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The energies of spin waves propagating in the ¢ direction of Tb have been studied by inelastic
neutron scattering, as a function of a magnetic field applied along the easy and hard directions in the
basal plane, and as a function of temperature. From a general spin Hamiltonian, consistent with the
symmetry, we deduce the dispersion relation for the spin waves in a basal-plane ferromagnet. This
phenomenological spin-wave theory accounts for the observed behavior of the magnon energies in Tb.
The two G-dependent Bogoliubov components of the magnon energies are derived from the experimental
results, which are corrected for the effect of the direct coupling between the magnons and the phonons,
and for the field dependence of the relative magnetization at finite temperatures. A large a-dependent
difference between the two energy components is observed, showing that the anisotropy of the two-ion
coupling between the magnetic moments in Tb is substantial. The G-dependent anisotropy deduced at
4.2 K is of the same order of magnitude as the isotropic part, and depends strongly on the orientation
of the moments in the basal plane. The rapid decrease of both the axial- and the basal-plane anisotropy
with increasing temperatures implies that the two-ion coupling is effectively isotropic above ~150 K.
We present arguments for concluding that, among the mechanisms which may introduce anisotropic
two-ion couplings in the rare-earth metals, the modification of the indirect exchange interaction by the
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spin-orbit coupling of the conduction electrons is of greatest importance.

I. INTRODUCTION

The present series of articles with the common
title “Spin waves in terbium” and with the sub-
titles “Two-ion magnetic anisotropy,” “Magnon-
phonon interaction,” and “Magnetic anisotropy at
zero wave vector” (to be referred to as I, II, and
I1I, respectively), constitute together a com-
prehensive study of the magnetic excitations in the
ferromagnetic phase of Th.

The magnetic behavior of the rare-earth metals
is basically understood by making a sharp dis-
tinction between the localized 4f electrons carry-
ing essentially all the magnetic moment and the
conduction electrons. The strong coupling between
the spins and the orbital momentum of the elec-
trons in the unfilled 4f shell makes it possible to
treat the total spin §, the orbital momentum f,
and the angular momentum J =L +§ of the 4f elec-
trons as constants of motion. The electric field
from the surroundings acting on the 4f electrons
of the trivalent rare-earth ions in the metal is
screened by the filled 5s and 5p shells and is weak
in comparison with the spin-orbit coupling. The
ground-state J multiplet of the trivalent ions,
which in the case of Tb is determined by S=L =3
and J =6 (as may be obtained by the application
of Hund’s rules) is then responsible for the mag-
netic properties of the rare-earth metals.

Cooperative phenomena occur in the rare-earth
metals because the moments on different sites
are coupled together quite strongly through the
conduction electrons.' In the heavy-rare-earth
series (Gd-Tm) the two-ion coupling dominates
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the crystal field, and the mixing of different M,
states may be treated as a perturbation. In gen-
eral, the magnetic excitations in the ordered
phases of the heavy-rare-earth metals (in Er and
Tm only in the low-temperature phases) are con-
sidered to be well-defined spin waves for tem-
peratures well below the transition temperatures.
The mixing of different M, states will then appear
as magnetic anisotropy, or as a tendency of the
moments to be oriented along a preferred direc-
tion, and it will give rise to zero-point deviations
from the fully aligned ground state assumed in a
spin-wave approach. The presence of magnetic
anisotropy will manifest itself in the energy of
the magnons and most distinctly as an energy gap
at the wave vector Q of a periodic magnetic struc-
ture (Q is zero for a ferromagnet). Finally, the
M; mixing will influence the magnon-magnon in-
teraction and thus contributes to the renormaliza-
tion of the energies and to the lifetime of the
magnons.

A nonvanishing orbital momentum induces a
coupling between spin space and real space, and
the large values of L which occur in the heavy
rare earths, with the exception of Gd*® (85 ground
state), are responsible for the strongly anisotropic
behavior observed in these metals. In the ferro-
magnetic phase of Gd the static anisotropy, the
energy gap at ¢ =0, and the interaction between
the spin system and the lattice are at least an
order of magnitude smaller than in the other
heavy-rare-earth metals.

In the present paper and the two subsequent ones
we study in detail different effects of magnetic
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anisotropy on the spin waves in ferromagnetic Thb.
The crystal structure of Th (and of the other heavy
rare earths) is hexagonal close packed, and Tb

is ferromagnetically ordered below T,=216 K, with
the moments lying in the basal plane along a b

axis. The moments can be oriented along a hard

a direction by the application of an external field
(~30 kOe at 4.2 K) in this direction.

Having reviewed the kinds of spin interactions
which may occur in the rare-earth metals, we
introduce a general spin Hamiltonian which includes
all imaginable single-ion and two-ion couplings
as well as magnetoelastic couplings. By a fairly
simple approach we derive a general dispersion
relation valid for spin waves propagating in the
¢ direction of a basal-plane ferromagnet. In di-
rections in the Brillouin zone other than the highly
symmetric ¢ direction, additional contributions
may be present. The effect of an external field
on the dispersion relation is considered, and the
renormalization of the energies at finite tem-
peratures is included in an effective fashion.

We have studied experimentally the spin-wave
dispersion relation in the ¢ direction of Tb by the
technique of inelastic neutron scattering. The
presence of q-dependent two-ion anisotropy is
reflected in the field dependence of the magnon
energies. By measuring the energies as a func-
tion of temperature and of a magnetic field applied
along both the easy and hard directions, we found
that anisotropic two-ion couplings are important in
a description of the magnetic properties of Th.
The d-dependent anisotropy which we deduce de-
pends strongly on the direction of the magnetization
in the basal plane and decreases quite rapidly when
the temperature is increased. The experimental
results were corrected for the perturbation due to
magnon-phonon interaction and for the influence of
the field dependence of the relative magnetization
at finite temperatures.

The J-dependent anisotropy which is obtained
after having isolated the effects of the direct cou-
plings between magnons and phonons is related
more closely to pure spin interactions. In the next
paper (II) the selection rules for the linear cou-
plings between magnons and phonons propagating
in the ¢ direction of a basal-plane férromagnet
are determined. The spin waves propagating
in the ¢ direction in Th are coupled to both the
acoustic and optical branches of the transverse-
phonon spectrum. The experimental studies of
the acoustic-optical coupling indicate that this
interaction, which is the largest one observed in
Tb, violates these selection rules. The main
properties of the spin (and phonon) system of Tb
seem to be well understood, and we consider this
problem to be one which is connected to the cou-
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pling mechanism itself. We propose in II that

the acoustic-optical interaction violates the selec-
tion rules for a simple ferromagnet because of
the deviation between the direction of magnetiza-
tion and that of the conduction-electron polariza-
tion, which is proportional to the spin-orbit cou-
pling.

