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Green's-function calculation of the surface properties of a two-band crystals
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The electronic properties of the clean (001) surface of three model crystals with the CsC1 structure have

been calculated. One model results in no surface states, the second model yields Shockley surface
states, and the third model yields Tamm surface states. Analytic expressions for both the bulk-crystal
Green's function and the (001)-surface Green's function are derived. Using the resolvent technique, the
surface-state bands are presented. Using the phase-shift technique, the change in the total density of
states {both inside and outside of the bands) due to the creation of the surface are calculated. From this,

the change in the specific heat due to the surface and the surface entropy are found. Finally, the local den-

sities of states for the layers near the surface are obtained from the surface Green's function and compared
with the local density of states in the bulk. Our results, which can be used to understand the properties of
both semi-conductor and insulator surfaces, are contrasted with previous results for one-band crystal surfaces
which are appropriate only for metals.

I. INTRODUCTION

Chemical and physical processes which occur at
a solid surface depend critically upon the elec-
tronic structure of the surface layer of atoms.
For example, adatoms which chemisorb to the
surface interact with the first layer of atoms.
In addition, the presence of surface states can
cause the electronic energy bands to bend and
thereby alter the electrical conductivity in the
suface region. In order to understand these pro-
cesses from a fundamental point of view, we must
start with the study of the electronic structure of
the clean surface. In a later paper, ' we will build
on the results of this paper and consider the prob-
lem of chemisorption and reconstruction.

In this paper we are concerned with the electron-
ic properties of the clean (001) surface of a three-
dimensional two-component crystal which has the
CsCl structure [two interpenetrating simple cubic
(sc) lattices]. We use the linear-combination-of-
atomic-orbitals (LCAO) formalism within the
limits of the tight-binding (TB) approximation.
The Green's function (or resolvent) is determined
for the bulk crystal as well as the perturbation
required to create the surface. Then the phase-
shift function is calculated from which the change
in the electronic density of states due to the per-
turbation can be found. In addition, we find the
surface Green's function from which we obtain the
density of states for each layer in the crystal.
Each aspect of this calculation is reviewed brieQy
below.

There is a long history, reviewed by Koutecky'

and by Davison and Levine, ' of the use of the
LCAO and TB approximations for studying surface
properties. In 1939, Goodwin' first used the
method to study a finite monatomic linear chain.
He found that electronic surface states (where the
wave function and charge density are localized
near the chain ends) were present only if the
energy of the orbital on the end atoms was altered
by more than a critical amount. Later, Hoffmann
and Konya' studied the same system without the
restriction of the TB approximation.

Use of the LCAO method on mixed linear crystals
started in 1951 with the work of Hoffmann. 6 He
considered the bulk properties of an infinite chain
of the type A„B, where n and m are arbitrary
integers. Later, Amos and Davison' examined
the surface properties of the simpler AB-type
chain. For the infinite chain, there are two energy
bands separated by an energy gap. As in the work
of Goodwin, -4 they found that the electron orbital
energy on the surface atoms must be perturbed in
order to get surface states. Their surface states
(called outer states) fell either above the top
band or below the bottom band. More general
work by Davison and Koutecky' found that surface
states could also appear in the band gap (inner
states) for certain types of perturbations.

Levine and Davison' compared qualitatively the
results from a one-dimensional LCAO chain cal-
culation to real binary systems such as NaC1,
CdS, and GaAs. They assumed the chain to be
made up of alternating s-like and P-like atoms.
This model, unlike those previously considered,
gives the band-gap minimum at the center of the
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Brillouin zone rather than at the zone edge. They
found that surface states appeared in the band

gap even without perturbing the electron orbital
energies of the end atoms. Thus the LCAO method
can give rise to the two general types of surface
states: namely, the Tamm state where a pertur-
bation near the surface is required, and the Shock-
ley state where no perturbation is needed. In ad-
dition to the study of surface states, the LCAO
formalism has been used to study more subtle
properti. es of one-dimensional systems. As an
example, Cunningham and Maradudin" have re-
cently used the LCAO approach to calculate the
surface induced dynamic effective charge near the
ends of a finite chain.

The LCAO-TB formalism has also been applied
to three-dimensional systems using three different
techniques. One important technique which was
used by Koutecky and Tomasek" first solves for
the bulk electronic energy levels as a function of
the general complex wave vector. The allowed
values of the wave vector are then determined by
satisfying the appropriate boundary conditions;
namely, the wave function in the crystal must
match smoothly onto a decaying wave function in
the vacuum. This technique of wave-function
matching has been used widely in studying surface
states, "but since it does not generally use the
LCAO formalism, we will not mention it further.

Another important technique which is used
widely is based on the observation by Goodwin"
that for each wave-vector component parallel to
the surface, the three-dimensional problem takes
on the same form as the one-dimensional problem.
This has led to a series of papers dealing with
slab systems in which the crystal is infinite in
extent in two directions but finite (typically less
than 20 layers) in the third direction. Then for
each wave-vector component, an eigenvalue matrix
of mana, gable size (size is determined by the pro-
duct of the number of orbitals per atom and the
number of layers in the slab) is obtained. Work
using this technique has appeared by Pugh, "
Hirabayashi, "Alstrup, "'"and more recently by
Pandey and Phillips. "'" With the exception of
work by Joannopolous and Cohen' on QaAs, the
use of the LCAO technique with slab calculations
has been confined to single-component crystals
of the diamond structure. Many other slab calcu-
lations have been done, "but they do not use the
LCAO approach.

These two techniques give information about the
energy and wave function of the surface states for
various components of the two-dimensional wave
vector parallel to the surface. They do not, how-
ever, allow one to determine the change in the
bulk density of states upon creating the surface,

nor do they allow one to study the density-of-
state changes which occur in chemisorption. This
information is important in the study of photoemis-
sion and the study of heterogeneous catalysis, and
it can be obtained by the third technique (the one
we use in this paper).

