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Two approximate methods for solving the band-structure problem in an efficient and physically transparent

way are presented and discussed in detail. The variational principle for the one-electron Hamiltonian is used

in both schemes, and the trial functions are linear combinations of energy-independent augmented plane waves

(APW) and muffin-tin orbitals (MTO), respectively. The secular equations are therefore eigenvalue equations,

linear in energy. The trial functions are defined with respect to a muffin-tin (MT) potential and the energy
bands depend on the potential in the spheres through potential parameters which describe the energy
dependence of the logarithmic derivatives. Inside the spheres, the energy-independent APW is that linear

combination of an exact solution, at the arbitrary but fixed energy E, and its energy derivative which matches
continuously and differentiably onto the plane-wave part in the interstitial region. The energies obt»n«with
the linear-APW method for the MT potential have errors of order (E—E„) . Similarly, the energy-independent

MTO is that linear combination which matches onto that solution of the Laplace equation in the interstitial

region which is regular at infinity. The energies obtained with the linear-MTO method have additional errors

of order (E —V t,), arising from the interstitial region where the potential is V t, . The linear-APW (LAPW)
method combines desirable features of the APW and OPW methods; it can treat d bands, the energy
dependence of its pseudopotential is linear and, owing to the smoothness of the energy-independent APW at
the spheres, non-MT contributions to the potential are included principally through their Fourier components.
The linear-MTO (LMTO) method is particularly suited for closely packed structures and it combines desirable
features of Korringa-Kohn-Rostoker, linear-combination-of-atomic-orbitals, and cellular methods; the secular
matrix is linear in energy, the overlap integrals factorize as potential parameters and structure constants, the
latter are canonical in the sense that they neither depend on the energy nor the cell volume and they specify
the boundary conditions on a single MT or atomic sphere in the most convenient way. This method is very

well suited for self-consistent calculations. The empty-lattice test is applied to the linear-MTO method and the
free-electron energy bands are accurately reproduced. Finally, it is shown how relativistic effects may be
included in both the LAPW and LMTO methods.

I. INTRODUCTION

During the past fifteen years the techniques for
solving the band-structure problem have reached
the point at which, with the aid of large computers,
an accurate solution may be obtained. Although the
one-electron problem may, in principle, be solved
with arbitrary accuracy for a given periodic poten-
tia. l, particularly if it has the muffin-tin (MT) form
appropriate for closely packed elements, in prac-
tice a comparison of different calculations for the
same MT potential reveals computational discrepan-
cies in the energy eigenvalues as great as 0. 01 Ry,
provided that they lie less than about 1 Ry above
the bottom of the conduction ba.nd. For open struc-
tures and higher energies the accuracy is lower.

The problem of constructi. ng one-electron poten-
tials has been solved to the extent that, for non-
magnetic closely packed elements, we can, by a
judicious choice of configuration and the exchange-
correlation contribution, arrive at potentials which
reproduce the experimental Fermi surfaces with an
accuracy also equivalent to about 0. 01 Ry. This is
the accuracy, for example, of transition-metal po-
tentials, as discussed in more detail in the com-
panion paper by Jepsen, Mackintosh, and Ander-
sen, hereafter referred to as II. Recent develop-

ments in the theory of local exchange correlation
potentials and attempts to use them ' have raised
the hope that, if we can solve the band-structure
problem self-consistently, we may, in an unambig-
uous and realistic way, compute ground-state prop-
erties such as cohesive energies, interatomic
forces, charge transfer, and magnetic moments,
and also excitation spectra described by the one-
electron Green's function.

However, the augmented plane wave (APW) and
the Korringa-Kohn-Rostoker (KKR) methods, which
have allowed the soluti. on of the band-structure
problem for a wide class of materials, require a
computational effort which, despite recent attempts
to improve the efficiency, is barely feasible in tru-
ly self- consistent calculations. This is particularly
so in the calculation of ground-state properties of
compounds and magnetic crystals, where self-con-
sistency is imperative, and in the calculation of ex-
citation spectra, where matrix elements are needed.
Moreover, the AP% and KKR methods still have the
eharacteri. sties of numerical technques, , well suited
for accurate calculations on particular crystals,
but not so far amenable to obvious simplifications,
in contrast to the way i.n which the cellular, the
orthogonalized-plane-wave (OPW) and the linear-
combination- of-atomic-orbitals (LCAO) methods
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have lead to, respectively, the spherical, the
pseudopotential, and the tight-binding approxima-
tions.

A substantial effort to derive from the KKR for-
malism a simple, yet general, scheme based on the
concepts of pCeudopotentials and d-wave resonances
was initiated by Ziman, Hubbard, Heine, and oth-
ers, and it has reached its most sophisticated de-
velopment in the work of Pettifor. His hybrid near-
ly-free-electron tight-binding scheme is computa-
tionally fast and can yield accurate energies, but it
cannot treat broad d bands as, for instance, those
of the alkaline-earth metals or the early transition
metals. Furthermore, the phase-shift parameters
are nonunique. We feel that, in these attempts,
the KKR method has been changed too drastically
and, since the band structures achieved from the
APW and KKR methods exhibit gradual changes as
one proceeds through the Periodic Table of elemen-
tal crystalline solids, it is difficult to justify treat-
ing s, p, d, and (in the case of the light actinides)
f bands in radically different ways. In this paper
we shall therefore present'APW- and KKR-like
formalisms which have the virtues lacking in the
original formulations, simply by using energy- inde-
pendent APWs of a type previously mentioned by
Marcus' and energy-independent muff in-tin orbitals
(MTOs) of a type suggested by the author. ~'~2

The obvious computational advantage of using the
variational principle for Schrodinger's equation with
energy-independent basis functions is that the secu-
lar equations become linear in energy, that is, they
reduce to the eigenvalue equations

(I. I)

from which all eigenvalues E,". and eigenvectors A~,.
of a given Bloch vector k can be found simultaneous-
ly by diagonalization procedures, ' and the wave
functions are in a form convenient for further use,
e. g. , they are strictly orthonormal. In order to
employ Schrodinger's equation, instead of the equiv-
alent. integral equation, we shall use the linear-
combination-of-MTO (LCMTO) formalism~ ' rather
than the equivalent KKR formalism.

Both the energy-independent and the conventional
APWs and MTOs are defined with respect to a MT
potential but, while the conventional basis functions
are constructed inside the MT spheres from the
solutions P, (E, r) of the radial Schrodinger equa-
tions at the energy in question, the energy-indepen-
dent basis functions are constructed from linear
combinations of the functions Q, (E„, r) and their
energy derivatives P, (E„, r) at the arbitrary, but
fixed, energy E„. This has the consequence that
the linear-APW and -MTO methods are no longer
exact for the MT potential but the errors of the en-
ergies and wave functions are, respectively, only
of fourth and second orderin the difference Z,. —E„.

In practice, the fourth-order errors of the energies
amount to less than 1% of the bandwidth over its
entire range, which for wide s and p bands is of or-
der 1 Ry. Moreover, in the linear-MTO method it
is easy to obtain wave functions correct to third or-
der. As in the original formalisms, the potential
in the spheres only enters through the logarithmic
derivative functions SP, (E, S)/Q, (E, S) at the sphere
or rather, through the parameters of these functions
of energy, and our potential parameters are thus
generalizations of the parameters used by Bardeen,
Silverman, and Brooks' for describing the position,
mass, and higher-order terms of the bottom of a
simple conduction band.

In the interstitial region, outside the MT spheres,
the energy-independent APWs are plane waves
whereas the energy-independent MTOs have a more,
restricted form; they are solutions of the Laplace
equation, i. e. , they have zero kinetic energy. In
contrast to the KKR structure constants, those of
the linear-MTO (LMTO) method are therefore ca-
nonical in the sense that they neither depend on the
energy nor on the atomic volume, and they can be
tabulated once and for all for a given structure
throughout the corresponding Brillouin zone. In the
approximation that the overlap integrals in the in-
terstitial region are substituted by integrals in the
shell between the MT and atomic Wigner-Seitz
spheres, these canonical structure constants &,

"

specify the anisotropic and k-dependent boundary
condition on a single atomic sphere. The eigenval-
ues of the diagonal blocks 8," ~ ., define canonical l
bands from mhich the unhybridized energy-band
structure may be derived by scaling with the above-
mentioned potential parameters, provided that they
are defined at the atomic sphere. When the inte-
grals in the interstitial region are taken into ac-
count properly, the choice of vanishing kinetic
energy for the MTGs in this region leads to errors
in the energies of order (E,". —V „), where V „is
the potential in the interstitial region. For closely
packed structures, and for energies no more than
1 Ry above V „, these errors rarely exceed
0. 01 Ry.

The energy-independent APWs form a complete
set of functions in the interstitial region and,
since, contrary to the conventional APWs, they
are differentiable at the MT spheres, they are
particularly suited for open structures where non-
MT contributions to the potential are important. In
fact, the linear-APW (LAPW) method is quite simi-
lar to, and has all the advantages of, the OPW .

method often used for semiconductors; but, in addi-
tion, it treats d bands as readily as the convention-
al APW method, and there is no need for explicit
core state orthogonalizations because Q, (E„, r) and
&f&, (E„, r) are exactly orthogonal to the core states
of the MT well.
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The convergence of the LAPW and LMTO methods
are essentially the same as for the conventional
nonlinear APW and KKR methods, which means that
4-60 energy-independent APWs and 4 —16 energy-
independent MTOs are needed per atom in the
primitive cell; the smaller numbers pertain to the
simplest metals while the larger numbers pertain
to open structures and situations in which the bands
have a significant f character. The computational
speed of our methods is largely determined by the
diagonalization techniques for the following reasons:
the radial Schrodinger equations need only be solved
at a few energies; the Hamiltonian and overlap ma-
trices are rather simple, particularly those of the
LAPW method; and the structure constants of the
LMTO method can be computed and stored once and
for all. Owing to the smaller matrix size in the
latter method, it is generally to be preferred and
with our' present nonrelativistic LMTO routines
for fcc and bcc crystals, we obtain all nine eigen-
values per k point in less than 0. 1 sec with an IBM
360/75 computer. The computing times for our
relativistic routines for hcp crystals will be re-
ported i.n II. If we neglect the spd hybridization and
use the above-mentioned atomic-sphere approxima-
tion (ASA), which is not equivalent with the spheri-
cal approximation to the cellular method, there are
no diagonalizations to perform, and a self-consis-
tency cycle, therefore, merely consists of solving
the radial Schrodinger equations, scaling the canon-
ical state densities by the potential parameters,
finding the Fermi energy, . constructing the spheri-
cally symmetrized charge density, and solving the
radial Poisson equation. This procedure may be
accomplished in a, few seconds, and Madsen et gl.
have used it to study the behavior of the magnetic
moment of Fe as function of atomic volume and

crystal structure. At points of high symmetry in
the Brillouin zone, where hybridization is weak or
absent, the energies may be computed by hand from
tables of the canonical bands and potential param-
eters. '

For reasons of length this paper will be limited
to a presentation of the LAPW and LMTO formal-
isms and a discussion of their accuracy. Unpub-
lished accounts of these formalisms, together with
applications to transition metals, may be found in
Ref. 11, while the simple con.cepts of the LMTO
method, i. e. , the canonical bands and the potential
parameters, were briefly communicated in Ref. 17.
A more general linear-MTO formalism for mole-
cules was presented by Andersen and Woolley. In
II may be found a detailed study of the electronic
structures of the hcp transition metals using the
LMTO method. Koelling and Arbman" have inves-
tigated the computational aspects of the LAPW
method, while the self-consistent-LMTO method is
currently being applied to the compounds PdsFe

and VSGa by Jepsen' and by Jarlborg and Arbman,
r espectively.