Finally, in the last paper (III), we concentrate
on the behavior of the energy gap at zero wave
vector. From the measurements of the field de-
pendence of the energy gap the dynamic anisotropy
parameters are deduced as a function of tempera-
ture. There is convincing evidence for large two-
ion contributions to the magnetic anisotropy at
zero wave vector. The dynamic parameters de-
duced are compared with the corresponding static
values measured by other experiments.

II. SPIN INTERACTIONS

The most important two-ion coupling between
the ionic magnetic moments of a rare-earth metal
is generally assumed to be due to overlap of the
wave functions of the conduction electrons and of
the localized 4f electrons. The exchange between
the itinerant and the localized electrons then leads
to a coupling of the spins on different sites medi-
ated by the propagation of the itinerant electrons.
Assuming the spin-orbit splitting to be much larg-
er than the exchange energy and the response
function (the susceptibility) of the conduction elec-
trons to be isotropic in space, this coupling takes
the form of an isotropic Heisenberg interaction,
when orbital effects are neglected,

chl:_%zg(ﬁi_ﬁj)‘}i"}f’ 1)
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where J; is the total angular moment on site _lii .
This simple indirect exchange mechanism, the
so-called Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction,' seems to give a generally satisfactory
description of the magnetic ordering in the rare-
earth metals. The strong coupling between the
conduction electrons and the local moments is
clearly demonstrated by the effect of magnetic
ordering on the electronic properties.? The tran-
sition temperatures are found to vary roughly
linearily with the Néel-de Gennes factor?

G=(g=-1yJ(J +1) @)

across the heavy rare earths and a wide range of
alloys®* (g is Landé’s factor), as would be expected
for a pure spin-spin interaction. The two-ion
coupling expresses itself most directly in the
dispersion of the magnetic excitations of the sys-
tem, which can be studied by inelastic neutron
scattering. However, it is in general not possible
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to deduce the actual form of the two-ion spin
Hamiltonian from the dispersion relation only.

Various orbital effects contribute to the spin
Hamiltonian and the two-ion coupling may there-
fore be anisotropic. In this case it is more con-
venient to express the Hamiltonian in terms of
Racah operators,®*® 0, ,,(J;), which are tensor
operators corresponding to the spherical har-
monics and characterized by simple transforma-
tion properties. In this notation ji '3, in (1) is
replaced by

ji'jj: Z

m==1,0,1

(=1)"0;,m(J3)0; _ (). ®)
With the purpose of deriving a general expression
for the spin waves propagating in the ¢ direction
of Tb we shall begin by considering a general spin
interaction term

T R - RO, 0ym(d3) 0,0 (), @)

where we have introduced the effect of the sur-
roundings as a mean field. The effects of a pos-
sible spatial dependence of the expectation value
of the Racah operator, Oy,,, are neglected ( )
then includes an averaging in space of the expec-
tation value).

In the rare-earth metals, several kinds of mech-
anisms may introduce anisotropic two-ion cou-
plings, all of which can be written in the form
given by Eq. (4). The exchange interaction may
give rise to other terms than the Heisenberg in-
teraction as listed below, (i)-(v). In addition to
the exchange interaction other types of spin inter-
actions are present in the rare-earth metals, (vi)-
(ix), among which the most important are those
with their origin in the Coulomb interaction be-
tween the ions:

(i) In the case where the ions possess an orbital
moment the s-f exchange interaction is influenced
by changes in the orbital moment of the conduc-
tion electrons (with respect to the ions) during the
scattering process. This effect has been treated
by Kaplan and Lyons” and others®'® using a number
of simplifying assumptions. Kaplan and Lyons ob-
tained, as a modification of the Heisenberg Hamil-
tonian, a pseudodipolar interaction with a magni-
tude of the order of 10% of the isotropic inter-
action.

(ii) The spin-orbit coupling modifies the wave
functions of the conduction electrons and thus the
s-f exchange matrix element. This mixing of the
wave functions, as considered in some detail by
Levy,' may introduce anisotropic couplings, which
differ from those due to the orbit-orbit coupling,
(i), by the possible existence of nonvanishing ani-
sotropy in the case of S-state ions (Gd*3) and of
antisymmetric couplings'**'? which change sign
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when ¢ and j are interchanged in (4). The order
of magnitude relative to the exchange energy of
the spin-orbit terms is roughly determined by the
ratio of half the spin-orbit splitting to the d-band
width, (X ), as estimated by Liu'® in another
context to be equal to 0.03.

(iii) As a simple consequence of the dependence
of the exchange interaction on the distance between
the ions ﬁ,- - ﬁj, the spin system is coupled to the
phonons. This coupling does not give rise to ani-
sotropy itself, but it may strengthen existing ani-
sotropy [see also (viii)]. In contrast to (i) and
(ii) this interaction introduces magnetostrictive
terms for which X in (4) is nonzero.

(iv) When the crystal-field splitting is small
compared with the exchange energy, as in the
heavy-rare-earth metals, the s-f exchange inter-
action perturbs the uniform spin-wave mode so as
to give rise to a relative reduction of the energy
of the order of 2.5% (in Tb).

(v) The s-f exchange interaction (1) is propor-
tional to the susceptibility of the conduction elec-
trons. Owing to the polarization and the spin-
orbit coupling of the conduction electrons this
susceptibility may be anisotropic in space and
hence introduce terms where X is nonzero,'*™ 18
The main effect is a difference between the sus-
ceptibility parallel and perpendicular to the mag-
netization,'® which at zero wave vector is of the
order (g Hp/Eg)?~5X107% in Tb for the polar-
ization contributions, and (A, )?=~1073 for the
spin-orbit contributions relative to the total static
susceptibility (i p is the Bohr magneton, Hy, is
the exchange field, and Ej is the Fermi energy
of the conduction electrons). Although these terms
are small, they may have some detectable effects
on the static anisotropy (ITII). At finite wave vector
these contributions may be much larger; however,
they are not directly observable because the dis-
persion of the magnetic excitations is independent
of the parallel susceptibility.

The other very important source of anisotropy
which occurs for the rare-earth ions is the de-
pendence of the Coulomb interaction of two ions
on the orbital states of the ions. This electro-
static interaction between the electronic charge
clouds of the ions may be divided into two classes:

(vi) crystal-field terms ({#0, I’ and A =0) and
electric multipole interactions ( and I’#0, X =0)
and (vii) the corresponding strain dependent terms
in which A is different from zero.

The Coulomb interaction may contribute only
with terms in which A, I, and !’ are all even, if
configuration mixing is neglected. The single-ion
terms (I’ =0) are known to be quite large, giving
rise to static anisotropy and to magnetostriction.
The pure two-ion couplings (I'#0), which have
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been considered by Wolf and Birgeneau,'” are
probably small; the most likely possibility is the

quadropole-quadropole interaction,'® where I=1'=2,

The direct Coulomb interaction between the local-
ized 4f electrons and the conduction electrons'®
may have a pronounced effect on the behavior of
the Coulomb terms. The strain dependent inter-
actions, (vii) and (iii), give rise to an indirect
two-ion coupling (corresponding to the indirect
exchange interaction) by the excitation of virtual
phonons:

(viii) Phonon-induced (electric) multipole inter-
actions. This kind of two-ion coupling was first
proposed by Sugihara2® and has been treated more
recently by Orbach and Tachiki?* and others,® 22
This effect is known to be very important in some
rare-earth salts of the Jahn-Teller type.2?