The third technique for using the LCAO formal-
ism for studying the surface of three-dimensional
systems is known as the Green's function or
resolvent technique. The details of this method
will be discussed in Sec. III. Baldock" used this
approach (which is due to Lifshitz) to combine the
Green's-function method with the LCAO model.
Then Koster and Slater" generalized the method
and applied it to the study of impurity levels and
end effects of simple one-dimensional systems.
Koutecky and Davison'4 applied the technique to a
general mixed one-dimensional crystal where the
unit cell is composed of an arbitrary number of
atoms of an arbitrary type. They demonstrated
how both Tamm and Shockley surface states can
arise. Thus, the situation now is that the surface
electronic properties of one-dimensional systems
are well understood.

Concerning three-dimensional systems, the
resolvent method has been used by Koutecky, '
Hplland, and Brown tp discuss fprmally the
properties of surface states. Tomasek" applied
the method to the study of the (111)surface of
silicon and by using several simplifications per-
formed the entire calculation analytically. Later,
Freeman" showed how the resolvent method can
be applied to more realistic systems by perform-
ing numerical calculations. Then Levine and
Freeman" applied the technique to the surface of
a crystal with the zinc-blende structure. They ex-
amined the effect of changes in the positions of the
surface atoms upon the energies of the surface
states thereby illustrating the flexibility and power
of the resolvent technique. Very recently, van. der
Avoird et al. ,"have set up a numerical procedure
based on the resolvent technique applied to a
finite-slab geometry. This technique should be
suitable for quantitative calculations on real sys-
tems, but results from this approach are yet to
appear.

As we will see below, the resolvent technique
requires knowledge of the bulk Green's function
and the perturbation required to create the sur-
face. The calculations presented above ""re-
sult in a determination of the energy of the surface
state as a function of wave vector parallel to the
surface. The density of states is generally not
obtained. A variation of the resolvent method was
used by Kalkstein and Soven'2 wherein they solve
directly for the Green's function appropriate for
the surface. This allows them to calculate direct-
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ly the density of states for each layer in the crys-
tal. Thus, the effect of the surface on the bulk
electronic levels can be directly seen independent
of whether surface states exist. Bose and Foo"
have recently performed a similar calculation on
a one-dimensional binary system simulating an
ionic crystal.

The phase-shift technique, coupled with the
Green's-function method, is a convenient way to
study the effect of a perturbation upon the energy
levels of a general Hamiltonian. DeWitt pre-
sented the essential elements of the phase-shift
technique which has been formally applied to the
problem of surfaces by Blandin" and Toulouse. "
The method calculates the phase shift in the Bloch
waves due to scattering from a perturbation (the
surface). This phase shift gives the change in the
energy levels due to the perturbation and thus can
be related to the change in the density of states.
This, in turn, can be related to several physical
properties of interest regarding the surface.

This approach has been applied to several model
systems. Allan, "and Allan and Lenglart"'" have
extensively studied the clean-surface properties of
a one-electron-band crystal of various structures
(sc, fcc, bcc). They showed how the surface per-
turbation can give rise to surface states as well
as how the bulk states are changed due to the sur-
face, and, in addition, they found the change in
the electronic specific heat due to the creation of
the surface.

The phase-shift approach can also be used to
study chemisorption. Recently, Einstein~' has
expanded earlier work of Einstein and Sehrieffer"
to study the changes in the density of states caused
by chemisorption. This application of the phase-
shift technique complements the Green's-function
approach to chemisorption that has been discussed
by Schrieffer ' and Qrimley and Pisani.

The main advantage of the phase-shift technique
is that it gives directly the change in the density
of states. This information is important since it
is directly applicable to photoemission and chemi-
sorption. No other method gives this same in-
formation in such a straightforward manner.
The main disadvantage to the phase-shift technique
is its dependence on knowledge of the crystal
Green's function. Usually, one must use numeri-
cal techniques for even the simplest of model
cases. As a consequence, all of the work to
date ' ' has been confined to studying model one-
band crystals. These results, then, have only
been useful in understanding the surface properties
of metals.

In this paper, we apply the phase-shift technique
for the first time to a model two-band crystal.
An important point is that we have been able to

II. BULK GREEN'S FUNCTIONS

The one-electron Hamiltonian for the bulk crys-
tal is given by

where P is the electron momentum operator; m,
and r are the mass and position, respectively, of
the electron; and x(IP) is the position of the Pth-
type basis atom in the tth unit cell of the crystal.
We consider a crystal with the CsCl structure so
that the index P takes on two values, 1 or 2, for
the two types of atoms in the unit cell. The term
U is the electron-ion core potential which is
centered on each atom site. As is common in the
LCAO formalism, electron-electron interactions
are neglected.

The solution of the Schrodinger equation is as-
sumed to be of the form

y(r) = Q Q C, s4(r -x(lP)),
r 8

(2)

where 4(r -x(lP)) is an atomic-like orbital for a
free atom centered on site (lP). For this calcula-
tion, we assume one orbital for each atom in the
crystal, and, whereas the specific form of the
orbital is never needed, the orbital is assumed to
be spherically symmetric (s-like).

Substituting Eq. (2) into the Schrodinger equation
and using the TB approximation we obtain the fol-
lowing matrix equation:

obtain the Green's function for the bulk in an ana-
lytic form. Thus, whereas some numerical work
is required, the complete calculation is no more
difficult than the previously considered one-band
crystals. The results of this calculation, then,
are useful in understanding the surface properties
of semiconductors and insulators.

In Sec. 0 we derive the bulk properties of our
model. This includes the bulk band structure aa
well as the bulk-crystal Qreen's functions. In
Sec. III we discuss the phase-shift technique and
present the perturbations appropriate for the sur-
face. Here we consider three disti. nct cases; i.e.,
one which yields no surface states, one which
results in Shockley surface states, and finally
one which produces Tamm surface states. We
show the change in the density of states due to
the creation of the surface and determine the sur-
face contribution to the specific heat for each
case. In Sec. IV we obtain the surface Green's
function for the case in which there are no surface
states. This allows us to find the local density of
states for each layer in the crystal. In Sec. V we
summarize our results.
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QQ Ho(l'p', lp)C( 8 = ECs'8' ~

r 8

where

II.(~'p', tp) = &t-'O'IHollp&

(f'P'I1P& = 6«5ss

and

ltP& =-C(r —x(fP)).