The organization of the present paper is as fol-
lows. In Sec. II we consider a single MT or atomic
sphere and derive the Q-Q formalism common to the
two linear methods. In Sec. IIA we present the
basic formalism, and in Sec. IIB we make a specif-
ic choice of potential parameters, which will prove
useful at later stages, and give relations between
them. In Sec. D C we discuss the accuracy and
show how the potential parameters are related to
the coefficients in a Laurent series for the exact
logarithmic derivative function, and in Sec. IID we
give as an example, and for later use, expressions
for the potential parameters of free electrons. The
LAPW method is described in Sec. III. The basic
formalism may be found in Sec. III A, while the ac-
curacy and convergence properties are discussed
in Sec. III B, non-MT contributions are introduced
in Sec. III C, and a comparison with other APW for-
malisms is made in Sec. IIID. The LMTO method
is discussed in Sec. IV. We first define the energy-
independent MTO in Sec. IVA, and give its one-
center expansion. In Sec. IV 8 we write down the
Hamiltonian and overlap matrices, first in the ASA,
and then include a combined correction for the ne-
glect of the corners of the atomic polyhedron and
the higher partial waves. In Sec. IV C we dis cuss
the accuracy and show, by comparison with the KKR
formalism in the ASA, how the one-center expansion
of the wave function, correct to third order in

E,". —F.„, may be derived from the LMTO eigenvec-
tors. In Sec. IVD we give expressions for the canon-
ical structure constants, define the canonical bands,
and discuss their properties, in particular their
first and second moments. The physical signifi-
cance of the potential parameters becomes clear in
Sec. IV E, where we show how they determine the
positions, widths, and distortions of the unhybrid-
ized energy bands relative to those of the canonical
bands. As an example, we consider the free-elec-
tron bands in the hcp structure. In Sec. IV F the
LMTO formalism is extended to the case of several
atoms per primitive cell, and we give the expres-
sion for the spherically symmetrized electron den-
sity in the ASA. Relativistic effects are included
in Sec. V, where we use the Schrodinger rather
than the Pauli representation because the spin-orbit
splittings encountered in all solids, except perhaps
the actinides, are at least one order of magnitude
smaller than the relevant bandwidths. In Sec. VA
we show how the potential parameters, with the
addition of the spin-orbit coupling parameter and a
r.ormalization parameter, determining the depen-
dence of the relativistic effects on the position
within the band, may be derived from the solutions
of the radial Dirac equations. The LAPW and
LMTO spin-orbit coupling matrices are then given
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in Secs. VB and VC, respectively.
This paper is rather lengthy but has the virtue of

communicating in a comprehensive manner the for-
malism of the linear methods. The essence of the
LAPW method may be found in Secs. IIA, IIIA, and
V B, while a concise description of the LMTO method
is given in Sec. II of the companion paper II.

II. LINEAR METHOD FOR SINGLE SPHERE

In this section, we shall present an approximation,
valid in the neighborhood of some arbitrary energy
F„, to the eigenvalues of a single atomic or muffin-
tin sphere of radius S, and with the spherically
symmetric Hamiltonian —V + v(r) (in atomic ryd-
berg units).

A. Basic formalism

As radial basis functions, for each value of /, we
use the solution

FIG. 1. 4d energy derivative functions with D„=—3 for
yttrium. P=$ rQ„, P=S B&/BE, and &—=.$48 P/BE

of the radial Schrodinger equation for v(r) and its
energy derivative

( )
Sltl, (Z, r)

ul
Ev

In the following, we shall often omit the subscript
The normalization is specified through

(2. 1)

Consequently, Q„(r) and Q„(x) are orthogonal, and
it may be shown that they are both orthogonal to the
core states. The radial logarithmic derivatives at
the sphere boundary

D„-=Sy„'(S)/y, (S)

D.= S j„'(S)/j„(S)

are always different, as may be seen from (2. 9),
and a trial function of arbitrary logarithmic deriv-
ative D is therefore the linear combination

(2. 2)

that is,

(2. 5)

The normalization integrals are

&[I+(0„)&(D )~ (D)],
(2. 6)

and this expression will, together with (2. 4), form
the basis for our derivation of the linear-APW and
-MTO methods in Secs. III and IV.

B. Potential parameters

When in the following sections we consider the
band-structure problem, we shall join together the
trial functions from all spheres of the solid. The
influence of each sphere on the energy spectrum
will then be given as a set of potential parameters,
which are the parameters (p„,), plus the param-
eters of the energy functions ~, (D) and the ampli-
tude functions C, (D, S) —= C, (D). From (2. 2)

where, in addition to l, we have omitted a sub-
script v on 4 and &d. In Fig. 1 we show $44,
and &t&4 for yttrium.

In the basis of

(2. 2)

and

(u(D) = ——."
Q„D —D„

4(D)=e, D" D",
V

(2. 7)

(2. 8)

(el ~ (D )~H- E„~el (D))=Ill l5 ~ (0, (D), (2. 4)

as obtained by differentiation of Schrodinger's
equation (H —Z)ltd(E, r) = 0 with respect to energy,

where Y, are the spherical harmonics with the
phase of Ref. 21, the Hamiltonian matrix elements
in the sphere are given by

as specified by the logarithmic derivatives D„and
D„, and the amplitudes Q„and Q„, at the sphere.
For the latter we have adopted the notation Q„=—Q„(S)
and g„—= Q„(S). Of these parameters, only three are
independent since from (2. 1), from (2. 5), and by
use of Green's second identity,
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= (D„—D„)s(f&„$„. (2. 9)

The functions +(D) and 4(D) are thus related by

S~'(D) =-—.
dD

(2. io)

U, instead of the amplitudes, we use Sg„and Sp„p„,,

the sphere radius will not be a separate parameter.
For each sphere and for each value of the radial and
angular quantum numbers v and l, there are there-
fore four independent potential parameters, e. g. ,
D„, Sy'„, Sy„j„, and ( j„'&.

The values of the first three parameters depend
strongly on the choice of E„, and it will be more
convenient to use v(D~), SC (D&), and C (Dz)/4(Dz),
which refer to specific boundary conditions D, and

D2. The choices Dj = —/ - 1 and D2 = / will prove
useful, and with them we obtain alternatively to
(2. 2), (2. 7), and (2. 8), respectively,

(o(D) —(u(- I- 1)
(I)- (-I-I)

~(D) —~(&)
+

( ) () C(- l- 1, r), (2. 11)

and

(u(D) —(u(- I-1) C(- l —1) D I+1+
~(D)-~(f) C(I) D-I

(2l + 1) 4 (- I —1) C (I)
(D+ /+I) 4(- I-1)—(D —I) C(l)

(2. i2)

The relation implied by (2.9) is

SC (D )@(D ) = —[ (D ) - (D )]/(D - D ),

and with our choices of D, and D~

(2. 14)

(2E+1)SC (- I —1)C (I) = (u(- l —1) —(u(l) . (2. 15)

In the first place, the (~, C) parameters are ob-
tained from D„, Sg„and Sg„g„using (2.7)-(2.9).
Subsequently, the latter parameters may be rede-
rived from tabulated values of the former; D„ is
obtained from (2. 12) when setting D=D„and ru(D)
= 0, the value of S&f&'„ follows from (2. 11) evaluated
at the sphere, and the value of Sg,g„may finally
be obtained from (2. 7) and (2. 9) when setting
D= —/'- 1.

C. Accuracy

We now compare the above-mentioned linear ap-
proach leading to (2.4) and (2. 6) with the exact one
followed in the APW and KKR methods for the si.ngle
sphere. In these methods, all information about
the sphere, for a particular value of l, is carried
by the logarithmic derivative function

equation and regarding the energy as the indepen-
dent variable. This function may be expressed in
terms of the eigenvalues E„(n=o, 1, . . . , v, . . . ),
specified by the boundary condition D(E„)= D„, and
the corresponding partial probabBity densities P„
at the sphere as

1 Sg„
D(E) —D„„E-E„' (2. ie)

This representation of the logarithmic derivative
function, which is implicit in the work of Saffren
and is derived here, shows that D(Z) is an ever de-
creasing, cot-like function. In the linear approach,
we estimate the vth branch of the inverse function
of D(E), that is, the eigenvalue defined by the quan-
tum numbers vl plus the boundary condition D, by
use of the variational principle for the Hamiltonian
and with the trial function C. (D, r). From (2. 4) and
(2. 6), this is

(2. i7)

of Q(E, r) converges at the sphere to Q(E, S), al-
though its logarithmic derivative is D„rather than
D(E) The expan.sion coefficients may be obtained
from

o=- &y„I If EI@(E)&

=(E- E.) (e(E) I e.&+[D(E) D.] sy(E)y-„,
(2. iS)

whereby (2. 16) is proved. From this representa-
tion of D(E) we realize that its vth "period" may be
described by the Laurent series

1 SP„ Y ' Sg„ ~ ' SP„
D(z) —D„& „z„. „z'„„

(2. 19)

where E= E —E„and F.„„=—E„—.E„. For the second
term we fi.nd

It is intuitively obvious that the difference between
C (D(E), r) and the correct wave function P(E, r) is
of order (E —E„), whereby the error of the varia-
tional estimate (2. 17) is of order (E —E„) . For
the wave functions, it is then consistent to use the
Taylor series to third order in energy of $(E(D), r)
instead of the first-order estimate C(D, r) We.
now prove (2. 16), consider the accuracy of (2. 17)
in detail, and give relations between the potential
parameters, the logarithmic derivative function,
and the second and third energy derivative functions.