(ix) Besides the mechanisms quoted in (i)-(viii)
we may have additional contributions to the spa-
tially anisotropic two-ion couplings from (a) direct
overlap?®® between the 4f wave functions, (b) in-
direct exchange via polarization of the 5s and 5p
electrons,? (c) indirect interactions via the spin-
orbit coupling of the conduction electrons!? (inde-
pendent of the exchange), and (d) interactions be-
tween the ground-state J multiplets and other J
multiplets.?® All these terms are presumably very
small, but the sum of their contributions to the
Hamiltonian may not be negligible.

Because of thegreat variation in possible con-
tributions to the spin Hamiltonian, we will not
a priori exclude any terms of the form given by
(4). The actual form of the Hamiltonian is then
determined by symmetry, see, e.g., Elliott and
Thorpe?® and the review by Wolf.?” The angular
dependence of a charge cloud may be expanded in
spherical harmonics up to order 2!, if [ is the
angular momentum of the electrons; so A is <6
for 4f electrons ({=3). The orbital dependence
of the exchange interaction, (i)-(v), may intro-
duce terms where [ and !’ in (4) are equal to T:

As<6, landl'sT (5)

(two-ion magnetoelastic couplings may give rise
to terms in which the effective A is greater than
6). Time-reversal symmetry combined with the
invariance of the system to Hermitian conjugation
requires that

X+1+1" be even,
b ™ (R, - R;)=(-1)" """ gl (R, - R )%

®)

The conditions (5) and (6) are general. The sym-
metry elements of the magnetic group impose fur-
ther restrictions on the terms which may be pres-

ent, and in Sec. III we shall consider an explicit
example.

III. SPIN WAVES

The spin Hamiltonian for magnetic excitations
propagating in the ¢ direction of the heavy-rare-
earth metals (hep structure) can be reduced by
the symmetry operations which leave the hexagonal
layers unchanged. If the crystal is magnetically
ordered, the use of these symmetry elements pre-
supposes that the moments within a certain hexago-
nal layer are parallel and equal in magnitude (this
condition is fulfilled in all the heavy rare-earth
metals). The effective spin Hamiltonian obtained
in this case can be written

1
1 —
:}CMJJ_Z;E)\; ; Z,Zm, S5,8;S;

X[KST R = R,)Os,4)01,m(T3) Oy, ()
+ (—1)“+M+M’K‘>{T{7,(§i - ﬁJ)*
X 0y,1)04,-m(T ) Opr, g (7)), M
where
p+ma+m’=6p, p=0,1,2,3, (8a)

when referring to a coordinate system with the

x, ¥, and z axes along the a, 6, and c directions,
respectively. For simplicity we have neglected
terms for which p is a half integer. These terms,
which may occur because of the spin-orbit coupling
of the conduction electrons [mechanism (ii)], in-
troduce a coupling between acoustic and optical
magnons proportional to cos3n¢ (=1,3,..., and
¢ is the angle the magnetization makes with the

a axis). Although the acoustic-optical coupling
may be finite at the Brillouin-zone boundary (4),

- the normal modes remain doubly degenerate at

this point. The coupling may only be of impor-
tance close to A, and we shall henceforward ne-
glect it. In that case we have further

KSR - R))* =40 (R, - R)
=K (B - Ry). (8D)
The function®'?® S, in (7) is defined by
S, =(1/2H)@Ea!/@2Jd-1)!
=JJ - 3)+[J-(1=1)/2] when l#0. 9)

Single-ion terms are included in (7) as the terms
for which either I or I’ is zero (O, ,=1 and S,=1).
Except for the terms for which p is a half integer,
the spin Hamiltonian, (7) and (8), includes all
possible two-ion and single-ion couplings which
affect the magnetic excitations propagating in the
¢ direction and the influence of magnetic ordering
on these couplings. The completeness is secured
by the use of the tensor operators which span the
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whole spin space. The correspondence between
the Racah operators and the spherical harmonics
Y, (6, ¢) appears from the relation (m=0)

1= 4m \'/2
S_,<O"’">=<m> Y, (6, ¢)

_ 1\1/2 .
= (-1)" <%%,—> PMcos®)e'™®,  (10)
when (J,)=J, where « is the direction specified
by the polar angles 6 and ¢; P7(cos6) are the
Legendre polynomials.

The treatment of the general Hamiltonian (7)
for obtaining expressions for the spin-wave ener-
gies has become more straightforward owing to
the systemnatic investigations of the properties
of the Racah operators by Buckmaster et al.’ and
by Danielsen and Lindgdrd.® The spin Hamiltonian
which we are considering is more complex than
the model Hamiltonian generally used for de-
scribing the magnetic properties of rare-earth
metals! 28730 pecause of the inclusion of general
two-ion couplings. The effect of general two-ion
interactions on the spin waves in a conically or-
dered phase has been published elsewhere.*

In the case of a basal-plane ferromagnet, such
as Tb and Dy, for which =37 we obtain for the
expectation value of the Racah operators

(1/St)<61,m>=rt,meim¢§ (11)
when m =0 we have
w= (=)@ =m)! /@ +m)!] /2 PT(0)
(=1)*mr [(;Z:Z))!!(f&inn);)]!ll/z ,L+m even
0, l+m odd; (12)
if m is negative, then
L a=C1)"T (13)

With the purpose of deriving the energies of the
spin waves in a transparent way we shall introduce
the following expansion of the Racah operators:

= 5
214660 10p—
0y .m [1+98+¢¢

+%<9——-+ ¢ >}(O,m>

where 06 and 8¢ describe the deviations of the
spin from alignment along the direction of mag-
netization (z’ direction). When =37 these devia-
tions are replaced by the following expressions in
spin deviation operators a:

66=/J)J, = (a"+a)/V(2J),
8p=(1/) Iy =i(a-a)/V(2J).

(14)

(15)

I.