(4}

(5)

(6)

By substituting Eq. (11) into Eq. (3), and using
the matrix element defined in Eqs. (7)-(10), we
obtain a (2 x 2) secular matrix equation which can
be solved to obtain the bulk energy ba,nds. We find

E&, = .'(E,—+E.)+ (~."'+ ~."')f,(e)

'(I E,-E.+—2(~P'- ~P')f. (4)1'

+ 256y,f ', (P)j'", (12)

where
Within the limits of the TB approximation, the
diagonal elements of the Hamiltonian matrix be-
come the orbital energies of the free atoms, E,
and E,. Thus,

(7)

f, (Q) = cos—,'g, cos-,'p, cos~p, ,

f,(Q)=- cosQ, + cosp, + cosp, ,

Q= aok,

(13)

(14)

(15)
(fPIH, ltP) = E„P=1, 2.

For the off-diagonal elements (also called hopping
integrals), we have for nearest neighbors

(tllHolt2&= r, ,

and for second neighbors

&n. II' lf + 1 1&
=

&,
"' = 0,

«2 IHo P +»& -=y,"' =- y, .

(6)

(9)

(10)

There are two types of second-neighbor hopping
integrals indicated by the superscript in Eqs. (9}
and (10) because there are two types of second
neighbors. Later in the calculation we are forced
to set one of these hopping integrals to zero so
that the bulk Green's function can be expressed in
analytic form. In ionic crystals, the two compo-
nents generally have different radii which implies
that the two second-neighbor hopping integrals will
have different values, and quite often one will be
significantly greater than the other. This justifies
our neglect of one of the second-neighbor hopping
integr als.

In our calculation, all energy terms are ex-
pressed in units of y, . The parameters Ey E2,
and y, are taken as adjustable. Although approxi-
mate values can be obtained for these parameters
by assuming a particular form for the orbitals and
the potential, we feel that more specific choices
than the general ones we have made would by no
means change the qualitative nature of our results.
The geometry and parameters of the problem are
shown in Fig. 1. In all the results presented in
this paper, we have chosen E, = 2.0 and E, = -2.0
in units of y, .

Using the standard approach, 44 we assume the
wave function to be of the Bloch form by assuming
the coefficients C» to be

C&~ = N '~ w(plkj)e'"'"~'~, j = 1, 2, (11)

where k is the wave vector, j is the band index,
and N is the number of unit cells in the crystal.

and where a, is the crystal lattice spacing. In Eq.
(12), the plus (minus) sign is associated with the
branch index j = 1 (2).

In this paper we are concerned with the surface
properties of the (001) surface (see Fig. 1). For
this surface, the wave-vector components parallel
to the surface (k, and k, ) are good quantum num-
bers, but the wave vector perpendicular to the sur-
face (k,} is not. The Brillouin zone for the bulk
crystal is a cube with sides of length 2w/a, . The
Brillouin zone for the surface is a square with

X, =2 g

Surface

l, =o

ao

Q Atom of Type I

(.::::-') Atom of Type 2

FIG. 1. Geometry of the (001) surface of a crystal
with the CsCl structure. The plane of atoms of type 2
is a distance 2ao behind the plane of atoms of type 1.
The first-neighbor interaction is y& and the second-
neighbo" interaction between atoms of type 2 is y2.
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sides of length 2m/a, . To get the projection of the
bulk energy bands onto the surface Brillouin zone,
we sweep the z component of the wave vector k,
from the value 0 to w/a, (the energy expression is
symmetric with respect to reflection of k, so that
only half of the k, values are needed).

In Fig. 2 we present the results obtained for a
se gment of the surf ace Brillouin zone where we

have chosen a particular value of k„. The zero of
energy is taken to be the average of the orbital
energies of the free atoms .In Fig. 2(a) we show
the energy bands for the case in which only the
nearest-neighbor hopping integral is included. In
Figs. 2(b) and 2(c), the second-neighbor interac-
tions y,

' and y,', respectively, are added to the
first-neighbor calculation. We see that y,

' affects

7— (a) 7T

.Y 2oo

E

7—
(b)

y2 =02 (2)= U2

1

0.5 kx ao
7r

I

1.0
I

0.5
k„ao

I

1.0

E
TI

(c)
7— 77

2a
= Uo= 0.0

I

0.5
k„a

7r

1.0

FIG. 2. Projection of the infinite crystal energy bands
onto a segment of the surface Brillouin zone showing
the quasicontinuum of states for each value of wave
vector. Results are for the cases when (a) only nearest-
neighbor interactions are included, (b) second-neighbor
interactions between atoms of type 1 are included, and

(c) second-neighbor interactions between atoms of type
2 are included. For all results we use E& ——2.0. and

E) ——-2.0.
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the upper band and y,
' affects the lower band.

Since in a semiconductor only the lower band is
filled, we have made the arbitrary choice of re-
taining y," = y, in our calculations and setting y,
= 0.

In order to determine the Green's function, we
must know the eigenvector w(p~kj) of the (2 x2)
Hamiltonian matrix. From Eqs. (3) and (12), we

obtain

G(0)(l2, l'2, E) = Q (E —E,)De(ll'),
k

(25)

G '(l2, l'1& E) =Q FDs(ll')e' ~» '~» '~' I2 (27)

where

G'(l1, l'2, E) =/FDIC(ll')e
' ~»' &+ & " (26)

zp (1 $j) Fe ((()» + e» + 4» )/2/r

~ (2
~
kj) = (E, —E-„,)/~,

where

(16)

(17)

rk ~ x(rr ')

N [(E—E,)(E—Es) —E']

Es=- E.+ 2r,f.((t)).

(28)

(29)
&=8r f (4),
~ =-[Z'+ (E, -E»)']'".