The formal expansion

Z(e(z) I @„&e„(r)

D (E) = S d& (E, S)/P (E, S)

obtained by integrations of the radial Schrodinger

1

Sy'„E„'„=—Sy.j„=(D„-D„)-' (2. 2o)
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by substituting the Taylor series

&t' (E, ~) = 4 „(r)+ e P„(r) + o(~) (2. 21)

into (2. 18). By use of (2. 7) and (2. 9) we may then
write (2. 19) as

1 1 c ' Sg„'

~(D(E)) 4 Sy„'„ E'„„
(2. 22)

~ ' = ~ '(D(E))+(0'. & ~(D(E))+o(&)

and, by comparison with (2. 22),

Z sy'„E„'„=sy'„( j'„&

(2. 24)

=- S~:(e,lk. &
=- —.'Se.~.

'(D. D-; )S—e'.Se-.e. (a. as)

The three latter expressions may be derived from
(2. 18) with n= v by substituting the Taylor series to
third order for Q(E, y) and p (E) and making use of
the normalization condition (2. 1). It then further
appears that D„"=D„.

The difference between the variational estimate
and that of the Laurent series, truncated after the
first three terms, is of higher order than the error
of either estimate. This is so because v(D(E))+E„
equals the energy to second order, rather than to
first order, whereby the functions o(e) in (2. 22) and

(2. 24) are identical to second order. The leading
term in the error of the variational estimate (2. 23)
is then

,4g'I'4 'E-3
n i v

which, as expected, is positive when Q„(x) is the
first state above the core states for which $„=0.
The width of a conduction band in a closely packed
solid is of order —,

' E&„»„and the amplitudes 1 g„i
and I P„„I are nearly equal. If we choose E„at the
middle of this band, the error at the band edges is
seen to be around gpss of the bandwidth. Hence, the
linear approximation is acceptable over the entire
bandwidth.

The variational esti.mate (2. 17) is confined to the
neighborhood of E„regardless of whether 4„(D, r)
is orthogonal to the lower-lying states of the same
logarithmic derivative or not, specifically,

which proves that &d(D(E))+E„ is the correct energy
to order e . The error of the trial function
C (D(E), r) is then, by comparison of (2. 2) with
(2. 21), of order 4, and the error of the variation-
al estimate is of order e, that is,

E(D(E)) = E+o(~') .

Also, the fourth logarithmic derivative param-
eter g SQ„E„„in (2. 19) may be expressed in terms
of previously def ined potential parameters. From
(2. 17) and (2. 23)

~E(D) E
~

&'( j~&-~~~ (a. 26)

Considering again a conduction band, and making
use of (2.25), we realize that the range set by (2. 26)
extends approximately —,'E(„.»„on either side of E„,
that is, twice as far as the band edges. Hence, the
vth branch of the inverse function of D(E) is almost
spanned by the variational estimate, but for loga-
rithmic derivatives in the range around D„. , speci-
fied by

~(D D) & (D, D) &~(Sy (j2&~~3 (2. 27)

the esti.mate E(D) is quite erroneous. This is
clearly seen in Fig. 2 where we have shown, for
free s electrons, the true logarithmic derivative
function, D(E) = S(KZ) cotIS(KE)] —1, together with
the three-term Laurent estimate, the variational
estimate, and ~(D(E)). We have used S E„=—,

'
7&,

and the values of the potential parameters are de-
rived in Sec. IID. As discussed in Sec. IVD, the
boundary conditions at an atomic sphere of a closely
packed solid only permit a band of E character in
the range of energies where D, (Z) is negative, and

only in this range is an accurate description of the
logarithmic derivative function needed. If, there-
fore, a linear method is employed, and F.„ is such
that, for one of the l's included, (2. 27) defines a
range of negative logarithmic derivatives, one part
of the l band will appear far below E„while the re-
maining part will appear far above F„, and the two
parts will be connected by steep unphysical bands.

~Such a situation might arise in a computation focus-
ing on the 4s-4p bands of Cu, with F.„ lying between
the 3d and 4d bands so that D„„is positive. If D~
turns out to be negative, a linear method which can
and must yield five continuous d bands does not
know whether to pick the 3d or 4d bands; it there-
fore picks one part of each. The disturbing unphys-
ical bands may, however be swept out of the range
of interest simply by setting (Q„,&=0 for the I in
question, whereby E, (D) is substituted by the mono-
tonic function &u& (D).

D. Freewlectron parameters

The potential parameters for free electrons were
used in Fig. 2 and will be referred to in the follow-
ing. We shall therefore give expressions for them.
The radial wave functions of kinetic energy K are
the normalized spherical Bessel functions

4, (&', ~) =j,R~) (j,'(«)& '", (2. 28)

and the logarithmic derivative functions are

D, (E') = x~,'(x)/~, {x), (a. 29)

where x=—KS.
We shall only be using the logarithmi. c derivative

functions for l'&2-3 and, for not too small values
of x, they may be found by foreward recursion from
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FIG. 2. Estimates of
the first branch (p=o) of
the logarithmic derivative
function for a free s elec-

-0 tron. The estimate ~
(2.7) is correct to second
order in E-E„, while
E(D) (2.17) and Lau {2.19)
are correct to third order.
The potential parameters

10
are given in the second
column of Table l.

[D„,+(I+I)+I] (D, —I) =- x', (2. 30)

starting with Do = x cotx —1. The parameters P,
8$/BZ, and s2&f&/sZ may be obtained by differen-
tiations with respect to energy of the logarithmic
derivative function since, from (2. 18),

S0'(Z) = [-D(Z)] ' (2. 31)

—S —D, = (D, + l+ 1)(D, —I) + (Z —v) S

and for free electrons (Z- v)S =x and

Moreover, the radial Schrodinger equation may be
written in the form

and

—Sy, , ' =(2I+5)-',

~ 'el((', ') )=i(3~ 5)'(2~ ~)j'.

For small values of x, the spherical Bessel
functions are proportional to x„whereby the loga-
rithmic derivative functions tend towards E. For
D„, = I and v=0 we may then use (2. 30) in reverse
to express the coefficients of the Laurent series
(2. 19) for (D, —l) ' in terms of the coefficients of
the Taylor series for D„,+(I+I)+1. The result is

S $0=2I+3,

$9 ~ 9—= 2gS8$ Bg

Consequently,

SQ =2K /[x +(D+I+1)(D—l)],

& In/ 3+2D —Sag~
8F 4K

and

(2. 32)

One obvious application of these values is to the
computation of D, (K ) and SQ (K ) for small values
of x where the forward recursion with (2. 30) is
unstable.

The free-electron potential parameters for v =0
and D„, = I and —l- 1, respectively, are shown in
Table I.

III. LINEAR-APW METHOD

According to (2. 30) and (2. 32), the free-electron
parameters become particularly simple when D„,
= l or —/- 1. Hence, SK„, is the vth zero of the
spherical Bessel function j„~(x) in the former case
and the (v+ 1)st zero of j, ~(x) in the latter case,
and in both cases S~rf&2, =2, provided K„, &0.

We shall now derive a linear reciprocal-space
method for solving the band-structure problem.
We first consider a periodic muffin-tin potential
with one atom per primitive cell, and later mention
a simple but approximate way of including non-MT
contributions to the potential. (The extension of the
formalism to several atoms per cell proceeds
exactly as in any other reciprocal-space represen-
tation. ) Inside the MT spheres the Hamiltonian is
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TABLE I. Potential parameters for free electrons.

(S Z„)2

S25(—l —1)

SSC2(- l - 1)

S

p
d

—(2l+1)(2l+ 5)

(2l+5)'
4(2l+3)

2. 5
10.5
22. 5

2. 08

2.45

2. 89

4'7(-2

2

2. 47
9.87

20. 19

e (-l -1)
e (l)

2l+5
2(2l+ 3)

0. 83

0. 70

0. 64

41—
27r

91—
27r

0. 80

0. 54

0. 38

23 18

p (2l + 5) x [(2l + 3) (2l + 7) ]' ' ~ 47
t

79

the one considered inSec. 0, and in the interstitial
region the potential assumes the constant value
V t, .

A. LAPW formalism.

For the solid we choose a set of basis functions,
named energy-i. ndependent augmented plane waves,
and specified by the reciprocal-lattice vectors G.
An energy-independent APW is the plane wave
e""' ' ' in the interstitial region and, inside any
sphere, it i.s that linear combination of the func-
tions 4,„(D, r), defined in (2. 2) and (2. 3), which
matches continuously and differenfiably onto the
plane wave. In the sphere surrounding the atom at
the origin, the energy-independent APW is there-
fore

(3. l)

where K=k+6 is the sum of the Bloch vector and a
reciprocal-lattice vector, and D= D, (K ) is the l-og-

arithmic derivative at the MT sphere for a free
electron of angular momentum l and wave number
K, as defined in (2. 29). The definition (3. 1) would
be that of an ordinary APW if 4(D(K ), r) were sub-
stituted by Q(E, r) Altho. ugh the energy-indepen-
dent APWs are not, individually, solutions at any
energy of Schrodinger's equation in the spheres,
they must, for the MT potential considered, form
a complete set of functions in the neighborhood of
the arbitrary energy E„. In the conventional APW'

method the variational freedom, arising from the
overcompleteness of the plane-wave set in the in-
terstitial region, is used to remove the kink in the
individual APW at the sphere. This freedom is used
in the linear-AP% method to form, inside the sphere
and for each value of angular momentum, the linear
combination 4 (D(E), x) corresponding to the proper
energy.

In the representation of energy-independent APWs
the Hamiltonian and overlap matrices for the MT
potential may be obtained from (3. 1), (2. 4), and
(2. 6) as

= (bo o —0 (e" ' ' ')) (K + V „—E) + Z W, (K, K)T, (K, K, F.), (3.2)

where K'=k+G'and K=k+6. ( ) denotes an integral in the sphere while ( ) denotes an integral in the cell
of volume Q. Furthermore,
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q(, &o o ) .„-) h(l G —G I S) 4m'S

IG —G IS 0

= Z W, (K', K),

D —D 4mS
X K'- K" n (3.4)

where we have dropped the subscripts l, and where
I' is the Legendre polynomial. The potential func-
tion in (3.2) is

K —K co —eP2 ~2

Y(K, K, E)—:

as obtained from Green's second identity, and the
definition

W(K, K) =—(2l+ l)P (K' ~ K)j (K'S)j (KS)

the weights in the atomic sphere, relative to the
free-electron weights 8', , are approximately the
partial band masses

dK dD(E) Q (K )«( ( )) —
dD(Ka) dE y2(E(D))

(3. 7)

relative to the mass of a free electron. For the
transition metal Pd, we demonstrate in Fig. 3
how its 4d mass„which is eight times that of free
electrons, causes the single LAPW band to follow
the 4d energy in the region of KS values where
W„dominates.

