the bot-
tom of the d band, strong hybridization between s
and d states lowers the energy at which the rapid
rise in the state density associated with the d elec-
trons occurs. At the top of the d band, on the other

EF-

0.8

0.6

LX

OA

4P
C

0.2

0.0
f T K T' Z I h AM U LK P H 8' L R

FIG. 9. Relativistic band structure of Ru.
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hand, the hybridization is weaker and, as we pointed
out in Sec. III, many of the states are purely d-like,
so that hybridization makes very little difference
to the position of the final peak and the subsequent
rapid drop in the state density. There are many
pronounced peaks and dips in the density of states
of Os which are not present in the canonical d band
state density, and these reflect the presence of
hybridization energy gaps.

Although the d-band masses differ substantially
in these metals, the d band widths, which are in-
versely proportional to g,P, i.e. , approximately
proportional to S@~(-3,S), vary relatively little
as may be seen in Table I. In Table III are given
values of the Fermi surface parameter s~(Ez) cal-
culated from the d logarithmic derivative, from
which the occupancy of the d bands may be estimated
by reference to Fig. 2. The approximate numbers
of d electrons n„are obtained from these parame-
ters by integrating the canonical density of states
up to S~(E~), and are also giveninthe table. The state
densities at the Fermi level N(E~) are given in
Table III, together with the electronic heat capaci-
ties calculated from them. The measured values"
are also given and the ratio, which represents our
estimate of the phonon enhancement of N(Ez) is

TABLE III. Fermi-surface parameters and electronic
heat capacities.

Ez- Vmt (R5)
d(EF)
n (states/atom)
n„{states/atom)
N(EF) (states/atom/Ry)

glory (m J/mole K'-)

y~t (m J/mole K2)a

' ~expt/+theory .

Theoretical enhancement"

0.605
—4.76

4
2.8

13.1
2.27
2.78
1.22
1.41

0.622
—5.46

4
2.5

10.9
1.89
2. 16
1.14
1.34

Ru Qs

0.827 0.898
5.10 4.86

8 8
7.1 7.0

11.8 9.2

2.04 . 60
3.0 2.3
1.47 1.44
l.38 1.39

ref. 23. ref. 24.

compared with the value deduced by MeMillan~'
from the superconducting properties. As may be
seen in Table III, the agreement is satisfactory
for Ru and Os but our calculations give a value of
N(E~) which is somewhat too high, compared with
McMillan's estimate, for Zr and Hf. An increase
in the energy of the center of the d band would re-
sult in a somewhat smaller increase in E~, and
therefore a relative decrease in the Fermi energy
with respect to the rapid rise in N(E) illustrated in
Figs. 10 and ll, with a corresponding decrease in
N(E~). The heat-capacity results therefore indi-
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cate that our calculated d bands may lie somewhat
too low in Zr and Hf, and the significance of this
observation for the Fermi surfaces will be dis-
cussed in Sec. V.
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V. FERMI SURFACES

From the energy eigenvalues and the values of
the Fermi energy E„given in Table III, we have
calculated the Fermi surface sections shown in
Figs. 15-18. Rather complete information on the
Fermi surfaces of Ru and Os is available from
dHvA measurements, and we shall first discuss
these. According to our calculations, the two sets
of surfaces are topologically equivalent. With a
notation in which the position of the center of the
surface (or the open direction of an open surface),
the band in which it lies, and its electron or hole
character are specified, each comprises one open
KMSh surface and five closed surfaces 19e, e,1 10e
UVh, Lvh, and I'10h. The latter two are, however,
very small in Os, so that a relative band shUt of
a few mRy, which is within the combined uncer-
tainty of the potential and calculational method,
would eliminate them. We will discuss the evidence
for their existence later in this section.

The Fermi surface of Ru has been studied in de-
tail through the dHvA effect by Coleridge, ' who
identified the observed orbits in terms of a Fermi
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FIG. 12. Density of states of Ru. As explained ~n the
text, these results were calculated with a finer mesh
than was used for the other metals.
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surface deduced from the nonrelativistic Re calcu-
lation of Mattheiss. 4 His surface is qualitatively
identical with that of Fig. 15, and we agree en-
tirely with his interpretation, except that the mag-
nitude of the observed area ur (see Table IV) indi-
cates that it is associated with the orbit ~ in Fig.
15, rather than the somewhat smaller orbit ~,
even though the measured mass value appears to
be anomalously low. As pointed out by Coleridge,
the existence of magnetic breakdown on the hexag-
onal face of the Brillouin zone is essential for
some of the observed orbits; for example, the
orbits A. which involve both the KMSh and I 7h sur-
faces.