(18)

(19)

The retarded Qreen's function satisfies the fol-
lowing matrix equation4'.

x G(0)(itpr ltipii E) 6 6 „(20)
where the superscript zero denotes the Green's
function for the bulk crystal. The term ie, which
is appropriate for a retarded Qreen's function, is
a positive imaginary infinitesimal which will be
dropped in the subsequent discussion until needed
in Eq. (37). The Green's function can be related
to the eigenvalues and eigenvectors of the Hamil-
tonian matrix by4'

(0), , 1 ~(& I ~i)(( *(P' lkj)
Nq E —E»

&& e i k ~ x (l r ')

where

x(ll') = x(l) —x(l'), (22)

and the summation is over all wave vectors in the
three-dimensional Brillouin zone and over the two
branch indices. That Eq. (21) satisfies Eq. (20) can
be seen by direct substitution. Performing ex-
plicitly the summation over j in Eq. (21) gives

G'"(lP, 1'6', E) ——g G'"(l P l'P' P E)
s ks

& iks x(rr') (30)

where N, is the number of two-dimensional unit
cells in the surface and L, labels the unit cells in
the direction perpendicular to the surface.

By comparing Eq. (30) with the results in Eqs.
(24)-(27), the bulk Green's functions in the mixed
representation become

(31)

An important feature of this calculation is the fact
that, whereas Eq. (23) appears to be cumbersome,
the eigenvalues and eigenvectors combine in just
the right way to make the needed bulk Green's
functions in Eqs. (24)-(27) rather simple.

In order to study the surface properties, it is
appropriate to express the bulk Green's functions
in a mixed Bloch-Wannier representation. '
This effectively reduces the three-dimensional
problem into a number of one-dimensional prob-
lems. As we will show below, each one-dimen-
sional problem can be solved analytically. Thus,
we exploit the translational symmetry parallel to
the surface by expanding the bulk Green's functions
in terms of k, (—= )t),/a, ), the wave vector parallel to
the surface.

1~ a(pjk1)a)*(p'Ckl)

M(»)»a)M'(»')»2))
E —Ek2

(23)

Substituting Eqs. (12), (16), and (17) into Eq.
(23) gives for the bulk Green's functions

d"(l1, l'1, E) = g(E -E,)D,(ll'),

G(')(l,2, l,'2, P„E)= Q (E E,)D,(l,l,'), -

d"(l,l, l,'2, y„E)=g ED, (l,l,')

pe- (4„+4~+4,)n
7

G(o)(l,2, l,'1, (t)„E)= Q ED,(l,l,' )
k

)& e&((t)g+ (t) 3)+ ((()g) /2

(32)

(33)
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where

la, (&,&,')

L,((E —E,)(E —E ) —E']

(36)

All of the resulting integrals are of the general
form4'

l eos(l P ) 4mt" ~"~

dQ, cospg - «+ $E t —1

where

(37)

«-(«' —1)'",
t= J «+f(1 —«')"', [«[&1,

«+ («'-1)'",
(38)

It might be noted in passing that obtaining the in-
tegrals in the form of Eq. (37) is the step that
forces us to set one of the second neighbor hopping
integrals to zero. '

The final results for the bulk Green's functions
are

G'"(f, l& f,'1, y„E)= 2aPtl, -&go+1

2 P[ flitg -lg+ 1 I ~ t le -lg 1l ]y2

(39)

d"(V& 42& A, &&)=2dPt" " "
(&' (l 1, l'2, y„E)= 2fPt[tl - l&~

f le -lg -1l] e-1(&(&„+4„)/2 (41)

(40)

G (l, 2, f,'1, P„E)= 2fPt[t~'~

+ f~lg -lg+li] el(4~+5»)/2 (42)

where

a =E —E2-2y, (cosg-, + cosP„),
P = 1/B(P —1), —

d-=E -E
f= 4y, cos(—,

' P„)cos(—,'p, ), -
«-=-A/B,

A -=ad-2f',

B = -2y~d -2f2.

(43)

(44)

(45)

(46)

(47)

(48)

(49)

Two important properties of the Green's functions
are apparent from these equations. First, in the

and where L, is the number of unit cells in the
z direction (I,,N, = N).

To obtain the Green's functions in closed analytic
form, we convert the sums to integrals through
the transformation

bulk, the Green's functions depend only upon the
separation distance between layers, I, —l,', and
not on the value of l, and l,' separately. Second,
the two Green's functions in Eqs. (39) and (40} are
complex only when the magnitude of the parameter
« is less than unity [see Eq. (38)]. This occurs
only when the energy E falls within one of the two
bands [see Eqs. (43)-(49)].

Except for an ambiguity in sign which is fully
discussed in both Sec. IV and in the Appendix, the
set of equations from Eq. (38)-(49) completely
defines the bulk Green's functions. It requires
only a simple numerical program to obtain any
of the bulk Green's functions for arbitrary energy
E and two-dimensional wave vector P, .

H(lP, l'P') = Ho(lP& f'P &) + V(lP, l'P'), (50)

where V is the surface perturbation term. If, for
example, we consider the bulk crystal to have only
nearest-neighbor interactions (i.e., y, = 0), then
the perturbation term is

V(lp, L'p'} = —y, (5, ,5(),5,. 58,
+ 5(,o6e35(,15e 1)

(5!~l&'& 51l&&+»5l„ l'„5l »1&'&+1

+ 51 l~+15ly ly + 6l~ l~ +151 yl &&+1) ' ( )

In the resolvent technique, " ' the energy of the
surface state is obtained from the determinant
equation

x d'&lv p", &'»', »)) = o. (52)

The value of E for which this equation is satisfied
is the surface state energy. The equation is valid
only for energies outside the bands where the
Green's functions are real. For energies inside
the band, the real part of Eq. (52) gives resonances
inside the bulk bands. The matrices appearing in
Eq. (52) are infinite in size. Since the transla-
tional symmetry in the direction parallel to the

III. PHASE- SHIFT CALCULATIONS

We form the (001) surface by passing an imagin-
ary plane between atoms of type 2 in the L, = 0
plane and atoms of type 1 in the l, = 1 plane as
shown in Fig. 1. Each surface formed consists of
only one type of atom. The effects of the surface
formation can be introduced into the Hamiltonian
by adding a perturbation term which exactly can-
cels all interactions which occur across the
imaginary plane. Thus, in matrix notation analo-
gous to Eq. (4), we write for the perturbed system
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surface is preserved in the cleaved crystal, each
matrix in Eq. (52) can be expressed in the mixed
Bloch-Wannier representation. For the Qreen's
function, this is done in Eq. (30). For the pertur-
bation matrix, we have

model I is given in Eq. (51). Upon substitution
into Eq. (53), we obtain a matrix whose nonzero
elements can be put into (2 &&2} form

0 —fx(P, }
V(I.P, I,'P', 4.) =

-fx*(4.} 0 (59)

X -i ks x(l l') (53)
where

(y )
e&(4x+4y)I2 (60)

«"(4 0 t P '0 "&, ))'. . ', „(54)

For energies E outside the bands, the condition

D(y„Z}=0 (5

gives the energy of the surface state for each
value of P, . For energies inside the bands, the
function D(Q„E) is complex. For this case, we
define the partial phase-shift function

(56)

In contrast to the matrix in Eq. (51), the nonzero
elements in Eq. (53}form a matrix which is finite
in size; in fact, it is quite small, either (2 &&2) or
(3 x3) in this paper.