We may rearrange the terms of (3.2) in such a
way that each term becomes Hermitian, the l con-
vergence is improved, and the LAPW matrix takes
the form

K —K (~- ~P),
CO —(d

where we have used (2. 14) and the notation

H o o —coo e = (K —E)5e G+ V(G —G)

+ V, (K', K, E), (3. 8)

(d = (d& (D)

4—= C, (D)

D—= D&(K )

and P—= 1+ (P„)~e
and (u'—:(u& (D'),

and 4'-=e, (D'),

and D —= D, (K ') .

familiar from OPW and pseudopotential theory.
The contribution to the pseudopotential from the
interstitial region is

V(G —G) = V &,(5o o- 0 (e" ' '")), (3.9)

while the contribution from the sphere is

The interpretation of the LAPW matrix (3.2) is
straightforward. For a diagonal element, the first
term is just (Oz/0) (K + V „—E) and, in the second
term,

QW(K, K) =-
l

where Qz and Q~ are, respectively, the volumes of
the interstitial and spherical regions. A diagonal
element of the potential function is

1+
T(K, K, E)= j'(K') . -". [E(D(K'))-E],e'(D(K'))

(3. 6)
where we have used (2. 31) and (2. 17). From the
requirement that the diagonal element vanishes, we
then realize that, for a single energy-independent
APW, the expectation value of the band structure
in the extended-zone scheme is the weighted mean
of the contribution K + V „from the interstitial
region and the partial energies E, (D, (K )) contributed
by the sphere. These partial energies correspond
to the boundary conditions at the sphere, defined by
the free-space solutions with angular momenta l
and the kinetic energy K . The weights are, of
course, the respective probabilities for the energy-
independent APW state of being in the interstitial
region and of being in the sphere with angular mo-
mentum l. In the approximation that the MT sphere
is substituted by the atomic sphere of volume 0,

V (K, K, E) = 0 (g- ~

~

H E~ &It- )—
lV K, K I' K, K —E~ K, K

(s. io)

where we have used (3. 3). Moreover,

l. (K, K) = (m A —&uX )/(+ —u ),
r(K, K) = ~y'(K')/4'- ~,
&(K', K) = I(~' —P') (~ —P&)—]/(~ - ~'),

~(K, K) = y'(K') (i+ ( j„' ) ~')/C ' —i,
with the notation

(3. 11)

(3. 12)

(s. is)

(3. 14)

We expect the LAPW method to yield energy bands
correct to order c, as is the case for a single
sphere. This will now be proved for a constant po-

A. =—K —E„and A. =- K —E„.
For the low values of l needed in these expressions,
the free-electron parameters D, (K ) and SQ, (K )
may be obtained from (2. 30) and (2. 32) or, for
small values of K, from the Laurent series around
K=O, as is described in Sec. IID. The potential
functions e, (D) and 4, (D) may then be obtained from
(2. i2) and (2. iS).

B. Accuracy and convergence
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sion of the APW method, as we shall discuss be-
low. This band does not have the simple appear-
ance of the LAPW band; it has a branch for each
value of yg, and the branches are separated by the
asymptotes E„,(~). The band touches the nl asymp-
totes at the free-electron asymptotes K =E„,(~),
and, even for free electrons, the single-APW band
will consist of individual branches sticking together
at the free- electron parabola.

The A PW pseudopotential appears from (3.8) and
(3. 10) when the linear function I' —eL is substituted
by

(D —D ) (K —E) —(D —D) (K —E)
D —D

with D= D(E) Th—is expre. ssion is a rapidly vary-
ing function of energy, diverging at E„,(~), and this
is true even for free electrons where the APW
pseudopotential vanishes along K =E and K = F.
only, rather than in a region of (E, K, E) space.
At a particular energy, e. g. , the Fermi energy
E~, not coinciding with any of the asymptotes, the
APW pseudopotential is specified by the parameters
D, (E») and V „, while the LAPW pseudopotential,
with E„=E~, depends on the additional parameters
Q, (E»). These parameters only affect the bands
away from the Fermi energy and, if they are set
equal to zero, the LAPW pseudopotential equals to
the APW pseudopotential. This may be seen from
(3. 11), (2. 7), and (2.8).

In the 1953 version of the APW method, the
basis functions are in fact energy-independent
APWs but of a more complicated nature than the
ones considered above. Theyare APWs of wave

vector K=k+6, and with 4, (r) in (3. 1) substituted
by Q, (E„, r) The E.

» are the single-APW energies
illustrated in Fig. 4, and they are not the partial
energies E„,(D, (K )) that make the basi. s functions
differentiable. The basis set carries the double
index nG and, in practice, those functions corre-
sponding to the first few branches of E„ together
with all the reciprocal-lattice points used in the
APW and LAPW methods must be included. Hence,
the dimension of the eigenvalue problem is two or
three times larger than that of the LAPW method.
Moreover, the single-APW eigenvalues E~ cannot
be given explicitly and their evaluation is difficult.

IV. LINEAR-MTO METHOD

In this section we present a linear band-structure
method in the angular momentum representation
which is particularly suited for closely packed
structures. For the angular functions we often use
the general notation

1;(r)-=g y,„(r)V;. (4. 1)

where L is short for lu and U .„ is an arbitrary
unitary matrix of dimension (2l+1). We again con-
sider the periodic MT potential with one atom per
primitive cell and, for convenience, we choose the
atomic positions to coincide with the lattice transla-
tions P~, although in Sec. IVF we shall extend the
formalism to more than one atom per cell.

A. Energy-independent MTO

The energy-independent MTO y~(r) has a tail
proportional to r ' i' Y~(r) in the interstitial region.
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XL(r) =-~ e'"'"XL(r-R) (4. 2)

This part of the tail is a solution of the Laplace
equation, V'

y =0, rather than a solution of the Helm-'
holtz wave equation, (V +E —V „)x=0, used for
the exact MTO, andthepresent choice leadsto im-
portant simplifications of the KKR structure con-
stants but also to small errors, of order (E- V „),
in the computed energy bands The energy-inde-
pendent MTO is everywhere continuous and differ-
entiable. Inside its own sphere it equals eL(- l 1, -
r), as defined by (2. 2) and (4. 1), and inside any
other sphere, say the one displaced by R, it is the
linear combination of the CL (l, r —R)'s that match-
es on to XL(r). Apart from the normalization, the
coefficients of this linear combination are then the
coefficients in the expansion about R of the 2'-pole
field ~ ' 'i'YL(r) in the regular solutions
Ir —R I' i' YL (r =R) of the Laplace equation.

The Bloch sum of orbitals
~)(DL) —~, (1)

xL(DL r)
( l 1) (l) xI, (r) (4. 5)

or equivalently

all the spheres are just the integrals in the sphere
at the origin, .as given by (2. 4) and (2. 6) in connec-
tion with the one-center expansion (4. 2). Hence,
when we neglect the contributions from the inter-
stitial region, the one-center energies, stemming
from the first term in (4. 2), will be (2l+1) degen-
erate and equal to E,(- l-1), as given by (2. 1V).
It will prove convenient, however, to write the one-
center expansi. on in a more general form by adding
in (4. 2) some constant times eL(l, r) to the first
term and subtracting it in the tail sum. If, at the
same time, we renormalize the orbital, the result-
ing first term may, according to (2. 11), be written
as CL(DL, r), where DL is an arbitrary logarithmic
derivative, but different from l, and the formal one-
center energies become E,(DL). Hence, with the
normalization

has an expansion about the origin that may be writ-
ten as (2l+1)x (D ) =(l-D )e (D ) (4. 6)

XL(r) = eL(- l- 1, r)

g e, (l', r) e, (- l 1),„--
2(2l'+1) e, (l') (4. 2)

the general form of the one-center expansion is

XL(DL, r) = eL(DL, r) —~,D, ', .
)

~L L .
~ ~ , gDI, j —co, yl

and which is valid in the sphere at the origin. The
first term is the contribution from R =0 in (4. 2) and
the second term is the sum of the tails coming
from all other sites in the crystal. The structure
constants SL L in (4. 2) form a Hermitian matrix,
they may be defined by the one-center expansion

~ ~

n. l~2
ik.g + - ~ le' ' ~ „I i Y, (r —R)

RAO lr ~~I

&I, L(DL D )L= (&2S)X-i (DI, 8 2(2l+ I) I-(DL

+I+I)&(DL —l)]5L L+sL L](&l~)xl(DL) (4. S)

(4. &)

We have used (2. 12)-(2.15) in (4. 6) and we have
defined a Hermitian matrix which may be written
as

-l y, k
l

2(2 +1) SI (4.4) B. Hamiltonian and overlap matrices

and we shall return to them in Sec. IVD.
In. the basis of the Bioch sums (4. 2), the contri-

bution to the Hamiltonian and overlap matrices from

The spherical contributions to the Hamiltonian
and overlap matrices in the basis of XL(DL, r) are
now

k k . ( (og'(l ) (og(l) f,(XI I EvlxL) ~l(D )6LLI II (D ) (~) (D ) (l)
TI I

(4. 9)

and
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where the choice of D~ only affects the normaliza-
tion and the arrangement of the various terms. If
we use D~ = —E- 1, as in (4. 3),

=(&-'S)4 (- I' —l)s" (&-'S)C (- I- I),
(4. 11)

and in this case the terms of order T, T', and 7.
'

in (4. 9) and (4. 10) may be identified as, respective-
ly, one-, two-, and three-center integrals. For
other choices of D~ this identification is purely
formal.

Before properly computing the integrals in the
region between the MT sphere and the atomic poly-
hedron, we mention that the simplest approximate
way of including this interstitial region is to sub-
stitute the atomic Wigner-Seitz sphere for the MT
sphere in (4. 9) and (4. 10), that is, both in the
structure constants (4. 4) and in the potential param-
eters. We thus emphasize that (4. 9) and (4. 10) are
the important matrices of the LMTO formalism and
what we describe in the remainder of this section
can merely be regarded as a correction to the
atomic-sphere approximation (ASA).