TWO-ION MAGNETIC... 307

Introducing these expressions in Eq. (14) and cal-
culating the derivatives of the spherical harmonics
at 6=3m, we obtain

1 - - 1(1+1) +
5 0un)=(1- 5 @ —ap- L ol
JA{A
——————( +12)J 2m 1(aa+oza)>
XTI ne'™® (16)

if I+m is even. When I +m is odd we find

L8, (g =l 17 = m?] 12
55

1 m
X <—\/2—Tf_(a;r+a‘)—2_J (aga:r— a; a,.)>
X Ty me'™e. a7

This result is in agreement with that obtained by
a direct transformation®'® of the Racah operators
to the z'- coordinate system followed by an expan-
sion in spin deviation operators® except for some
negligible (in the case of a large J value) kinematic
effects.®

For a hep structure we have two ions per unit
cell, giving rise to acoustic and optical spin-wave
branches. The Hamiltonian for a two-sublattice
ferromagnet has been diagonalized by Lindgard
et al.® However, as discussed, for example, by
Liu,'® Bose excitations (as the magnons and the
phonons) remain doubly degenerate at the hexago-
nal zone surface AHL. In agreement with this
result the magnons described by the Hamiltonian
(7) (including terms for which p is a half integer)
are doubly degenerate at A, Further, when cou-
plings for which u +m +m’ is odd are neglected,
the spin waves are pure acoustic or optical exci-
tations. This implies that the double-zone rep-
resentation in the ¢ direction becomes valid, and
we shall henceforth use this representation. This
simplification allows us to make us of the Fourier
transforms defined as

K4 @)= K4 (R, —R) €' RimR) (18)
7
where the summation is extended over both sub-
lattices. Formally the single-ion terms are in-
cluded as being independent of {.

Introducing Eqs. (16)—(18) in the Hamiltonian
(7), we obtain

RMJJ:(NJ)E+ZA(a)aETaE
q
+B@sazTa g vazasy)

=(NNE+Y e@)ay’ o (19)
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where the reduced equilibrium energy (N is the
number of ions in the crystal) is given by

E= ZZZZ K47 (0)

im 'm’
XTIy u Iy Ly, mr cOS (6P )0 (1 +mm +m' = 6D).
(20)

The magnon operators (Ot ) are derived by a Bogo-
liubov transformation of the spin-deviation opera-
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tors.28"30:32 The spin-wave energies are then ex-
pressed in terms of the two parameters, A(q) and
B(q). Note that these parameters are both real
for a spin wave propagating in the ¢ direction,

the energy of which is

e@={[A@+B@IAQ-B@]H2 (1)

The two Bogoliubov components of the magnon en-
ergy at zero wave vector are deduced to be

A0)+B(0)= ZZ 2 ' 1K ™' (0) cos (6p )0 (u +m +m' = 6p)
(=[L@+1) = m? 1 V(' +1) = m”] Ty, Ty e
w2{[( 1P =m? [+ 1P = m"2) 12Ty Ty oDy ) (22)
and
A(0)- B(0)= ZZ IZ?_‘, L K4 (0)cos(6p ®)0 (i +m +m’— 6p)(=1)(m +m’FTy T, . Tyr 23)

By the inclusion of terms where A#0, Eqgs. (21)-(23) represent a generalization of the phenomenological
macroscopic resonance theory developed by Smit and Belgers® (see also Cooper®). In the present theory
the energy of the uniform spin-wave mode is equal to

€(0) = (Eho Elyg— B2, (24)

Egq, etc. denote second derivatives of the equilibrium energy with respect to angle evaluated at the equi-

librium position, 6=3m, where the angular dependences of (0, ,,) are neglected. This follows from

Epe=A(0)+B(0), EY;=A(0)-B(0), Ef4=0. (25)
The dispersion of spin waves propagating in the ¢ direction of a basal-plane ferromagnet is given by
A +B3=A@)+B({)- [A(0)+B(0)]
DIIPD > o KSR (0) = KYT @] cos (69 9)0(u + 1 + ' 6p)
I im t'm'
X (= 2){[(E 12 = 2] [ 41 = m2 ]} T Ty Dy e (26)
and
A3 -B3=A@) - B(Q)-[A0)-B(0)]
1
DIIDID = [KLT (0) = K47 @) cos (6p 9)0 (s +m +-m’= 6p) 2mm'Ty |, Ty Ly @7)

p Ap Im U'm'

Owing to the properties of the Legendre polynomi-
als, a simple selection rule appears in the dis-
persion of the spin waves when 6=37. K§{™'(q)
will contribute to A7 + B3 if L+m and l'+m' are
both odd, and to A3 - By if I+m and I'+m' are
both even and if m and m’ are both different from
zero. This selection rule is equivalent to the one
obtained for a helically ordered structure.®

For spin waves propagating in directions other
than the highly symmetric ¢ direction, the condi-
tion (8) is not necessarily fulfilled. Terms in
which p +m +m'# 6p give rise to a lifting of the

f

degeneracy along the K-H edge in Tb, as dis-
cussed by Lindgird and Houmann® in a paper
presenting the first indication of anisotropic two-
ion couplings in Tb other than the normal magnetic
dipole interaction. Only in special cases such as
this, and the conically ordered spin system
(Er3'%%), is it possible to detect anisotropic two-
ion couplings simply from studies of the dispersion
relation. To detect such couplings in a ferromag-
netic spin system we need more information, which
may be obtained from the interaction of the spins
with other systems such as the lattice or thermal
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neutrons (the scattering cross section), or from
the influence of external disturbances on the spin-
wave spectrum. The application of an external
magnetic field (or a uniaxial stress) affects the
spin-wave energies in a way which makes a dis-
tinction between A (q) + B(§) and A () - B(q) possi-
ble.

In the presence of an external field the Zeeman
Hamiltonian

3, = —gp.BZ 3-8 (28)

will contribute only to the A(q) part; thus when the
field is parallel with the direction of magnetiza-
tion, Eq. (21) is replaced by

(@) ={[A@) +B@) +g1s HIAQ) - B@) +gupH}'?,
(29)

where we have neglected a possible change of the
strength of couplings in (7) with magnetic field.
As long as the external field is much smaller than
the exchange field (Hp, =20 MOe in Tb) and the
temperature is close to zero, the effect of the
external field on the exchange interaction (by
polarizing the conduction electrons) can be taken
into account by defining an effective g value3®

8oy =4TM(0)/NpgJ =1.038g, (30)

where M(0) is the magnetization at zero tempera-
ture.37;38

The relations deduced above are only strictly
valid at zero temperature. As the temperature
is raised the relative magnetization defined as

o(T)=M(T)/M(0) (31)

decreases. Callen and Callen®® have developed

a theory in which the spin correlation functions,
(0, ;) are expressed as functions of 0. The
effective renormalization of the magnon energies
due to magnon-magnon interaction is then ob-
tained from this theory, following Cooper,? by
dividing the spin correlation functions in the ex-
pression for the magnon energies by o [this is ob-
tained as a generalization of the result (24), which
at finite temperature should be divided by al.