In analogy with the resolvent technique, the phase
shift technique" ' defines the determinant function
(Fre dho1m deter minant )

(4D„E)= det (a, , ass -2 Q v(l, p, t."p", r', )
'z

V(I, P, I,'P', 4.) = -fx*(4.)

-fx(4.) -~2

and where f is given in Eq. (46). The rows and
columns of this matrix are labeled by the rows of
atoms in Fig. Jt. that participate in the perturbation.
For this case, the first row indicates a value of
(L,P) = (02) while the second row is for (l, P) = (11).
For all other values of (l,P), the matrix elements
of V are identically zero. Thus, wherea, s matrix
V is technically infinite in size, there are only
two nonzero terms. As we will see below, there
are no surface states for model I.

For model II we consider the bulk crystal to have
both first and second neighbor interactions as
shown in Fig. 1 and discussed in Sec. II. For this
case the perturbation needed to create the surface
extends to the second layer from the surface, and
the resulting perturbation matrix is (3x3). We
have

The total phase shift per surface unit cell is ob-
tained by summing the partial phase shift over the
surface Brillouin zone, i.e.,

0

(61)

(57)

It is related in a simple way to the change in the
density of states. We haves' '

( )
1 dq(z)

dE (58)

where hn(E) is the shift in the number of energy
states per unit energy per surface unit cell. This
change in the density of states is the desired re-
sult of this portion of the calculation. From it,
several physical properties of the surface can be
deter mined.

To proceed with this calculation, then, we must
define the explicit form of the perturbation matrix
which creates the surface. In this paper we con-
sider three different model cases. For mode/ I,
we consider the bulk crystal to have only nearest-
neighbor interactions. To create the surface we
cancel the effect of the transfer integrals across
the imaginary plane. Thus, the perturbation for

For this matrix, the third row and column are
labeled by the atomic row (l, P) = (12). As we will
see below, model II gives rise to Shockley surface
states.

For model III we again consider the situation in
model I where only first-neighbor interactions are
assumed. However, upon creating the surface
we assume that the orbital energy on the first
layer of atoms on each surface is changed by an
amount V,. The physical basis for this perturba-
tion is that the crystal potential at the surface is
different from its value in the bulk. The pertur-
bation matrix for this case is

V(I. P, I.'P', 4.) =
Uo

-fx*(4,)

-fx(4.)

Uo
(62)

where the labels of the rows and columns are the
same as in model I. The reason for considering
this model is that it results in Tamm surface
states.

The surface states which fall outside of the bands
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can now be easily determined by the resolvent
technique. We have numerically calculated the
Fredholm determinant IEq. (54)] for each of the
three models as a function of energy E for various
choices of wave vector Q, . When the determinant
goes through zero as we vary E, we have a surface
state. For model I, this never occurs which means
there are no surface states within the context of
this model.

For model II, Shockley surface states occur in
the band gap. In Fig. 3 we show a three-dimen-
sional view of the energy band structure for one-
quarter of the surface Brillouin zone. The shaded
region just above the valence band is the Shockley
surface state band. In Fig. 4 we show a detail of
this surface state band as a function of P„ for a
particular choice of P, . The energy between the
crossing point in the bulk band and the surface
state curve is exactly equal to the magnitude of
y„which for the calculations in this paper has
been chosen to be 0.2, in units of y, . Note that
the surface state band merges with the bulk band
and stops at a point in the Brillouin zone slightly
beyond the position where the top and bottom of
the valence band cross. This property of the sur-
face state band is shown fully in Fig. 5 where we
plot the boundary of the surface state inside the
two-dimensional surface Brillouin zone.

Finally, in Fig. 6 we show the Tamm surface
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ary. At the Brillouin-zone boundary, the energy
difference between the band edges and the surface
states is equal to the perturbation U, w'hich for
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surfaces resulting in a phase shift of +2~. (The
plus or minus sign distinguishes between states
appearing below or above the single energy band,
respectively. ) In our calculation, however, the
two surfaces formed are not identical (see Fig.
1). The surface states are localized on either one
or the other of the surfaces. Therefore, our phase
shift changes by -w, with the minus sign due to
the fact the surface state appears above the band
from which it originates. If we had cleaved the
CsC1 crystal along the (110)plane, the two sur-
faces formed would be identical and the phase shift
would then jump by +2m' at the surface state energy.

To obtain the total phase shift function, the
partial phase shift function for each wave vector
must be summed over the surface Brillouin zone
as shown in Eq. (57). We have done this numeri-
cally by choosing a uniform displaced mesh of
points in the irreducible segment of the Brillouin
zone. The method of deriving this mesh, which
is the optimum set of points of a given size for
accurately determining averages over the Brillouin
zone, has been fully described recently by Cunning-
ham. " If the number of points chosen is too small,

the results of the summation will fluctuate as the
number of points is changed. We have increased
the number of points in the sample until the fluctu-
ations in the results have become small. Typical-
ly, this means that we used samples containing
400 points.