The agreement between our theoretical areas
and the experimental results is excellent, to within
a few percent for the large orbits, as may be seen
from Table IV. Although the I.Vh and I'10h sur-
faces are calculated to be somewhat larger than is
observed experimentally, the over-all comparison
between theory and experiment indicates that the
bands near the Fermilevel are correctly placed to
within a few mRy. Of the smaller surfaces, UVh

is almost completely d like, while the sizes of
I'10h and L Vh are determined predominantly by the
positions of the p-like I',.level and the spd-l. , lev-
el, respectively. Since the Fermi level in the
transition metals is determined principally by the
position of the d bands, a shift in C~, is accom-

panied by a shift in E~ which is of the same sign
and somewhat smaller. A raising of the d band
in Ru would therefore result in a small increase
in the size of U7h, while both I'10h and L Vh would
decrease by a relatively large amount. We there-
fore conclude that the d band should be a few mRy
higher than is indicated by our calculations. The
masses on the large sheets of Fermi surface,
which are predominantly d-like, are enhanced by
an amount comparable with the phonon enhance-
ment of the heat capacity, as expected, but the en-
hancement on LVh and I'10h, where the d compo-
nent is smaller, appears to be somewhat less.

Kamm and Anderson~7 explained their dHvA re-
sults for Os by using the RAP% calculations on Re
by Mattheiss, 4 and again our interpretation is in
essential agreement with theirs. As may be seen
in Table IV, our calculations of the large orbit
areas are in agreement with those observed ex-
perimentally, to within the uncertainty in the latter,
and the enhancement of the masses is comparable
with that of the electronic heat capacity. Princi-
pally because of the relativistic band shifts, we
find that the small surfaces are even smaller than
in Ru, and the I 10h and L 7h surfaces have not
been observed experimentally. However, galvano-
magnetic measurements indicate that the KMSh
surface touches the hexagonal face of the Brillouin
zone, which would imply the existence of LVh.
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FIG. 16. Sections of the
Os Fermi surface in the
irreducible Brillouin zone.

A H

exist. Although it would take only very small rel-
ative shifts in our calculated bands to eliminate
these surfaces, and these are unquestionably within
the possible combined errors of the potential and

calculations, the above considerations indicate
that they may well exist, and it seems worthwhile
to search for them with the dHvA effect. The ex-
ample of Pd demonstrates that very small pieces
of Fermi surface may not always easily be de-
tected 'with the dHvA effect.

Our band structure for Zr is rather similar to
that of Loucks, but the inclusion of the relativistic
band shifts has the effect of modifying the Fermi
surface somewhat, most importantly in simplifying
substantially the electron surfaces around H (Fig.
1V). At first sight, this Ferini surface does not
appear to bear much relation to the relatively
sparse experimental data and, in particular, there

is no sheet which can immediately account for the

approximately isotropic n orbits observed by
Everett. ' Further, we find that, contrary to his
observations, the Zr Fermi surface is open in the

[0001] direction, independently of whether magnetic
breakdown occurs. A clue to these discrepancies
may however be found in the very similar data on

Ti, which have been satisfactorily explained by
Jepsen. 7 In Ti, the ~~ band intersects the Fermi
level between I' and A, dissecting the I'A3h surface
in the manner indicated by the dashed lines in Fig.
17. Following Loucks, we suggest that the same
phenomenon occurs in Zr. Since the A, level just
above the Fermi level has sPd character, this
would require a relative raising of the d bands by
10-20 mRy, with a concomitant increase in E„by
a somewhat smaller amount. As mentioned in

Sec. IV, such a shift seems to be indicated by the

A

'!i

H A

IIY

H

FIG. 17. Sections of the
Zn Fermi surface in the
irreducible Brillouin zone.
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heat-capacity results. Since the third and fourth
bands near l" are almost entirely d-like, such an
increase in the d-band energy would also increase
the sizes of the surfaces associated with them and

hence, as shown in Table V, improve the agree-
ment of the n, P, and y orbits with experiment.
Band shifts of 5-10 mRy relative to EJ; would
bring these orbits into coincidence with the experi-

TABLE IV. Fermi-surface areas and cyclotron masses for Ru and Os. The experimental results for Ru are taken
from Ref. 16 and those for Os from Ref. 17.

Extremal areas
(MG)

Ruthenium

Cyclotron masses Extremal areas
(MG)

Osmium

Cyclotron masses
(m/m, )

Direction

I.7h. [1010]
[1010]e
[1120] n
[1120]
[0001] n

Theory

6.9
5.6
6.1
5.7

17.9

Expt.

3.5
4.5

10.0

Theory

0.29
0.21
0.25
0.21
0.45

Expt.