The expansion (4. 4) converges inside the sphere
passing through the atomic positions nearest to the
origin. The atomic polyhedron of any closely packe(
structure is included in this sphere and an integral
in the interstitial region may therefore be computed
entirely in the angular momentum representation
from this expansion and the expansion in spherical
harmonics of the interstitial step function, ' which
is unity in the interstitial region and zero elsewhere
This requires a double sum on L and L and,
in order that the accuracy be improved beyond that
of the ASA, the sum must include (I, I ) ~4;
hence it becomes quite tedious. An integral in the
interstitial region could also be computed entirely
in the reciprocal-lattice representation by using
the second factor of (3. 9) for the step function to-
gether with a Fourier transform of the MTO tail,
but this again requires a double summation. The
most convenient way of handling the integral is,
however, to evaluate the integral in the cell by a
single reciprocal-lattice sum and then to subtract
the integral in the sphere by subtractions in (4. 9)
and (4. 10). In this way, the LMTO Hamiltonian and
overlap matrices become

=
& xi I

H —F-.
I xi &

convergent and to be given by a convenient analyti-
cal expression. Moreover, (Xz" ~

I x~ ) should have
the form of (4. 10). The orbital XL (r) therefore co-
incides with the proper orbital in the interstitial
region only while, inside the spheres, it is a smooth
function derived from a pseudopotential. If we let
this potential be constant and equal to E„, the cor-
responding potential parameters are the free-elec-
tron parameters with K„=O, derived in Sec. IID
and given in the first column of Table I. Conse-
quently,

4(I ~) =to(~)=[(2I+3)S ']"'(~/S)'

so that the tail of the free-electron orbital is pro-
portional to z ' 'f' Y~(z), not only in the interstitial
region, but also inside all other spheres, that is,

4,(- E —1, r)/4, ( l —1)-,
x (~)=x, (D, ) (/s)'', r&S

where the normalization constant depends on the
proper orbital and is given by (4. 6). The recipro-
cal-lattice representation of the Bloch sum is

X,"(r)= X., (D, )Q e" 'F, (K)

where K=—k+0 and

(4. 14)

8

(4. 16)

as obtained from Green's second identity. The in-
tegral in the cell is therefore

r.x'
I i~x) = gx(Dr, )fl&i~ z, xr(Dr. ) ~' (4. 16)

with

, =Z F.,* (K) v, (K) .
0

(4. 17)

In (4. 13), the difference between the two integrals
in the sphere (Xz, IX])—(Xz ~, I x~ & is given by (4. 10)
if, from 1+($„&uP(D) in the formal one-center in-
tegral, we subtract

1 0 3D ~ D-ml 4 E

(4. 18)
and, from 1+(P'„&&@(D)&u(l) in the formal two-cen-
ter integrals, we subtract

—(I'. .—&.) &x"
I

x" &+(I'. .—&.)(x" Ix")
(4. 12)

~(D) —~(f)
~(D) —~(I) (4. 19)

~I

0& i =
& xf I xi &

—
& xi I xi &+ (x~ I x&), (4. 13)

where f ) denotes an integral in the cell of volume
Q.

%e want the reciprocal-lattice sum to be rapidly

and, finally, from 1+($„&aP(l) in the formal three-
center integrals, we subtract

4'(f)/C'(I) .
Similarly in (4. 12), the subtraction of (Y „—g„)
&& (Xz, ~

l Xz, & from (4. 9) may be accomplished by sub-
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tracting (V „-E„) times (4. 18) from m(D) in the
formal one-center integral of (4.9), by subtracting
(V „—E„) times (4. 19) from &u(l) in the formal
two-center integrals, and by subtracting (V „—E,)
times (4. 20) from ar(l) in the formal three-center
integrals. When doing so, we have used the same
DL, in itl, (DI, , r) and yz, (Dz, , r). In (4. 18)-(4.20),
we have used the subscript v= 0 for the free-
electron parameters and we recall that 9(l) = 0 and
S~4 (l) =2f+3.

The above-mentioned procedure is analogous to
the one followed when writing the LAPW matrix in
the form (3.8) and, besides its immediate purpose
of including the interstitial region, it has improved
the convergence of the sums on L in (4. 9) and
(4. 10) because the components of high angular mo-
menta are free-electron-like and hence included in
the Fourier sum (4. 1V). In practice, the L sum-
mations are converged when l & 2-3. In (4. 12) and
(4. 13), the two last terms, involving j, will there-
fore be referred to as the combined correction
term.

The orthonormalized wave functions are most
conveniently given by one-center expansions, e. g. ,

e,'(r) =Z Z [p„~(r)w~f~ ~ +(j&,~(r)n~f, ]gI~, ,
L I

(4. 21a)

if we choose D~ = D, (E) and then substitute 4(D, r)
by [C(D)/P(E)] P(E, r). The condition that the linear
combination

Qg, d(Z, r)

of exact MTOs is a solution of Schrodinger's equa-
tion at energy E, is then that the terms proportion-
al to C~ (I, r) in the one-center expansion van-
ish. ' From (4. 7), this leads to the set of homo-
geneous, linear equations

Q Tg ~(D, (E)) D( E))A~ =0, (4. 22a)

which only have a nontrivial solution for the speci-
fied E and k if

—2(2l+I) '
5~ ~+S~ ~ =0,D, (E)+ l+1

L

(4. 22b)

as seen from (4. 8). These are the KKR equations
for V „=8or in the ASA, ' yielding the exact ener-
gy F- and eigenvector AI, . We now consider the
variational estimates 8& and A~, , obtained from
(1.1) with the LMTO Hami. ltonian and overlap ma-
trices given by (4.9) and (4. 10). These estimates
satisfy

where, according to (4. V) and (2. 2),
le

&~i -=@i —I'fi /t~~(Dr) - ~r(t)1

and

(4. 21b)

2&Xi'Iff —E;IXI'»

whereas the substitution of the exact energy and
eigenvector into the LMTO secular equations yields

w

~it, '=&&(Dc)811, ' &i(f)TLL /f~~(D~) —~r(t)1
(4. 21c)

while AI, &
are the LMTO eigenvectors, satisfying

the eigenvalue equations (l. 1) and the orthonormal-
ity conditions

k k
AI, ) OI, I, A

I. L

C. Accuracy and the ASA

(4. 21d)

The energy-independent MTO is not an exact
solution of Schrodinger's equation in the atomic
polyhedron; its radial part is C (- I —1, r) rather
than Q(E, r) inside the MT sphere and its kinetic
energy is zero rather than 8- V „in the inter-
stitial region. We shall now investigate the induced
errors which, for the energy bands, are of order
(E —E„) and (E- V „)A~&, respectively. The er-
rors of the eigenvectors are of order (E —E„) and
(E- V,.)n, .

We first consider the effect of using C (r) instead
of P(r) and therefore neglect the error from the
interstitial region, i. e. , we assume that V „=E
or use the ASA. Since the MTO is continuous and
differentiable, the one-center expansion of the Bloch
sum of exact MTO's' ' y~(E, r) is given by (4. 7)

+&xi IH- Elxi)A =o((E-E.) )A

These equations have been obtained by choosing
D~ =D, (E), writing T~ ~ as a factor of the formal
two- and three-center integrals, and using (4. 22a)
together with (2. 1V) and (2. 23), or together with
(2. 24). Hence, the LMTO energies and eigenvec-
tors are correct to order (E- E„)~.

The eigenfunctions (4. 21) are only correct to or-
der E- E„, as is expected from the variational
principle. However, since the eigeneectoxs of the
LMTO method in the ASA are correct to third or-
der, it is possible to obtain eigenfunctions of the
same accuracy. Hence, from the LMTO eigenval-
ue ZJ and eigenvector A~, (D~), correspondi. ng to a
normalization specified by some D~'s, we seek
the coefficients in the one-center expansion of the
wave function correct to order (E E„) . From t-he

condition of tail cancellation, expressed by (4. 22a)
and (4. V), we obtain

e,. = 2 Ag Xi(E, r)
L

=+X C (D (E))l 1 y (E)
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g (2f+1)Z, (D, )X„.(D, )
If —D, (E,)]e,(E,)

(4. 23)

to order (E—E„)s. In the third line we have substi-
tuted Az, bye, (D, (E)) which then, by the change of
normalization (4. 5), has been expressed in terms
of A~, (D~). %Ve have further used (4. 8) and sub-
stituted E by E, For the partial wave P~(E, , r),
we may then use its Taylor series to third order in

energy, and the denominator in (4. 23) may, to the
same order and with (2. 18) and (2. 25), be written
as

[f- D(Z, )]e(E,) = (f- D.)e(Z, )

+( /Sy'„)(y„+-', 'y„),
where e =- E, —E„an.d P(E,.) on the right-hand side
should be substituted by its Taylor series to third
order. If the LMTO eigenvector is normalized as
in (4. 21d), the wave function (4. 23) wi. ll only be
normalized to order E —E, but since (Q~(E) I g~ (E))
= 5~ I. it may easily be renormalized.

We now estimate the effect on the band structure
of using trial functions with improper kinetic energy
in the interstitial region. Let F=—E,". and 4 =- 4,". be,
respectively, an exact nondegenerate eigenvalue and
the corresponding eigenfunction of the MT Hamil-
tonian II, which is —& + V „in the interstitial re-
gion. Corr espondingly, E+dE = E&" and 4 + d4
= 4,." are the eigenvalue and normalized eigenfunc-
tion of the MT Hamiltonian 0+dH, where dH is
small and constant in the interstitial region and
vanishes elsewhere. When we then use 4 as the
trial function for estimating the energy E, this esti-
mate is in error by

&E=(4 lHlc &
—E

=&+ lH El~ &=&d~lH Eld~&

=Re(&d~l~'&dE- &d~ldHI~'&)

Since both 4 and 0' are normalized, Re (d@' I @ &

= —,'(d@Id@ &, moreover, dE=(0 IdHI@'&+o(dH), so
that the er ror may be written, to second order in
dII, as

( d%' I dH I
4' & (O' I dH I + & (dH) d W I

dE 4 QF.

where W,
—= f42)- (4 & is the probability that the

electron is in the interstitial region of volume Q~.

Hence, the error tends to be largest near the cen-
ters of wide bands. For the case considered dII
=F.- V „and, if we assume that only one value of
f contributes significantly to the sum (4. 23), that
Q, (E, r) is slowly varying in the interstitial region,
and that the atomic polyhedron is almost a sphere,
we obtain the convenient expression

&E, = (E —v „)'[-j,(E)y,'(E)](n, /47r)' (4. 24)

relating the error to the potential parameters and

the volume of the interstitial region.
There are conceptual advantages of using every-

where the atomic sphere rather than the less-well-
defined MT sphere. In practice, we therefore al-
ways take S= (3A/4w)', in the case of one atom
per primitive cell, and we compute the potential
parameters from integrals in the atomic sphere,
or from logarithmic derivative functions at the
atomic sphere, using a potential which is the spher-
ical MT potential inside the MT sphere and the con-
stant V «between the MT and atomic spheres.
Now, the combined correction term in (4. 12) and
(4. 13) merely corrects for the departure of the
atomic polyhedron from the atomic sphere of the
same volume and for the neglect of the higher par-
tial waves. As a consequence, the energybandswill
depend on the potential through the potential param-
eters at the atomic sphere and only slightly on V „
through (4. 12).