The total phase shifts for the three models are
shown in Fig. 8. For model I we obtain the simple
antisymmetric curve shown in Fig. 8(a). The
curves start and stop at the bulk crystal band

edges since there are no surface states. In Fig.
8(b) we show the total phase shift for model II.
Since the inclusion of y, does not change the shape
of the conduction band and does not introduce sur-
face states near that band, the total phase shift
in the energy range E & 0 is very nearly the same
as in Fig. 8(a). The results in the region of the
valence band, however, are quite different due to
the difference in the band shape and the presence
of the surface state. Even though the partial
phase shifts equal -m' between the bulk and surface
states, the total phase shift does not reach the
value of -m. This is due to the fact that there is
not a single value of energy E which lies between
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the bulk and surface state for every point in the
Brillouin zone (see Figs. 3 and 4). The total
phase shift for model III is shown in Fig. 8(c).
Here, the total phase shift does reach a value of
-& since energies just above the valence band
edge are always between the bulk and surface
states for all points in the Brillouin zone (see
Fig. 6). In addition, the presence of the surface
state assoc iated with the conduction band changes the

total phase shift in the region of positive energies.
The interest in the total phase shift is due to

the simple relation between it and the change in
the density of states due to the creation of the sur-
face [see Eq. (68)]. Upon taking the derivative of
the curves in Fig. 8, we obtain the change in the
density of states for each model, and these results
are shown in Fig. 9. In Fig. 9(a) we show the
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FIG. 8. Total phase shift as a function of energy for
(a) model I, (b) model II, and (c) model III.

FIG. 9. Change due to the creation of the surface in
the total density of states (per unit energy) per surface
unit cell as a function of energy for (a) model I, (b)
model II, and (c) model III.
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results for model I. We see that the creation of
the surface has shifted the bulk states toward the
band gap by increasing the number of states near
the gap and depleting the number of states far
from the gap. The magnitude of the sharp peaks
at the band edges is only approximate since the
differentiation is done numerically, and small un-
certainties in the phase shift values lead to large
uncertainties i.n the derivative when the deriva-
tive is large.

In Fig. 9(b} we present the results for model II.
The conduction band results are similar to the
results in Fig. 9(a}. The presence of the Shockley
surface states, however, greatly changes the
valence band results. The complexity of the
changes in the density of states is a result of the
band structure. The increase in the density of
states at E = -2.0 is due to the presence of surface
states. The increase in the density of states at
E = -3.2 is analogous to the shift of bulk states
toward the band gap in Fig. 9(a). The minimum in
the density of states at E = -2.8 is due to the fact
that more bulk states are removed in this region
than there are surface states added.

In Fig. 9(c) we present the change in the density
of states for model III. Here the interpretation is
a little easier since the band structure is simpler.
For the valence band, there is a sharp depletion
of bulk states right at the band edge with all of the
states being put into the surface states just inside
the. band gap. For the conduction band, again the
bulk states are depleted right at the band edge,
but this time the surface states have energies that
overlap those of the bulk bands.

Once the change in the density of states is known,
changes in the thermodynamic properties of the
crystal due to the surface can be obtained. For
example, the change in the electronic specific heat
hC„(T) is given by

ac.(r) =j dEEaa(E) &, (83)

dT
S,(T) = 4C„(T')

0
(65)

In Fig. 10 we present the change in the electronic
specific heat due to the surface for each, of the
three models. Three features are worth noting.

where f(E, T) is the Fermi-Dirac function given by

f(Q T) (s( & P)/kBT+ I-)-1 (64)

and where p, is the Fermi energy. We assume the
Fermi energy to be exactly in the middle of the
band gap (p =0) and to be independent of tempera-
ture K Another thermodynamic property, the
surface entropy, is given by an integration of Eq.
(63),

First, the results for the three models are quite
similar. This is expected since the addition of a
weak second-neighbor interaction (y, =0.2y, ) or a
weak surface-atom perturbation (V, = 0.2y, ) should
not greatly change the thermodynamic properties.
This is true even though two of the models have
surface states, while one does not. Second, . at
low temperatures we find that the change in the
specific heat approaches zero exponentially with
temperature. This is consistent with the fact that
the models have a forbidden energy gap in the
change in the density of states. In contrast to
this, we have also plotted in Fig. 10 the results
obtained by Allan and Lenglart" for the (001)
surface of a half-filled one-band simple cubic
crystal. In this case, the change in the electronic
specific heat at low temperature approaches zero
linearly with temperature. Third, at high tem-
peratures (possibly above the melting tempera. —

ture of real crystals), the change in the specific
heat becomes negative. This occurs because at
high temperatures the levels far from the Fermi
energy are more strongly weighted in the inte-
gral [Eq. (63)] than those close to the Fermi en-
ergy, and the change in the density of states for
these levels (see Fig. 9) is negative.

In Fig. 11 we show the electronic surface entropy
obtained from Eq. (65) for each of the three mod-
els. Again we see the exponential behavior at low
temperatures. In addition, we see that the elec-
tronic surface entropy is positive for all tempera-
tures as it should be.

A comment should be made regarding the posi-
tioning of the Fermi level. Since our method of
creating the surface does not change the total
number of electrons in the crystal, then the inte-
gral up to the Fermi level of the change in the den-
sity of states must vanish. From Eq. (58), this
integral is proportional to the phase-shift function
at the Fermi level. Thus, to insure that we con-
serve the number of electrons in the crystal, we
have the condition

(66)

This is one of the ways to express the Friedel"
sum rule for perturbed systems. By examining
Fig. 8, we see that without further changes, this
condition forces us to place the Fermi level either
inside the band gap or outside of the bands for all
three models (for model III, we can also chose
the Fermi level to be just above the conduction-
band edge). Thus our model calculations are par-
ticularly suited for discussion of semiconductor
or insulator properties. In order to apply our
model to two-band metals, we would need to add
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a "self-consistency" term to the perturbation ma-
trix in the same manner as Allan. "

IV. SURFACE GREEN'S FUNCTIONS

In this section we derive the Green's functions
appropriate for the surface. There are two main
reasons for doing this. First, the layer density
of states can be calculated in the manner shown

by Kalkstein and Soven. ~ This allows us to see
directly how the effect on the electronic levels
due to the surface perturbation is localized within

the first few layers of the solid. From this we
can make contact with photoemission experiments
since it is the density of states near the surface
that is measured, and this need not be the same
as the density of states in the bulk. Second, the
surface Green's functions can be used as a starting
point in studying further changes in the crystal
surface. Specifically, the surface Green's func-
tion can be used to study the effects of reconstruc-
tion'~ and chemisorption. '