The o dependence of these functions as deduced by
Callen and Callen should follow the classical Zener
power law at low temperatures, which implies
that

/DKL () ooy Xetethmt (32)
1 q )

A+ D)+ I +1) + U @7+ 1))
<y LUY<EAMA 1) + T+ +17+1)]. (33)

If [ and I’ are both different from zero, y(A,,1’)
depends, within the limits given, on the actual
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correlation range of the coupling. Brooks et al.28%°
have considered the effects of strong anisotropy
on this temperature law and have obtained first-
order correction in the case of noncylindrical
symmetry (as in Tb and Dy). Lindgdrd and Daniel-
sen?! have treated the same problem in a Hartree-
Fock approximation. They found that the power-
law dependence of the spin correlation functions,
Eq. (32), should still be valid; however, the rela-
tion (33) is modified in a way which differs some-
what from that deduced by Brooks. In this context
the relation (32) is the most important, because
the dependence of a certain spin correlation func-
tion on the intensive variables (H and T) is then
described by one parameter y instead of two. The
relation between the field and temperature depen-
dence is determined by (32) if the relative magne-
tization o is known as function of H and T'. The
condition (33) is here only used as an indicative
relation between A, I, and !’ and the y deduced
from experiments.

Hegland et al.3" have determined the magnetiza-
tion in Tb as a function of temperature. Their
measurements also give some idea of the magni-
tude of do/dH. The molecular-field value for
do/dH is®

do/dH = gugJ(1 — 0)/kgTy, (34)

where Ty is the Néel temperature (225 K in Tb).
This value is comparable to that deduced from the
magnetization measurements,®” and it agrees with
the one deduced from the observed forced mag-
netostriction in Th,** as shown in III. At finite
temperatures (0<1) the application of an external
field will give rise to an increase of the relative
magnetization. The field dependence of o con-
nected with the implicit ¢ dependence of A(q) and
B(q) as given by (32) introduces a correction to
the energy expression (29); so the field dependence
of the square of the magnon energies at finite tem-
perature is (in the limit of small fields)

de*(q) 9e%(q) do_

dH oo dH ° (35)

=2g8ugA (a) +
Thus the field dependence of the magnon energies
is simply related to A(q), which, combined with
the absolute value of the energies, leads to a de-
termination of A(q)+B(J) and A({) - B@).

1V. EXPERIMENTAL DETERMINATION OF ANISOTROPY

The spin-wave dispersion relations in Th and in
Tb-Ho alloys have been extensively studied by
inelastic-neutron-scattering experiments.*® In
these experiments the dispersion relations along
the symmetry lines in the Brillouin zone have
been determined over a wide temperature range.
The lifetime and the energies of spin waves propa-
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gating in the ¢ direction have been studied both

in the spiral (216—225 K) and in the ferromagnetic
(<216 K) phases. A recent review can be found in
the article by Mackintosh and Bjerrum Mgdller.**

Common to the interpretation of the experimental
results in these previous publications on Tb, and
to other works concerning the magnetic properties
of the heavy-rare-earth metals, is the assumption
of an isotropic two-ion coupling as given by Eq.
(1). However, the interpretation® '3 of the spin-
wave measurements of Nicklow et al.® in the
conical magnetic phase of Er showed unambiguous-
ly that anisotropic two-ion couplings are important
in determining the magnetic properties of Er.
These measurements prompted us to investigate
the validity of the assumption of isotropy in Tb.

As shown in Sec. III, a way to proceed is to mea-
sure the field dependence of the magnon energies.
This method has been used for obtaining the mag-
netic anisotropy at zero wave vector in*®* Tb—10-

at.%-Ho and in pure Tb (III).

The energy of spin waves propagating in the
¢ direction of Tb was studied by inelastic neutron
scattering. The energies were measured as a
function of magnetic field applied along both the
easy and hard directions in the basal plane at
three different temperatures (4.2, 53, and 134 K,
corresponding to a relative magnetization®” of 1,
0.971, and 0.832, respectively). An external
field of up to 100 kG could be applied.

A selection of the experimental results at 53 K
for different q values is shown in Fig. 1. The
terms quadratic in field, (guzH;)? and [gus(H,—H,)]
for H parallel to an easy and a hard axis, respec-
tively, are subtracted from the square of the mag-
non energies shown in the figure. H, is the critical
field necessary to pull the moments into alignment
parallel to a field applied in a hard direction (see
III). The energies squared should then increase
linearily with the internal field H;, according to
the Eqgs. (29) and (35).

The observed coupling between the magnons
and the transverse phonons propagating in the ¢
direction perturbs the field dependence of the mag-
non energies. The magnons interact both with the
acoustic and optical transverse phonons. The ab-
normal acoustic-optical coupling raises a severe
problem, as it violates the selection rules deduced
in II for a basal-plane ferromagnet. The acoustic
magnons are observed to be coupled with the opti-
cal transverse phonons which have their polariza-
tion vector parallel with a b axis, whereas general
symmetry arguments predict that the optical trans-
verse phonons which may couple to the acoustic
magnons are those polarized parallel to an a axis.
The occurrence of an acoustic-optical interaction
requires the spin and space variables to be direct-
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FIG. 1. Dependence of the square of the magnon ener-
gies for different § values in the ¢ direction on internal
field in Th at 53 K. The energies have been corrected
for the terms quadratic in field as described in the text.
The symbols + and 0 represent results for the field in
easy direction, and X and @ the hard direction. The
experimental results, + andx, were corrected for the
influence of the magnon-phonon interaction, and the
circles are the energies of the unperturbed magnons ob-
tained after introducing this correction, which is neglig-
ible at § values of 0.07 and 1.00 A-1. The dashed lines
illustrate the linear behavior of the energy squared as
a function of field, and the solid lines are the final re-
sults of the least-squares analysis.

ly mixed, and Liu'® has proposed a mechanism
which involves the spin-orbit coupling of the con-
duction electrons. In II we find that this mecha-
nism, besides making an acoustic-optical coupling
possible as proposed by Liu, also introduces new
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selection rules to first order in the spin-orbit
parameter (A,,). The spin-orbit coupling implies
that the spin-up and spin-down states of the con-
duction electrons are mixed, which corresponds
to a deviation between the direction of magnetiza-
tion and the direction in which the conduction elec-
trons are polarized (Tb cannot then be considered
as a simple ferromagnet). The equations of motion
of the total magnon-phonon system are considered
in detail in II. Both the normal magnon-phonon
interaction and the abnormal acoustic-optical
coupling vanish at I (¢ =0 and 27/c) and are negli-
gible when ¢ is 0.07 and 1.00 ;X", as is apparent
from Fig. 1, where we have shown the square of
the perturbed magnon energies and the results
when the energies have been corrected for the
couplings. The way in which this correction has
been carried out is described in II. With the ex-
ception of the results shown in Fig. 1 all the ex-
perimental results which appear in this article
have been corrected for the direct coupling be-
tween the magnons and the phonons.