The expansion (4. 4) converges inside the atomic
sphere at the origin but, when we use the one-cen-
ter expansion (4. 3) or (4. 7) for the atomic-sphere
orbitals, we treat any nearest-neighbor orbital in-
correctly in the region where its own atomic sphere
overlaps the atomic sphere at the origin. The orbi-
tal is, however, continuous and differentiable and
the error amounts to using a curvature correspond-
ing to the kinetic-energy zero instead of E- V „.
For the orbital at the origin, on the other hand, we
use the correct kinetic energy, rather than zero,
in the region between the inscribed and atomic
spheres at the origin. As a result, (4. 24) seems
to describe the error, which is quadratic in Q, dH,
quite well when we let QI be the volume between the
atomic polyhedron and its inscribed sphere.

In Fig. 5, we show the errors for the unfavorable
case of wide bands, specifically the free-electron
bands computed in an hcp crystal. The exact bands
and those computed with the LMTO method are
shown in, respectively, the first and the last panels
of Fig. 6. The points in Fig. 5 indicate the errors
of the energies at all the high-symmetry points
computed with the LMTO method using (4. 12) a,nd

(4. 13) with S being the atomic-sphere radius and
with potential parameters obtained from the formu-
las of Sec. IID. Two different values of E„were
used to cover the range of energies shown in order
that the fourth-order error from the spher ical re-
gion could be neglected. The curves are the re-
sults of (4. 24) and the good agreement confirms the
relevance of this expression, also when the atomic
radius is used. The one exception is for the df-
like E& level at ES =9.88, and its additional error
is simply due to our neglect of the f orbitals in the
present calculation. For free electrons, the Fermi
level corresponding to an occupancy of n electrons
per atom is

E„S'=(&~a)"'=3. 88m'",
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FIG. 5. Errors of the
free-electron eigenvalues,
computed with the LMTO
method using (4.12) and
(4.13) with g —2, at the
symmetry points I', E,
M, H, I, andAofan
hcp crystal. Points,
crosses, and squares de-
note s-, p-, and d-like
states, respectively, and
curves show the s, p, and
d estimates (4.24). The
atomic rather than the
MT sphere was used
throughout, and the errors
proportional to (E -E„)
were suppressed by using
two different values of E„.

and it is indicated for yg= 1, 2, and 3 on the right-
hand scale of Fig. 6. We conclude that the LMTO
method can yield the occupied bands to within a few
percent of the Fermi energy for all metals. For
narrow bands, like the d bands of transition metals,
the errors are negligible.

In summary, the error from the interstitial re-
gion is usually larger than the error from the spher-
ical region and, whereas the latter error is arbi-
trary in the sense that F.„ is arbitrary, we cannot
choose any other kinetic energy than zero in the
interstitial region' without giving up the important

concept of canonical bands and structure constants
that we shall describe in Sec. IVD.

Finally, we define the ASA as the approximation
of using the E(ls. (4. 22) with the logarithmic deriv-
ative functions and the structure constants appro-
priate for the atomic sphere and truncating the secu-
lar matrix at l=2 or 3. The Hamiltonian and over-
lap matrices of the corresponding LKTO method,
correct to third order in E- E„, are then given by
(4. 9) and (4. 10). The eigenvalues of the ASA have
small errors of order 8- V „in addition to the
second-order errors (4.24), and they are exhibited

15
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FIG. 6. Free-electron
bands in the hcp structure.
Panels from left to right
show: (1) Exact bands.
(2) Pure bands in the ASA
(4.36). From the bottom,
T~ and T4 are the two
first s bands, Tg, T2, T4,
T~, T4, and T3 are the
six first p bands, and T4,
T2, and Tq are the lowest
of the ten first d bands.
(3) Hybridized bands in the
ASA, (4.9) and (4.10) with
l ~ 2. {4) LMTO bands,
(4.12) and (4.13) with
E~ 2. The errors of the
levels at 1 and E are
shown in Fig. 5. On the
right-hand scale are shown
the Fermi levels for oc-
cupancies of 1-3 electrons
per atom.
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by the free-electron bands in the ASA shown in the
third panel of Fig. 6. Whereas the ASA may not be
sufficiently accurate for the most detailed Fermi
surface calculations, it is highly efficient in gen-
erating, through self- consistent calculations em-
ploying (4. 23), the spherical average of the elec-
tron distribution in each sphere.

D. Canonical bands and structure constants

and eigenfunctions for a single atomic sphere, sub-
ject to the anisotropic and k-dependent boundary
condition specified by &~ ~ and expressed by (4. 22).
Of particular significance are the eigenvalues 8,",-
of the // subblocks of the structure matrix g~ ~ and
we have named them canonical bands.

From the expansion (4. 4) of the 2'-pole field, the
structure constants in the &n representation are
given explicitly as

We shall now investigate the properties of the
structure constants Sf ~ defined in (4. 4). In the
ASA, this matrix contains all information about the
arrangement of the atoms, and we shall show that
it is cgygonjcg/ in the sense that it depends neither
on the energy, the potential, nor the atomic vol-
ume. Hence, in the ASA, the band-structure prob-
lem is reduced to that of finding the eigenvalues

with

(4. 26)

—2 (2A —1)!!
gl m;till (2( I) / ( (2l I) ) [

where A. —= l'+l and p,
=—m' —m. Moreover, (-1)!!—= 1 and

c (l'm'; lm) —= [4'(2K+1)]
~

dr Y,„(x)Y", (r)1', (r),
4

2/+ 1 A~'~ A
X/2

2/P + 1 000 lf, mm'

(4. 26a)

(4. 26b)

are the Gaunt coefficients, while A are the Wigner
or Clebsch- Gordancoefficients. Our structure
constants may be expressed in terms of the origin-
al KKR structure constants

di", „,, (~) =2 (a+I)"'c'(l'm';lm)

x+ e'"' "vn (KR) [(v 4v)i 'Y „(R)]+,
RAO

;,S(us)"(v'4v) Y,*.(k)
(2X —1)!!(kS)' (4. 29)

where n)„are the spherical Neumann functions, as

„2 0 (v —,'S)~n, . (~S) (K2S)~n, (~S)

and they have a number of simple properties.
First of all, they are independent of energy E

= K + V g and, by specifically choosing K = 0, we
achieve that they are also invariant under uniform
scaling of the lattice. Second, the poles (!k+Gl'
—~ )

' of the KKR structure constants have been re-
duced to singularities at the reciprocal-lattice
points only. Specifically,

so that only the ss and sP structure constants di-
verge while the PP structure constants are discon-
tinuous at the center of the Brillouin zone. Third,
there is no sum on A. in (4. 25), the Gaunt coeffi-
cients are particularly simple when X =0 +/, and
the spherical Bessel and Neumann functions, en-
tering the KKR formalism, become r' and x '

respectively. Our structure constants are Hermi-
tian and, in the present case of one atom per primi-
tive cell and with (P, l) & 2, only the 15 complex
lattice summations (4. 26) with X & 4 and 0 & p, & X

must be performed. This may be done by the stan-
dard Ewald technique although, for the five contri-
butions to the dd block, the convergence of (4. 26)
is so fast that this technique is not necessary. In
any case, the structure constants need only be com-
puted once and for all throughout the irreducible
part of the Brillouin zone of each crystal structure.

When including the correction of the ASA, an
extra set of structure constants, namely,
in (4. 17) are needed. These constants, too, are
independent of energy and volume and must only be
computed once for each structure.

The MT and atomic-sphere approximations take
advantage of the fact that, although periodic, the
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crystal potential is spherically symmetric in the
neighborhood of each atom. Our potential param-
eters do not therefore depend on the quantum num-
ber m, and the only coupling between the m's of a
given l is provided by the long-range asphericity
of the crystal potential, that is, by the structure
constants. It is then convenient to use an angular
momentum representation in which the ll subblocks
of the structure constants are diagonal. Hence, if
~&; are the eigenvalues and U& ., &; the eigenvectors

yak+ k rrkUgf t, )0 t $gl I, ) + g
$'m lm

k=5) i6'; Si + (1 - 5s ~)Si '; s ~
k (4. 30)

In Sec. IV E we shall show that the unhybridized
nl energy band may be defined as the canonical l
band 3&; subject to a nonuniform change of scale,
S-E, and the similarity of for instance the hcp
canonical d band structure with the energy-band
structure of the transition metal Os may be appre-
ciated when comparing Figs. 2 and 4 in Paper II.

, The canonical l band consists of 2l+1 subbands
numbered by the index i and, for l &0, the center
of gravity is zero for each value of k, i.e. ,

P s, , =Ps,„.,„
~ Z c"(lm; lm) ~ dr r„,("r) = 0

(4. 31)
for l & 0. This follows from the invariance of the
trace to unitary transformations, from (4. 25) and
(4. 28a), and from Uns61d's theorem, " stating that

is independent of r. For all canonical bands, in-
cluding the s band, the first moment vanishes

2l+1
!2l+1.!,

l+(,

s (n) dn =
l ~ S„.d 0 = 0,1 0

i=i ~ BZ
(4. 32)

as follows from (4. 26). We have defined the ca-
nonical function S, (n), which is "the Fermi energy
on the 8 scale corresponding to an occupancy of n
states per atom in the canonical l band, " and the
density of states in the canonical band is

st, (s) = l./s', (n) . (4. 33)

The expression for the second moment is also very
simple. From (4. 25), (4. 26), (4. 28b), the unitarity
of the signer coefficients, and Unsold's theorem,
we obtain

2l+g

S,(n) dn =2'3(2l+1)
0

E. Pure bands and hybridization

e now define the pure or unhybridized energy-
band structure as it is given by the ASA (4. 22)
when neglecting the off-diagonal blocks of the struc-
ture constants. The pure nl band is therefore the
nth solution of

2(2l+1) ' = s"„,
D, (Z) - l (4. 36)

where the potential function on the left-hand side,
according to (2. 31), increases monotonically be-
tween its asymptotes, and where the canonical l
band, according to (4. 34), is bounded for l &0 and
is upwards bounded for l =0. As a consequence,
the relation (4. 36) between the canonical l band and
the pure nl bands are k-independent scalings, speci-
fied by the l-logarithmic derivative function. From
the one-center expansion leading to (4. 22), it may

(2l+1) (2l+3) ~ ~ ~ (4l —1) M (S' '&»+~&

X
3. x 2 ~ xl RAQ (R

(4. 34)
which only depends on the number of atoms in the
various. shells of the lattice and the distance be-
tween the shells. For structures with several
equivalent atoms per primitive cell, these rela-
tions for the first and second moments still hold,
provided that R in (4. 34) runs over the positions of
all equivalent atoms measured from a particular
one.