0.24
0.26

0.53

Ratio

1.2

Theory

0, 4
0.2
0.2
0.2
0.7

Expt. Theory Expt. Ratio

U7 jg [1010]
[loro] P
[1120]P
[1120]
[0001] P

KM8h [1010] X

[1120] A,

[1120] (g)

[1120j ~
[oool]

&9e [1010]0.

[112O] ~
[0001] p

l 10e [1010]p
[1120]p
[0001] v

[0001] v

rloh [lolo] q
[1120]q
[0001] j

10.8
7.5

13.4
8.2

22. 1

128.0
134.0
61.1
49.5
18.5

173.0
193.0
222. 0

143.0
153.0
160.0
168.0

17.2
17.3
9.4

7.5
13.0

20.5

126.0
130.0
60.5

178.0
188.0
216.0

144.0
153.0
158.0
166.0

14.0
14.1
8.0

0.28
0.20
0.35
0.22
0.38

1.10
0.96
l. 16
0.77
0.42

1.19
l.89
1.27

l. 35
l.45
l. 02
le 31

0.28
0.27
0.20

0.27
0.43

1.7
1.4
1.2

1.9

1.5

0.36
0.31
O. 25

1~ 4
1.2

1.6
1.5
1.0

1.5
1.4

1.5

le 3
1.2
1.3

c 2 ~ 3
2.4

a 2. 1
Q

e 5.7

111.0
109.0
65.0
53.0

1.0

7 163.0
175.0
207. 0

P 124.0

P 133.0
P 152.0

P 149.0

0.8
0.8
0.6

1.4 0.1
0.1

1.5 0.1
2.2 0.1
2. 9 0.2

110.0
109.0
68.0

1.00
0.87
0.99
0.92
0.31

160.0 . 1.30
168.0 1.49
205. 0 1.09

124.0 1.12
133.0 1.23
153.0 0.97
l48. 0 0.90

0.12

0.14
0.17
0.22

l.49
l. 10

1.2
1.2
1.2
l. 2

1.5
1.3

1.1
1.0
1.2
l.3
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TABLE V. Fermi-surface areas and cyclotron masses for Zr and Hf. The experi-
mental results for Zr are taken from Ref. 19.

Zirconium

Direction Theory Expt.

Extremal
areas (MG)

Cyclotron
masses (m/mo)

Theory Expt.

Hafnium

Extremal
areas (MG)

Cyclotron
masses (m/mo)

&A 3k [0001]
[0001] a
[oool]
[oool]
[oool]

&A4h [0ooll
[oool] p
[oool] q
[oool]

a5e [lO1O]
[112ol f
[oool]
[0ooll

I16e [101O]
[112O] q
[oool]

H56e [1120] 6
[1010]

27. 9
28. 2

3e 3
6.8

40. 8
31.0
36.6
7.0

43.0
43.5
37.7
54.3

8.7
8.5

34.2

26. 0
25. 8

34.58

38.00
49.88

41.25

1.6.85

28. 99

0.72
0.74
0.57
0.58

0.57
0.89
1.14
0.59

2.54
2.39
2.24
2. 10

2. 34
1.42
2.41

1.90
2.44

O. 95

1.14
1.45

1.83

1.75

29.3
2. 0
2. 1
1.8

13.9

39.7
51.4
14.4

47.4
47. 6
51.0
53.3

15.5
15.9
39.3

0.56
0.52
0.55
0.61
0.94

0.79
l.08
0.98

l.54
1.43
l.93
1.18

1.50
1.28
1.21

mentally observed areas. From among the vari-
ous possibilities, the p orbit has been tentatively
identified by its mass.

In analogy with Ti, '7 the g, g, and & oscillations
can be associated with orbits on the two H-centered
surfaces. & involves magnetic breakdown at the
hexagonal face of the Brillouin zone, and its area
is the mean of those of f and g, as is observed to
a very good approximation experimentally. Fur-
ther orbits involving magnetic breakdown near the
line IIX are seen in Ti, but the spin-orbit coupling
is sufficiently large that they have not yet been ob-
served in Zr. The agreement between the theo-
retical and experimental g areas is rather poor
but, because of the flatness of the bands, relative
shifts of only about 5 mRy are required to bring
them into coincidence. The calculated masses are
surprisingly large, compared with the measured
values, but these are again very sensitive to the
precise positions of the bands.

The calculated Fermi surface of Hf, illustrated
in Fig. 18, is very similar to that of Zr and, in
this case, the 4~ band approaches the Fermi level
very closely. If our calculated d band is indeed too
low, as is indicated by the heat-capacity results,
it is probable that the I'A. 3h surface is also discon-
nected.