T T T T T

| €lq). EASY DIRECTION N2

ENERGY, (meV)

1 1 L 1

0.4 08 08 10
WAVE VECTOR (&)
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The uncertainties introduced by the correction
for magnon-phonon interactions are not included
in the standard deviations of the experimental re-
sults in Figs. 1 and 2. In a neutron experiment
a relatively small change of energies can be deter-
mined more accurately than given by the absolute
uncertainties of the energies, which is the reason
for the striking linear behavior of the energies
squared (the dashed lines) when compared with
the (absolute) standard deviations shown in Fig. 1.
In Fig. 2 we show the dispersion relations in the
¢ direction at zero field, 2(a), and at a field of H,
applied in a hard direction, 2(b), as a function of
temperature.

The initial slope @(q) of the square of the mag-
non energies as a function of the reduced field

get't'“'BHi’

a(d)

1 de?(q) 0, H#b axis

= H—»
8eir b dH when ‘ {

H, H#a axis

(36)

T T T T T

€(q), HARD DIRECTION (H;=H,)

ENERGY (meV)

134K

0 L
0 0.2

1 1
0.8 10

| 1
0.4 0.6
WAVE VECTOR (&™)

FIG. 2. Dispersion relations for the unperturbed spin waves propagating in the ¢ direction of Tb as functions of tem-
perature, (a) when the magnetization is along an easy axis, and (b) when it is along a hard axis. The uncertainties in-
troduced by the correction for magnon-phonon interaction, which is largest for § around 0.55 IOX", are not included in
the standard deviations of the experimental results. The standard deviations of the results at 171 and 200 K in (a) are

not shown.
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is shown in Fig. 3. Here we use the effective
£ value defined in Eq. (30). At low temperature
a(q) is simply equal to 2A(q), whereas the tem-
perature dependence of the magnetization intro-
duces additional contributions at finite tempera-
tures, Eq. (35). This is illustrated in Fig. 3(c),
where the dashed line indicates the final result
for 2A(q); as seen in the figure, the o dependence
of the crystal field and exchange parameters makes
a contribution of about 25% to the slope @(q), when
o is equal to 0.832.

At low temperature (4.2 K) we obtain immediately
A7 +B7 [defined in (26) and (27)] from

A7 B3 =30(d) £3[02@) - 4e2()] /2 - [A(0) £ B(0),
(37)

where the spin-wave parameters at zero wave
vector, A(0)+B(0), are known from the field ex-
periment described in III. A measurement of
€(@) and @(q) in both the cases in which the mag-
netization is along an easy and a hard direction
determines four spin-wave parameters. At 4.2 K
those four parameters are A3 +By at ¢$=0 and

$ =37, which are shown in Fig. 4. The general
expressions (26) and (27) offer no possibilities
for a reduction of this number. In the case of an
isotropic two-ion coupling (1), B3 should be zero
and A7} should be independent of ¢ and should,
within a random-phase approximation, renormalize
as o

{As} =J[900) - 9@)]o; { Bz =0. (38)

This relation is not fulfilled in the case of Th, as
is apparent from Fig. 4; B ~3A, when the mag-
netization is along an easy axis, and the param-
eters depend on ¢. The terms which introduce
a ¢ dependence of A7 +B7 arise from couplings
of high rank (A +!+1’26) which according to (33)
should renormalize quite rapidly (y=9). If we
neglect terms proportional to cos12¢ and cos18 9,
which presumably are small, the ¢-dependent
terms are easily extracted. Because anisotropic
couplings in general contribute differently to
A% +B7j and Aj — By, see Egs. (26) and (27), the
isotropic part of the two-ion coupling is not direct-
ly related to the ¢-independent part of Aj. How-
ever, the experimental results obtained at finite
temperatures can give some indications of the
magnitude of J[J(0) - ()] if most of the ani-
sotropic contributions renormalize faster than o.
A more definitive result could be obtained if it
were possible to create a significant magnetic
moment along the ¢ axis.

In order to deduce Ay £B7 at finite temperatures
we have to solve Eqs. (21) and (35) self-consis-
tently. For this purpose we parametrized Ay £B7

in several different ways, and obtained clearly
the best least-squares fit by using the parameters
defined as

A3 +By = 5@ @ 4 R@GHV— @)D cosbd
(392a)
and
A3 -By= Q(E)Uj(.a) - .'K(ci)o"‘a’ - :D(ﬁ)ok‘z’ cos6 o,
(39b)

where ¢ is the angle between the direction of mag-
netization and the a axis (hard direction) and by
definition all the coupling parameters vanish iden-
tically at zero wave vector. The experimental
results allow us to introduce not more than four
coupling parameters. These four parameters are
then d-dependent linear combinations of terms
which may depend differently on ¢ (according to
their rank, A +1+1'). Within the quite narrow range
of 0 (1=20=0.8) which we consider, we may hope
that the o dependence of the four parameters are
satisfactorily accounted for by introducing four
effective exponents. These exponents cannot then
be expected to be independent of .

The way in which the coupling parameters are
defined by (39) turned out to be the most appro-
priate one. One of the advantages obtained when
the ¢-independent part of A3 +B73 is parametrized
as in (39) is that there was no experimental evi-
dence for distinguishing between the o dependence
of the three anisotropy parameters ®(3q), €(q),
and D(q), and hence the number of parameters can
be reduced by two. The distinction made between
g(q) and x(q) is justified by the final result that
9(Q)> (>)x%(q), shown in Fig. 5, and especially by
the large difference in the o dependence obtained,
J7(qQ)<<k({), as shown in Fig. 7. The result for
7(q), which is found to lie between 0 and 2, implies
that the behavior of g(q) is rather close to that
expected for the isotropic part of the two-ion cou-
pling.

The final fit was obtained by expressing the
parameters in (39) in terms of cosine series with
interplanar coupling constants as coefficients,
e.g.,

5@=y, 8,1 -cos(tnn)], (40)

where ¢ =qc/2n. The values obtained for the inter-
planar coupling constants 94,, %,, €,, and D,

are given in Table I together with their uncertain-
ties. The corresponding curves are the solid lines
in Figs. 5 and 6. The magnetization exponents

7(q) and k(q) are expanded in cosine series as

J@) =Jo+Y dall —cos(enm], (41)
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FIG. 4. § dependence of the two components, Ag +Bgand Az —B~ , of the magnon energies in the ¢ direction of Tb at
4.2 K (open and closed symbols, respectively). The effective §-dependent anisotropy is given by half the difference be-
tween the two energy components, By, which is deduced to be of an appreciable magnitude when the magnetization is
along an easy axis, (a), whereas By is quite small in the hard axis configuration, (b).

the coefficients of which are given in Table II and
reproduced in Fig. 7.