The second moment of the s-canonical band di-
verges owing to the singularity at the center of the
zone. The second moments of the p-canonical
bands of the bcc, fcc, and hcp (c/a= & ~) structures
are, respectively, 29. 4, 29. 2, and 28. 8 which,
for an idealized, rectangular shape of the state den-
sity, correspond to the respective bandwidths
(12&&29.4)'i'=18. 8, 18.7, and 18.6. The similar-
ly defined canonical d band widths are 23. 8, 23. 5,
and 23. 5 for the bcc, fcc, and hcp structures, re-
spectively. Hence, the canonical bandwidths of the
three structures are essentially the same and the
magnitudes are in close agreement with the empiri-
cal signer-Seitz rule, which states that a band of
primarily l character extends over the range of en-
ergies where the corresponding logarithmic deriva-
tive is negative. From (4. 22), and with the neglect
of l'l hybridization, that is, from (4. 36) below,
this rule may be expressed as

—2(2l+1) (1+l i) s"„-2(2l+1), (4. 35)

and it yields canonical P and d bandwidths of, re-
spectively, 18 and 25. As seen from (4. 29), this
rule is exact at the bottom of the s band, and it
holds within 10% for the extrema of all the canon-
ical bands in closely packed monoatomic solids
that we have so far calculated. '
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and

~„, -=( [I/(2l+ 3)]S'y', (V„,)j ', (4. 41)

which, from the values of the free-electron prob-
ability density Q, given in Sec. IID, are seen to

be realized that a pure l band is defined by the
property that the Bloch sum of exact MTO's y"„(E,.r)
is the exact solution in all atomic spheres of the
radial Schrodinger equation for the ~th partial wave.

For the Bloch sum of energy-independent MTO's
it is also convenient to use the Ii representation,
and in this case we specify the normalization and
arrangement of terms in the I.MTO matrices by
choosing DI. =D&;, where

D"„=—l ——1 —(2l + 1)8", i /[2(2l + 1) —8"„], (4. 37)

so that the diagonal blocks of T', ;,„in (4. 8) van-
ish. The Bloch sum }l„(D„,r) only has one angu-
lar momentum component of the same I, namely,
@„(D„,r), in its one-center expansion (4. 7), and
the corresponding formal one-center energy is the
variational estimate E, (D, i) (2. 17) of the pure vl

energy band given implicitly in (4. 36). From
(2. 12),

(di (Dt i) (ld( l 1)

+-.'S4', (- I —I}S'„./(I -y, S"„), (4. 38)

where

1 @(-l —1)
2(2l + 1) 4'(l)

(u(- l —1) —id(l) —,'SC'2(- l —1)
2(2l+1) SC'2(l) id(- l —1) —id(l)

and the alternative expressions follow from (2. 15).
We may define the energies C„& and V„& as those

where the l-logarithmic derivative function takes
the values —l —1 and l, respectively. For free
electrons, these energies were specifically con-
sidered in Sec. IID and since Vo, =0 we name V„,
=E i(l) the square-well pseudopotential. From
(4. 31) and (4. 36) we name C„, =E,(- l —1) the cen-
ter of the band. We further define the intrinsic
band masses

I „,-=[-',S'y', (c„,)] '

= —2S D, (C„i)= —2[S E', (- l —1)]

1 - ( $.') ~'(- l - 1)
(4. 40)

equal, respectively, p, (- I —1) and p(l), as defined
in (3.7). If we then put E„=C„,in (2. 17) and (4. 38),
we may state that the pure vl energy-band struc-
ture is derived from the canonical l band structure
by fixing the band position through C„&, scaling it
by p„iS, and distorting it nonlinearly by 4', (- l —1)/
4'i(l) and (p„,). The potential parameters for hcp
transition metals may be found in Tables I and II
of Paper II, and those for free electrons were given
in Table I. For a given /, the values of the dis-
tortion parameters C'(- l —1)/4'(l) and ( Q2) vary
little among similar atoms provided that the D„'s
are similar and, using typical values, we find from
(4. 35) and (4. 38) that the width of the pure band is
of order 10S4'~(- l —1). For transition-metal d
bands C (- 3)/4 (2) is numerically far less than unity,
the distortion is therefore small and the d band ex-
tends approximately from 7. 5S42(—3) below to
5SC' (- 3) above the band center. For the bottom
of the s band, we find from (4. 25), (4. 27), and
(4. 29) that 8»- —6(kS} 2, and with E„=V, , (4. 38),
(4. 39), and (4. 41),

limE, (D,) = V, +& /7, , (4. 42)
a-o

(&aS)@&~ (-I' —I) ~

1 p)t Igg

(&2S)C'&(- l —1)
1-y z&

(4. 43)

which vanishes for l' =l. The Hamiltonian and over-
lap matrices in the ASA, (4. 9) and (4. 10), only
have contributions to their diagonal elements (I'
= l and i' =i) from the formal one- and three-center
integrals. The one-center integrals yield the pure-
band E,(D„), which only depends on the potential
parameters of the same l, while the three-center
integrals, with reference to (4. 22), may be re
garded as the second-order contribution from the
partial waves of other angular momenta. The
single-i, MTO estimate (}(„)H] y„)/(}("„)}l„.) is
therefore different from, and more accurate than,
the pure-band estimate but it depends on the poten-
tial parameters of all angular momenta.

We named T", ;,„the hybridization matrix be-
cause the secular equation in the ASA (4. 22) may
be written as

as expected. The pure bands for hcp free electrons
are shown in the second panel of Fig. 6.

The hybridization matrix in the li representation
is

(4. 44)
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where the simple eigenvalue equation (4. 44) is valid
when E = E, (D'„) =E, ~ (D', ~;~ ), and when we neglect
(p„, ) and (Q„,), that is, when E„is chosen near
the assumed crossover of the two pure bands. Un-
der the same conditions, T", &, „equals the formal
two-center contribution to the LMTO hybridization
matrix ( Xg ~

l H —E I Xg ~) ~

The hybridization between the 8 band and a d
band of negligible distortion 4(-3)/C'(2) is, ac-
cording to (4.43) and (4. 6), described by

Ca(- 3); -u'
&.;a*=[~.( .)-~.(0)) 2C, (0)

3..~*-(0 3 )ii2

for k- 0. The limiting value is identical with the
result of Heine7 when the mass at the bottom of the
s band is unity, and it has been obtained here by
neglecting the parameters (jb~) and using (4. 29) for
I pp gp under the assumption that the constant term
vanishes as is the case in cubic crystals.

As mentioned in connection with (4. 29), the ca-
nonical and the pure P band have a branch which is
discontinuous at the center of the zone (this is
the second T, band in Fig. 6), and the energy band
only becomes continuous through hybridization with
the & band. In cubic structures the P level at the
center of the zone I' is triply degenerate, and when

k approaches I along the r, [001] direction, the ca-
nonical doubly degenerate &, band ~"„f., f,f goes con-
tinuously to the value 6 but the canonical 4f band

~fp. fp tends to —12. The &, band does not hybridize
with the 8 band while the BP hybridization constant
for the &~ bands tends to —6v 3 (As) ~. For small
nonzero k values, (4. 22) now yields

[1+ +~ (ks) ~ S,(E)] [g q(E) + 12] = 18,
where

S,(E)-=2(2f+ I) [D, (E) + I+1]/[D, (E) —I] .

Consequently, the P-like solution tends to 18 —12

=6 and is therefore continuous at I', regardless of
the 8 potential parameters. The 8-like solution
may still be written in the form of (4. 42), but with
the mass substituted by

~„=~, /D, (V,) = ~,(1--', ~,V„), (4. 46)

where V~,
-=(V~ —V,)S . This expression is in ac-

cord with a result of Bardeen. ' The hybridized
hcp free-electron energy bands in the ASA are
shown in the third panel of Fig. 6.

F. Several atoms per primitive cell

~ & ~

Xtr (r)=~e Xsr (r R
R

(4. 46)

and its expansion in the sphere at Q' =Q, ~, is

We shall briefly indicate how the LMTO formal-
ism is modified when the primitive ce1.1 contains
h spheres, centered at positions g =Q„with asso-
ciated potentials v, (j r Ql ). -Groups of identical
atoms at equivalent positions are labeled by t while
the h, atoms within a group are labeled by q. In
the case of compounds, thereis little justification
for using a common interstitial potential V &, and
in that case we circumvent the MT construction by
using the ASA with judiciously chosen sphere radii
S&. Subject to the condition that the sum of the
sphere volumes equals that of the primitive cell,
the spheres should according to (4. 24) have little
overlap and, in the region of overlap, the kinetic
energy should be small. The radii specify the re-
gions in which the self-consistently obtained charge
density will be spherically symmetric and, subject
to the restrictions set by the ASA, they should
therefore in principle be chosen so as to minimize
the total energy of the ground state.

In analogy with (4. 2) and (4. 3), the Bloch sum of
MTO's in the tIqm representation is

4 - - 4 - (p r-Q')(~s)c (-l-1)
8X~(r) =@~s„( l —1, r-—Q)56 6, „. 2(2l'+I) gS, )@ ~ ~ (E')

The Hermitian, canonical structure matrix is then

g
4

s', ...,..., „,„=(s;/s)' '"(s,/s)'"" a, .„,.e*' " "&';, ;,,„,... „ (4. 47)

where S is the average radius, defined by the con-
dition that (4v/3)SIh = Q. The coefficients g were
defined in (4. 27) and the lattice sums, periodic in
5=-Q' —Q, are

with Z=-R —5. In (4. 14) and (4. 17), the Fourier
transform of the pseudo-MTO is given by

F„(K)-=(2l+1) (21+3)

x(4vs~/0) [j „,(Ks,)/(Ks, )3]Y, (K)e '"' ~ .
)i+f

e" — [(44m) i'Y„„(&)]~ (4.48) (4. 49)
With the following definitions and substitutions,
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the remainder of the LMTO formalism in the pre-
vious sections can be taken over directly. If we
define the radial functions C «(r) and Q„(~) such
that they vanish for & &8, , we may use the follow-
ing generalization of (2. 3) and (4. 1):

hg

and analogously for QL(r). Here L is short for tlu
and U, ,„is an arbitrary unitary matrix of dimen-
sion (2l+1)h, . The bracket ( ~ ] ) now indicates the
sum of integrals in all spheres of the cell and, con-
sequently, (4'L ~ lC'L) and ( 4'L ~ lHl 4'L) vanish when
L'4 I.. The potential parameters only depend on t
and l and tl should therefore be substituted for l
and qm for m. The tl canonical bands &"„;are the
(2l+1)I),, eigenvalues of I'„, „., «, .