In analogy with Eq. (20), the retarded surface

e
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entropy as a function of
temperature for each of
the three models. The re-
sults for the half-filled
one-band crystal (Ref. 38)
are plotted for comparison.
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Green's function satisfies the equation

H /, /' ' —8+it 5„56g

x G(l P / P E) — 5 pi6a8gi

where H is given by Eq. (50), and where we have
dropped the superscript (0) to represent the sur-
face Green's function. By multiplying Eq. (67) by
the bulk Green's function G")(l"'P"', /P) and by sum-
ming over indices l and P, we obtain

G(/IIIPIII /IIPll E) G(0}(/IIIPIII /IIPII E)
G(o) (liiIPIII /P E)

&, 8 r', 8'

x V(l p, l'p')G(l'p', I"p",E),
(68)

where V is the perturbation matrix given by Eq.
(51). As in Eqs. (30) and (53), we convert the
surface Green's function to the mixed Bloch-
Wannier representation

G(lP, l'P', E) = —Q G(l,P, l,'P', $„E)
S ks

j~s ~ x()) t)

In this representation, Eq. (68) becomes

G(/!"P", /."P", 4 ) = G"(/"'P"' /" P" 4 )

+ Z G'"(/."'P", /. P, P.)
gg l g'8'

x V(l, p, l.'p', y, )

x G(l,'p', l,"p", p, ),
(VO)

where we have dropped the explicit dependence on
E for convenience.

In this portion of the problem, we choose (for
convenience) to consider only model I. Because
of the particularly simple form of the perturbation
matrix, Eq. (59), we can explicitly carry out the
matrix multiplication in Eq. (70). In addition, we
use the fact that G(l,P, l,'P') is nonzero only if l,
and l,' are on the same side of the surface. Thus,
if we consider first the upper surface in Fig. 1, we
obtain

G(/.'P', /.P) =G'"(/,'P', /. P)

+ G( ) (l,'P', 02) V(02, 11)G(11,l,P),
(71)

where we have suppressed the dependence on $, .
By setting /,'=1 and P'=1, we solve Eq. (V1) for
the surface Qreen's function to get

G(11, /gP) = d'(11, /gP)/[I —G (11,02) V(02, 11)].
(V2)

Finally, this expression can be substituted back
into Eq. (Vl) to give the general surface Green's
functions. By substituting the explicit expr essions
in Eqs. (39)-(42) for the bulk Green's functions
and after considerable algebraic manipulation, the
surface Green's functions can be written (re-
member that l, and /,') 1)

G(l,P, /gl}=G(')(l, P, l,'1) —G 0)(l, +l,'P, 11), (73)

G(/, P, l,'2) =G(o)(l,P, /g2) —G(0}(/g+lgP, 02), (74)

where P =1, 2. Similarly, for the lower surface in
Fig. 1 (l, and l,'( 0) we obtain

G(/gP, l,'1) = G(') (l,P, /gl)

—G( }(/g+/g —IP, 11),
G(l, P, l,'2) =G(o)(l,P, l,'2)

—G("(l, + l,' —1P, 02 },
where P=1, 2. The fact that the surface Green's
function can be expressed as the difference of two
bulk Green's functions is a significant simplifica-
tion in our problem. This fact was recognized to
be true for the one-band crystal surfaces by
Dobrzynski and Mills, "and it is also true for a
finite diatomic chain. "

The density of states on the layer labeled by E,

and P is related to the imaginary part of the sur-
face Green's function by"

p(l, P, E)= Im P G(l,P, l,P, $, , E) .
&s

(77)

Only the diagonal elements of the Green's-function
matrix are needed. By substituting the analytic
expressions for the bulk Green's functions into
Eqs. (73)-(76), we obtain the simple expressions

G(l, 1, /gl}=Jd(1 —t"~ '), /g) 1,
G(l,2, l,2) =J'a(I —t "~), /, 1,)
G(l, 1, /, 1)=Zd(1 —t ""') l (0
G(l,2, l,2)=J'&(I —t "~"), l, (0,

where

J =2t/B(t' —1},

(V8)

("/9)

(80)

(81)

(82)

and Imt is to be interpreted as -sgn(E)Imt, where
sgn(E) is the sign of E.

The term sgn(E) is added because of an ambiguity
in sign in taking the square root of a square. This
ambiguity arises in all aspects of the use of this
Green's function. The ambiguity is removed by
comparing the results of the calculation in the
limit of zero band gap (when the two atoms in the
unit cell become identical) with a separate cal-
culation for a body-centered-cubic (bcc) crystal
There is no ambiguity in sign for the bcc case.
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The sign which is given for Imt, then, is based
on the assumption that therere is a continuous
change in the phase shift in going from the zero
band gap case to the ca.se with f' 't b d I
the Appendix we show explicitly how this is done
for the calculation of the partial phase shift dis-
cussed in Sec. III.

In Fig. 12 we show the local density of states
(LDS) calculated numerically by sampling the sur-
face Brillouin zone and evaluating Eci. ('l't). From
the form of the surface Green's fu ts nc ions in Eqs.
(78)—(Bl), the LDS for the upper surface in Fig. 1

is the mirror image of the LDS for the 1

surfa
or e ower

ee. This means, for example, that the
LDS for the layer I, =I, P =1 is the same as
the LDS for the l

show the LDS for layers in the lower surface.
In Fig. 12(a) we show the LDS for atoms of type

2 representing the first, third, and fifth layer of
atoms from the surface and for a layer in the
bulk. In Fig. 12(b) we show the LDS for atoms of
type 1 corresponding to the second, fourth, and
sixth layer of atoms along with the LDS for a
layer in the bulk. From these curves we see that

the density of states at the surface is considerably
more narrow in energy than the bulk density of

dern
states. This feature of band narrow' h bing as een

been
emonstrated theoretically for metalsme as ' andhas
een observed using photoemission. " Here we
ave demonstrated that band nanarrowing also oc-

curs for semiconductors. Experimentally, the ob-

ber of semic
served photoemission bandwidth fi s or a large num-
er of semiconductors are more narrow for ultra-

violet photoemission spectra (UPS) than for x-ray
photoemission spectra (XPS)." Th is trerid can be

surface since the escape depth of electrons in UPS
is sma, lier than for XPS.

of sta
In addition, from Fig. 12 we see that the da e ensity

the bulk d
s ates for the surface layers ra idlpi y approaches

e u density of states as we move into the
crystal from the surface. By th f fthe i layer, the

DS is very similar to the bulk d 'tensi y of states.