The four two-ion coupling parameters in con-
junction with the two corresponding magnetization
exponents, which are shown in Figs. 5-7, re-
produce satisfactorily the field and temperature
dependence of the magnon energies. The final
least-squares fit appears as solid lines on all
the figures shown. The two high-temperature
dispersion relations at 171 and 200 K in Fig. 2(a)
were not included in the least-squares fitting be-
cause of an expected breakdown of the simple ef-
fective magnetization dependences of the param-
eters (200 K corresponds to 0 =0.60). Neverthe-
less, an extrapolation of the coupling parameters
up to these temperatures produces dispersion
relations which agree very well with the measured
magnon energies. This agreement indicates that
the low-temperature parameters are the relevant
ones also at higher temperatures, and at temper-
atures above ~150 K the anisotropy parameters

%x@), e(@), and D) are all negligible in compari-
son with ¢(q), which allows us to conclude that
the two-ion coupling in Tb is effectively isotropic
above this temperature (B;=~0). j(q) in Fig. 7
deviates somewhat from 1 (except when ¢

~0.55 A™"), which suggest that ¢(3) contains
anisotropic contributions. If we assume that the
isotropic part renormalizes as 0, it is possible
to make an estimate of its magnitude by using the
dispersion relations determined at the higher
temperatures where Az > By. This estimate is
shown in Fig. 5 as the dashed line. Because of
the assumptions involved we shall only claim that

9@)~J[9(0) - 9@)] (42)

and consider the relatively small deviation of §(q)
from the dashed line in Fig. 5 to be a measure of
the uncertainty with which the isotropic part of
the two-ion coupling in Tb has been determined.
In Fig. 4 was shown Az + By at 4.2 K deduced for
the two cases where the moments are either along
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FIG. 5. Coupling parameters 4 @) and®(d) for Th, as
defined by Eq. (39), represented by open and closed
circles, respectively. ¢ (@) may be considered to be a
fair representation of the isotropic two-ion contribut-
tion J[F(0) = g(@]). An estimate of this isotropic part,
which is discussed in the text, is shown by the dashed
line. X (§) represents the ¢ - independent anisotropy.
All coupling parameters are the spin-wave parameters
at zero temperature. The circles are the results
deduced by a least-squares fitting to all experimental
results obtained at a certain § value, most of which are
shown in Figs. 2 and 3. The statistical scatter of the
experimental results, ¢ (@) and o (), and the uncertain-
ties introduced by the magnon-phonon interaction were
smoothed by fitting a Fourier expansion to the results.
The standard deviations obtained by the least-squares
analysis of the Fourier results are presented as the
cross-hatched areas. These areas then show the prob-
able regions in which the parameters lie. The best fit
of the two coupling parameters which was obtained is
represented by the solid lines. This final least-squares
fit appears as solid lines on all the figures shown.

an easy axis, 4(a), or along a hard axis, 4(b).
The variation of the neutron cross section with
the wave vector is directly related to these pa-
rameters. In the case where B(q) is real and the
scattering vector ¥ is along the c direction, the
{ dependence of the neutron cross section is
given by 32:%

I.

TWO-ION MAGNETIC... 315

4

ENERGY (meV)

-100 02 04 06 08 10
WAVE VECTOR (A™)

FIG. 6. Basal-plane anisotropy parameters €(q) (open
symbols) and D (§) (closed symbols) representing the
dependence at zero temperature of the two-ion anisotropy
in Tb on the orientation of the moments in the basal
plane, see Eq. (39). The way in which the parameters
were derived and the meaning of the signatures used are
explained in the caption to Fig. 5.

A% K e~ A@)+B@),
dndE B PO =g (D)
X0k =G ~T)o(E - e@)) .

(43)

k, and k’ are the wave vectors of the incident and
scattered neutrons, respectively; F(k) is the mag-
netic form factor®; 7 is a reciprocal-lattice vec-
tor; and ng is the boson distribution function.
The integrated intensities of the neutron groups
obtained experimentally by monochromator scans
(B’ constant) are compared with the intensities
deduced from (43) in Fig. 8. The agreement is
quite good (the solid line); however, because of
the arbitrariness of the absolute intensity scale,
the comparison in Fig. 8 is not very sensitive to
the q-dependent anisotropy, as is illustrated by
the dashed line for which B(q) is taken to be inde-
pendent of § [equal to B(0)].

In a preliminary interpretation of the experi-
mental results*” the magnon-phonon interaction
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TABLE I. Interplanar coupling constants for Tb as defined in the text. Here and in Table
II s( ) denotes the standard deviation of the corresponding parameter. All values are in meV.

n 9, s(4,) X, (¢, c, s(C,) D, s(D,)
1 3.203 0.048 0.980 0.098 0.841 0.229 -0.041 0.078
2 0.846 0.077 0.022 0.140 0.403 0.290 -0.061 0.097
3 0.144 0.052 0.193 0.108 -0.220 0.242 0.097 0.080
4 —-0.388 0.075 —-0.008 0.124 0.168 0.260 -0.029 0.087
5 —-0.018 0.059 -0.115 0.087 0.444 0.206 -0.062 0.063
6 —-0.084 0.061

7 0.064 0.061

and the field dependence of 0 were neglected.
These approximations combined with the ambiguity
in sign in front of square root, B(q), in Eq. (37)
[when B(§) becomes close to zero] led to coupling
parameters which differ substantially from those
deduced in the present analysis.

V. DISCUSSION

The two-ion spin Hamiltonian in Tb is dominated
by the coupling parameter, 9(q), which is pre-
sumably isotropic and renormalizes approximately
as 0. The exchange parameter deduced from the
spin-wave measurements in Gd *® may include aniso-
tropic contributions originating in the spin-orbit
coupling of the conduction electrons (ii). Neither
is the parameter J[ §(0) - 9(§)] in Er derived by
Jensen® from spin-wave measurements® neces-
sarily isotropic. In spite of the uncertainties as-
sociated with the two-ion couplings deduced from
experiment, the appropriately scaled function
[9@) - 9(0)]/(g =1)? is similar, both in magnitude
and the general  dependence, for these heavy-
rare-earth metals, as shown in Fig. 9. The dif-
ferences which appear are probably mainly due
to a variation of the properties of the band elec-
trons,*™'% as discussed by Lindgdrd and Liu.'®
In Er the maximum is essential for stabilizing
the periodic magnetic ordering. The apparent
agreement between the scaled isotropic part of
the two-ion spin Hamiltonian for the three heavy-
rare-earth metals Gd, Tb, and Er supports the
RKKY theory in emphasizing the importance of

TABLE II. Fourier components of the magnetization
exponents which implicitly describe the temperature
dependence of the two-ion coupling parameters in Th
according to the text.

n Jn s(dn) k, s(ky,)
0 2.000 0.202 27.48 4.66
1 —0.960 0.122 —7.72 2.27
2 —2.99 1.46

the indirect exchange interaction via the conduc-
tion electrons, Eq. (1).