VI. CONCLUSION

In this paper, we have tested the linear-MTO
method by comparing calculations based on it with

detailed experimental results for some hcp transi-
tion metals. The close agreement between experi-
ment and theory for Ru and Os demonstrate, as
did earlier comparisons with the RAPW method
for Yb, that it is a technique for solving the Schro-
dinger equation in a solid which gives energy eigen-
values with an uncertainty which is generally small
compared with that inherent in present methods of
constructing a Prior potentials. The principal ad-
vantage of the method is that it is computationally
extremely fast, so that it is well suited, for ex-
ample, for calculations of more complex proper-
ties involving the electronic eigenfunctions, and

for self-consistent calculations on complicated
structures with many different atoms in the unit
cell, In addition, the concepts of canonical bands
and potential parameters are physically trans-
parent and allow a simple understanding of the
electronic structure. Furthermore, adjustments
in the potential parameters may readily be made
to improve the agreement with experimental data
in the spirit of, but in a more straightforward and

physically meaningful manner than, earlier inter-
polation schemes.

Together with the earlier calculations mentioned
in the Introduction, our results demonstrate again
the success of the muffin-tin potential constructed
by superposing atomic charge densities, with the
Slater p~ approximation for exchange and corre-
lation. In calculations on transition metals, such
a potential gives the relative positions of the s, P,
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and 4 bands to within about 10 mRy, and therefore
a Fermi surface which is almost always qualitative-
ly correct (Zr is the only known exception) and is
generally also in impressive quantitative agree-
ment with experimental results. There has been
some question of whether such a potential is suit-
able for transition metals with few d electrons,
or for the Sd elements, but the success of the cal-
culations on ~ Ti appears to set such doubts at
rest. The difficulties with such metals appear to
be associated with the strong hybridization near
the bottom of the d band, which makes the Fermi
surface very sensitive to the precise band posi-
tions, rather than with any inherent weakness in
the potential.

It is of great importance for the further develop-
ment of our understanding of transition metals that
such a standard potential is available, even though
the theoretical justification for its sucess is far
from complete. The standard potential is not self-
consistent, but provides a prescription for a local
one-electron potential which is better than that re-
sulting from almost all more sophisticated self-
consistent procedures. It is a major challenge to
construct and justify a self-consistent potential
which gives results in as good agreement with ex-
periment as the standard potential, and such a
development is essential for further progress in
understanding transition-metal compounds.

Our discussion suggests possibilities for further
studies of the metals which we have considered.
Ru is the best understood of them, and measure-
ments of its galvanomagnetic properties would
clearly be of interest, especially because the KMsh
surface supports two independent sets of open or-
bits, one of which is destroyed by magnetic break-
down. A more precise measurement of the elec-
tronic heat capacity would also be of interest. We
have argued that two sets of very small hole sur-
faces may well exist in Os, and a further search
for dHvA oscillations associated with them seems
worthwhile. If further results become available
on the small sections of Fermi surface in Os, a
recalculation of the corresponding areas using a
much finer mesh would be justified, since our re-
sults for these surfaces are at present only semi-
quantitative. The experiments on both Ru and Os

are sufficiently precise and detailed that a fitting
of the Fermi surface areas using the s, P, and d
logarithmic derivatives or phase shifts (with spin-
orbit coupling) as adjustable parameters would be
useful. This would give further information about
the validity of the muffin-tin approximation and
the standard potential.

The experimental data available on Zr are much
less complete, but our interpretation of them ap-
pears plausible, especially in view of the success-
ful explanation of the very similar properties of
Ti. It might be worthwhile to adjust the potential
parameters empirically, in order to obtain a better
agreement with the experimental results, but fur-
ther dHvA measurements are probably necessary
before the band structure can be specified with high
precision. The difficulties of purifying Hf provide
a formidable obstacle to obtaining information about
its Fermi surface, but it might be possible to pre-
pare a sample of sufficiently high purity to deter-
mine whether there are open orbits in the [0001]
direction, even in very high magnetic fields, in
which magnetic breakdown is complete.

Although our quantitative knowledge of the elec-
tronic structure of the hcp transition metals is not
generally as precise as that of the cubic metals,
and relatively little work has yet been done on ex-
amining the energy levels away from the Fermi
level by optical and photoemission techniques, it
appears that we now have a good physical under-
standing of their energy bands and can calculate
many electronic properties with satisfactory ac-
curacy. A natural extension of this work would be
an attempt to attain a similar understanding of
closely-packed transition-metal compounds, for
which, at present, there is a paucity of both reli-
able calculations and detailed experimental results.
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