Self -consistent calculations are almost impera-
tive for compounds and for this purpose the ASA is
extremely efficient. The spherically symmetrized
density of band electrons in a sphere of type t may
be expressed as

OCC

g~
= Z N„(E)Q'„(E,r) dE, (4. 51)

where the origin is taken at one of the Q„'s and
where, upon Taylor expansion of Q„(E, )'), the in-
tegral over energy reduces to a sum involving the
energy moments. The number of states in a sphere
of type t, with angular momentum l, and with en-
ergies in the interval (E IE+dE) is

V. RELATIVISTIC EFFECTS

In accurate energy-band calculations relativistic
effects can only justifiably be neglected for materi-
als of atomic number less than about twenty. The
relativistic shift of the 4s band with respect to the
3d band is —12 mRy in Ti (Z=22), and the M spin-
orbit coupling parameter equals 1.5 may. 24 For
Ru (Z =44), the corresponding energies are, re-
spectively, —70 and 10 mRy and, for Os (Z = 76),
they are —230 and 35 may. This separation of the
relativistic effects into mass-velocity and Darwin
shifts, which may be taken into account merely by
changing the potential parameters, and the effect
of spin-orbit coupling, which alters the symmetry
of the Hamiltonian, is not only possible but it is
also extremely convenient, because the spin-orbit
coupling parameters P, , are smaller than the rela-
tivistic shifts by typically one order of magnitude.
Moreover, only in small regions of k space, near
certain points of degeneracy, is the spin-orbit
splitting as large as (l+ ', )4 a—nd even this energy is
considerably smaller than the width of the l band.

We shall then, for the purpose of conceptual sim-
plicity and with little or no loss of accuracy, in-
clude the relativistic effects in the LAPW and
LMTO methods by formally using the Pauli Hamil-
tonian"

H= —V +v —c (E —v) +v' —+$s l2 -2 p ~
9
8K

inside the spheres, and treating the spin-orbit cou-
pling term

~2 dv ill, f
rdr 2)l, —l,

as a perturbation.

A. Relativistic formalism for single sphere

where, according to (4. 23),

(2l+ 1)X„(DL)
LJ [f D (E)]y (E) Lj ( L)

~'r, = ~z's
I +

I
~'r,

'
I ')

With this atomic-sphere representation of the
charge density, the Coulomb potential may easily
be found by solution of the radial Poisson equation
in each sphere and by calculation of the Madelung
shifts employing the s-structure constants.

The entire formalism of the previous sections
applies for the Pauli Hamiltonian without the spin-
orbit coupling term, provided that the radial wave
functions, and hence the potential parameters, are
obtained from radial equations which include the
mass-velocity and Darwin terms —c [(E —v)
yv'(d/dr)].

The trial function 4, (D, r) is now (2. 3) times
one of the spin functions, 0 or 4, and the spin-orbit
coupling matrix, to be added to (2. 4), is

(4, . (D')l~a Tlc,„(D))=(,(D', D)(& m'lfm) .
Here,

~ m
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and the dependence of the radial integral g, (D', D)
= (@,(D') [ g I 4', (D) ) on the logarithmic derivatives
may be accounted for as follows. The energy de-
rivative function at E„of a radial wave function
which is not normalized to unity in the sphere,
e.g. , I(E)Q(E, r), is a linear combination of Q„(r)
and Q„(r) and it may therefore be written as a con-
stant times one of the functions 4 (r) in (2. 2). If
we choose I(E)ltd(E, r) to be the solution which re-
sults from integrations of the radial equation when
the initial condition at r =0 is independent of ener-
gy, the corresponding energy derivative function
4(D, r) vanishes (as r' '2) near the nucleus where
the relativistic operators are effective. We may
then assume that $(r)4 (D~, r) vanishes everywhere
in the sphere and, from the equation obtained from
{2.11) when substituting f by D„and —f —1 by D,
Vl. e. )

we obtain

functions of the Dirac logarithmic derivative func-
tions'~6

(E) s gk+) 1 +s f E)
g.(E) g.(E) '

and, since the radial Dirac equations are compu-
tationally quite simple, we shall now indicate how
the potential parameters may be obtained from the
solutions f„(E, r) and g„(E, r) of these. As usual,
~ is the combined quantum number for l, j, and

With the normalization

pS
[f„'(E,r) +g'„(E, r)] r' dr = 1,

p

and provided that the kinetic energy in the outer re-
gion of the sphere is much less than c'= (2x137)~ Ry,
the representation in Sec. II of the logarithmic de-
rivative functions is valid when g(E) is substituted
for Q(E), and l& is substituted for f. With the choice
of logarithmic derivative

DV~ —DV & g g
—DV, K$

&{D'.D) = I1-"
~(D') I, ~(D') (5. 2)

the potential parameters may then be obtained from
the Dirac parameters as

in terms of the two new potential parameters, $„
—={Q„)g}Q„) and DI. Since I(E)ltd(E, r) have the
normalization usually obtained in numerical inte-
grations of the radial equation, the parameter D
is most easily obtained by differentiation of the
amplitude at the sphere and using (2. 9), i. e. ,

(2l+1)E„,= (l+1)E„,„,z+lE„,„, ,

(2l + 1)$2, = ()+1)g„,i+ kg„, ,

(2l+1)gs, g„, = (3+1)g3, lg„, l+Lg~, g„, ,
OV

(2l+1)P„,P»=(l+1)gv, l &gv, -l -l+lg-v,-lgv, l ~

2)I l vv, K= -l-1 Ev K"l

1 8IQ
D„—D " IBE (5. 3}

ldl(Dl) =(2I'1)h. l 0,'l/(g', , l -gl, -l l). (5. 5)

$(D, D)
1+($') ld'(D)

(5. 4)

The corresponding exact energies E„,l(D) and

E„ l(D) of the Dirac Hamiltonian are the inverse

For a given boundary condition D, angular quan-
tum number I, and radial quantum number v, the
Pauli Hamiltonian then has an (l+ 1}-fold degenerate
solution of energy E(D) + —,l)(D) and an I-fold degen-
erate solution of energy E(D) —

& (f+ 1)g(D), where
E(D) is given by (2. 17) and where the spin-orbit
coupling parameter is

The approximation of attributing the D dependence
of the splitting E„,,(D) E„,(D) betwe-en the
Dirac logarithmic derivative functions to the nor-
malization effect described by (5. 2) —(5.4) can be
justified by comparing the value ~(DI), obtained
from (5. 5), with the mean value

[(l+1)ld, l(D l )+ll(o, (D )]/l(2l 1)+

obtained from (5. 3) with Q substituted by g; for
the 6P parameter of Pt (8 = 78), both values are
—5. 3 Ry and, for the 5d parameter, both values
are —1.58 Ry.

B. Spin-orbit coupling in LAPW method

The energy-independent APW is given by {3.1) times one of the spin functions, 0 or 0, and the spin-orbit
coupling matrix to be added to (3. 2} or (3. 8) is therefore

& '(q„- ~gs l ~lI„-) =f[s (K&&K')] „~(2f+1)P'(Z'. Z)f(reS)f(XS)
4~S ~ &(D', D) (5.8)

&=1

where I'' is the derivative of a Legendre polynomial. With the substitution

(2I+1) g, (D', D)/SC', C, —D„, , (E) —D„,(E)
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the matrix (5.6) equals a term of the ordinary, relativistic APW method. k6

C. Spin-orbit coupling in LMTO method

The l3loch sum of energy-independent MTOs is given by (4.2), or itsgeneralizationapproximatefor sev-
eral atoms per primitive cell, times one of the spin functions, 0 or k. The spin-orbit coupling matrix to
be added to the Hamiltonian matrix (4. 9) or (4. 12), is therefore

Li
~ f i xi 7xk

(x' l(k 71x')= ((!xi,D, )(x'~Ix)- (, (ix, , (') x ' '"', +H. c)
Tk, „~ „(fix fix) g (f ii~1 iii)Tk„,

I l (DI ) +l (f ) I' ' (l(" (Dg' ') (d('' (f )
(5. 7)

In the tlqm representation

(&'f 'q 'm '
~

&&qm) = 5, k5, ,5, ,(f 'm '
i
fm),

so that the sums on L"' in the second and third terms of (5. 7) reduce to single terms. fn the ffi represen
tation

(f ' l ' i '
~

tli) = 5, ,5, , Z Z (f ' m '
~

lm)X
m' m

mX~';
1

[(l —m)(i+m+1)]'~kX"';' '

Z(((+ )((-m+()]'!'x !'

where

k+ kX; —= U~~. )~ U, .;,
0

so that the sums on I-'" are sums over the canon-
ical band index i.

The common approximation of retaining the spin-
orbit coupling in the one-center integral only,
amounts to neglecting the variation of the coupling
parameter $ across the band, i.e. , its D depen-
dence. This may be seen from (5.7) when choosing
Dz ———/ —1, in which case the first term of (5. 7) is
the true one-center integral. If, on the other hand,
we choose DI, =D"„;and use the tli representation,
it is not a bad approximation to neglect in (5. 7) all
other terms but the first.

VI. CONCLUSION

In this paper we have presented the details of the
linear-APE( and -MTQ formalisms and investigated
their respective merits. Qf the two methods, the
LAP%' method is the most generally applicable, its
accuracy is arbitrary in the sense that E„ is arbi-
trary, and it may be used at high energies and for
open structures because the plane-wave set is over-
complete in the interstitial region so that non-MT
contributions to the potential may be included.
Since the plane-wave part of the energy-independent
APW is continued smoothly inside the spheres, the
non-MT contributions enter primarily through their
Fourier components. %hen d bands are present,

the angular behavior in the interstitial region cannot
be represented by less than 25-50 plane waves per
atom and, if applicable, the LMTQ method is far
more efficient. In this case, only the nine s, p,
and d MTOs are needed per atom but, since the
method has additional errors, proportional to
Qal(E —V „)k, it is only useful for closely packed
structures and low energies. This method is com-
putationally very fast, and it may be simplified
through the atomic-sphere approximation and fur-
ther, through the neglect of hybridization, in which
case there are no matrix diagonalizations to be per-
formed; the energy bands are just the canonical
bands scaled nonuniformly by the potential param-
eters. A theory of the electronic structure of hcp
transition metals, based on the LMTO method at
its various levels of simplicity, is presented in the
following paper.
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