At zero temperature, the two-ion anisotropy
parameters %(q)and e(q) are of the order of 3 of
the isotropic coupling, whereas D(q) is almost
negligible. They all renormalize quite rapidly,
as o' to 0?7 (depending on q), which implies that
9(q) is the only coupling parameter of significance
in the spin-wave Hamiltonian at higher tempera-
tures (above 150 K). The magnitude of the aniso-
tropic part of the two-ion coupling in Er 3! jg
found to be slightly larger than the magnitude of
the isotropic part at low temperatures. Recent
measurements on Dy *° (similar to those per-
formed on Tb)show Dy as lying between Tb and
Er with respect to the anisotropy. This indica-
tion of an increase of the importance of aniso-
tropic two-ion couplings in the heavy rare-earths
with atomic number, and hence with L, may
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FIG. 7. 7(§) and & (§) obtained by the least-squares
analysis as described in the caption to Fig. 5. j(§) is the
power dependence of ¢(§) with relative magnetization,
and k£(q) is the exponent for the anisotropy parameters
X(3), €(d), and D(Y).
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FIG. 8. Integrated intensities of the neutron groups
arising from magnon creation in a monochromator scan
(k' =2.1 A“) in Tb at 53 K when the moments are along
an easy axis. The solid line represents the § dependence
of the neutron scattering cross section deduced from the
final results [Eq. (43)], whereas the dashed line shows
the behavior if the §-dependent anisotropy is neglected.

serve as a guide in investigations of the mecha-
nisms responsible for the observed anisotropy.

Measurements of the dispersion of the crystal-

field levels in Pr %% show that anisotropic two-
ion interactions are also important in the light-
rare-earth metals.

The identification of the microscopic mecha-
nisms from which the q-dependent anisotropies in
the rare-earth metals originate requires both
further experiments and detailed theoretical cal-
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FIG. 9. Exchange function [J (q) — J (0)1/(g —1)% in

the c¢ direction for the heavy rare-earth metals Gd, Tb,
and Er.

culations. However, some qualitative arguments
may be suggested, based on the results obtained
for Tb. Birgeneau and Kjems®! have suggested
that the large phonon-induced quadropole inter -
actions observed in the rare-earth vanadates®?
may be of equal importance in the metals (viii).

It is known that magnetoelastic effects (II, II,

and Ref. 52) are important in Th, and there is
therefore the possibility of large phonon-induced
couplings. The correction of magnon energies for
the perturbation due to the interaction with the
transverse phonons propagating in the ¢ direction
takes the most important contributions into ac-
count. As discussed in II, there remain at low
temperature the higher -order zero-point contribu-
tions arising from the indirect interactions trans-
mitted by a simultaneous emission and/or ab-
sorption of a magnon and a phonon. These terms
are similar to those due to magnon-magnon inter-
actions and are presumably small, as they do not
seem to be present at zero wave vector (III), and
they cannot explain the strong ¢ dependence of the
anisotropy e(q). The most important phonon-mag-
non induced coupling which contributes to A3 + B3
is the normal €-mode coupling, which also appears.
as the direct magnon-phonon interaction in the ¢
direction (/ and !’ both even and m and m’ both
odd), and this coupling does not show any ¢ de-
pendence (see II). The y-mode interaction, giving
rise to the ¢-dependent distortion of the hexagonal
symmetry of the basal plane, does not contribute
to Az +B3. The strongest magnon-phonon inter-
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action which has been observed in Tb is the
acoustic-optical interaction (II), and the origin

of this coupling is not the Coulomb interaction but
the exchange interaction via spin-orbit coupled
states of the conduction electrons, (ii), as pro-
posed by Liu.'®* This magnon-phonon coupling

has also been observed in Dy, and it explains

the occurrence of an energy gap in the spin-wave
spectrum of Er* (see II). The importance of

the spin-orbit-coupled states in Tb is further
supported by the indication of an interaction be-
tween the acoustic and optical magnons. Such an
interaction, which we have neglected in our
analysis, may be present in the case of an a-

axis magnet and arises from the terms in (7) for
which p in (8a) is a half integer (p =3 introduces

a coupling proportional to cos3¢). An indication
of this coupling in Tb is found in the tendency of
e(@) and D(§) to oscillate strongly in a correlated
fashion around A. The spin-orbit coupling mecha~
nism, which gives rise to the violation of the
selection rules for the magnon-phonon interaction,
may introduce an interaction between the acoustic
and optical magnons proportional to sin3¢ instead
of cos3¢. This is the only modification introduced
by this mechanism if the moments are parallel to
an @ or a b axis.

The order of magnitude of the two-ion anisotropy
deduced in Tb, Dy, and Er suggests that its
microscopic origin lies in the mechanisms which
affect the indirect RKKY exchange interaction
[mechanisms (i)-(iii)]. As we have stressed, the
indications of contributions from the spin-orbit
coupling of the conduction electrons, (ii), show
that a nonrelativistic theory, (i), may only suc-
ceed in explaining part of the two-ion anisotropy
observed in these metals.

The phenomenological spin-wave theory for a
basal plane ferromagnet presented above accounts
for the two-ion parameters which have been deter-
mined in Th. According to the selection rules,
Eqgs. (26) and (27), e(q) may be connected with
terms like K33(4) or Koza(q) (Z+m and U +m' both
odd, p+m +m’=6). The theory of Callen and
Callen,*® Egs. (32) and (33), predicts a renormal-
ization of these terms within the range 0*° — 0%,

which is in fair agreement with the experimental
value of 2(q). %(J), the axial anisotropy term in
Az - Bz, may include contributions from Koz 2(q)
(~0® - 0¢°), which has been shown to be the most
important coupling in the description of the spins
in Er.,*

The presence of two-ion anisotropy will in gen-
eral affect the spin-wave energy gap at zero wave
vector (III). An order of magnitude estimate may
be based on the Fourier coefficients of the aniso-
tropy parameters given in Table I. A comparison
of Eqs. (22) and (26) shows that the interplanar
contribution to A(0) + B(0) of the two-ion couplings
appearing as e(q) is determined by

—Z(‘Zn( —c0s6¢)=—(1.6 meV)(~cos6¢)

at zero temperature. Although the intraplanar
contributions may be of the same order of magni-
tude, this number indicates a very strong correla-
tion between €(q) and the surprisingly large aniso-
tropy parameter, AM =-(1.39 meV )o'**3, obtained
in III. In III we discuss further evidence for the
two-ion origin of AM. The connection between the
two-ion contributions to A(0)+ B(0) and the other
§-dependent anisotropy parameter, %(q) and (),
is not as close as in the case of €(J), because it
depends on the types of coupling which are con-
sidered. If we assume that m =m’ for the terms
which contribute to D(q) then the corresponding
interplanar contribution to A(0) - B(0) would be

-2 Z D,(~cosb¢)=(0.2 meV)(~cosbop) .

If the axial anisotropy term in A3 - By is domi-
nated by a certain spin coupling then the inter-
planar contribution to the ¢-independent part of
A(0) + B(0) would be negative [e.g., if K3272()
dominates, the contribution is —1.6 meV]. In
other cases the contribution to %(q) is quite un-
certain.

Some of the arguments in this discussion are
further elucidated in the following two articles,
II and III. A summary of all three papers is
given at the end of III
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