V. CONCLUSIO&S

We have obtained, for the first time, anal tic
expressions for both the bulk Green's fu t'reen s nction and

surface Green's function of a two-band
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model crystal of the CsC1 structure. These
Green's functions are significant because, in ad-
dition to studying the properties presented in this
paper, they can serve as a starting point for cal-
culations of both surface reconstruction and chemi-
sorption on semiconductors and insulators. These
two vital problems have not yet been examined
from the Green's-function point of view. The fact
that the Green's functions are analytic is im-
portant because it is then possible to study the sur-
face using only simple numerical calculations,
and consequently, it is much easier to understand
how the results depend on the model parameters.
This feature is often missing from more elaborate
numerical calculations.

We have calculated the change in the density of
electronic states caused by the creation of the
surface for three separate models. The three
models were chosen because one results in no
surface states, one results in Shockley surface
states, and one results in Tamm surface states.
The existence conditions for these surface states
is significantly different from those obtained pre-
viously, both in one-dimensional models and in
one-band three-dimensional models, The change
in the density of states shows both the addition of
the derived sUrface states and, equally important,
the concomitant perturbation of the infinite crystal
density of states, In addition, we have used the
change in the density of states to calculate various
thermodynamic properties of the semiconductor
or insulator surface, namely, the electronic
specific heat and the surface electronic entropy.
We have found, in contrast to one-band metals,
that the surface specific heat faHs to zero expo-
nentially at low temperatures.

We have presented the local densities of states
for a few layers of atoms in the surface region for
the case when there are no surface states. We
expect the results to be qualitatively the same for
the other two models. We have shown, as is true
for one-band crystals, that the band widths of the
densities of states on the surface layers are more
narrow than for the bulk layers. This fact can
explain some of the discrepancies which have ap-
peared between the results of UPS and XPS
studies on semiconductor surfaces.

Finally, whereas the work in this paper is con-
cerned with a specific surface of a specific struc-
ture of a two-band crystal, we believe that the
qualitative features of the results are quite gen-
eral and are common to all semiconductor and in-
sulator surfaces. This belief is supported by
analogy to the fact that for one-band metals, the
model results for three faces of a simple cubic
crystal, two faces of a body-centered-cubic crys-
tal, and one face of a face-centered-cubic crystal

are all qualitatively the same. Thus we believe
that the results in this paper can serve as a gen-
eral basis for the way in which one views both
semiconductor and insulator surfaces.
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APPENDIX

We present here the calculation of the partial
phase shift for the case of zero band gap by two
different methods. For the first method, we set
Ey E2 0 in the derivation of the bulk Gree n' s
function of Sec. II to get the Green's function ap-
propriate for a bcc crystal. We then obtain an
analytic expression for the partial phase shift
which contains no sign ambiguity. For the second
method, we use the partial phase shift expression
given in Sec. III and evaluate them in the limit
E, -E,-0. By comparing the two results, the
sign ambiguity is removed for model I. The same
method has been used for models II and III, and
for the surface Green's function in Sec. IV.

Setting E, =E, =y, =0 in Eqs. (31}—(35), we find
that each of the Green's functions, when written
in integral form [using Eq. (36)], contains the
factor E/(E'-F'}. This factor can be split into
partial fractions as

2E/(E' Z') = I/(E+E-)+ I /(E Z) . -(A1)

6"(l,2, I,'I, g„E)= P'7 ' ' "'"~"x($-)

where

J '= 1/f(~2 —1),
s —(s' —1)~', s & I,
s+i(1 —s')'~', —1 &s&1,
s+ (s' —I)'~', s & -1,

s = E/2f, —

(A4)

(A6)

(A7)

Using this identity and the integral from Eq. (37},
we obtain for the bcc bulk-crystal Green's func-
tions

6 o)(I~P~ l~P P~ E) ~ ~ I 8- ~ I+
P 1 2

(A2)

~"(Igl, 42, $,E) = &'& """-' '~" *(4 )
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D(y„Z) = -I/(~' -1) . (A8)

and where f is given by Eq. (46) and y(Q, ) is given
by Eq. (60).

Using the perturbation matrix for model I, Eq.
(59), the Fredholm determinant in Eq. (54) reduces
to the simple expression

where t is given by Eq. (38). Inside the bands,
we have

+z(I (2)li2 (A11)

and the parameter g [from Eq. (47)] can be re-
lated to s [Eq. (A7)] by

Inside the band, the magnitude of s [Eq. (A7)] is
less than unity. Thus, using Eq. (A6) in Eq. (A8)
and calculating the partial phase shift in Eq. (56)
we obtain

g =2s' —1 .

Substituting for f in Eq. (A10), we obtain

D(4. , &)=2[1+~(I-0')"'/(I-()] .

(A12)

(A13)

n(4. &)= — g[ /(1 — ')' '] . (A9)

D($„E)= —I/(f —1), (A10)

There is no ambiguity in the sign of the square
root in this expression since the sign of the square
root in Eq. (A6) is fixed.

In the second approach, we use the expressions
for the bulk Green's functions given in Eqs. (39)-
(42) and take the limit as E, =E, =y, =0. Again,
the Fredholm determinant in Eq. (54) can be
written analytically with the result

The partial phase shift thus becomes

n($. , &) = -»g[(s')"/(I —s')"'] . (A14)

The ambiguity in sign lies in the numerator of the
argument since s can be negative. By comparison
with Eq. (A9) we see that the positive root is the
correct root. Thus, the numerator always has the
sign opposite in sign to the energy E [note f is al-
ways positive in Eq. (A7)]. We assume from con-
tinuity that this sign convention is valid even when
the band gap is not zero and when the partial phase
shift cannot be obtained analytically.
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