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Lattice operators in crystals for Bravais and reciprocal vectors*
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The kq representation is used for defining lattice operators whose eigenvalues are all the discrete vectors of
the direct and the reciprocal lattices in crystals. The eigenstates of the lattice operators form a complete and

orthonormal set of localized functions in both the configuration and the momentum spaces. It is shown that
these eigenstates can be chosen to be closely connected to either the free electron or the extremely tightly

bound electron Wannier functions. The lattice operators turn out to be conjugate to the k and q coordinates.

The concepts of a "Bravais lattice" and a "recip-
rocal lattice" are fundamental in the Bloch theory
of solids. The vectors of these lattices appear in
the theory as purely classical quantities despite
the fact that the dynamics of solids has to be
treated quantum mechanically. '

In this paper we solve two problems. First, we

give a quantum-mechanical description of the
Bravais and the reciprocal lattices. This consists
of finding lattice operators whose eigenvalues are
all the discrete vectors of the direct and recipro-
cal lattices. The eigenfunctions of the lattice op-
erators form a complete orthonormal set of local-
ized functions in both the configuration and the
Four ier space.

The second problem is closely related to the
first one and has to do with the structure of the
kq representation. As was previously shown, "
k and q are the symmetric coordinates for describ-
ing dynamics in periodic systems and they assume
values in the unit cells of the reciprocal and the
direct lattices correspondingly. A natural question
to ask is what are the conjugate operators to the
ones defining the kq coordinates'P Since k and q
are periodic coordinators (like angular coordinates)
one should expect that their conjugate operators
will have discrete eignevalues only. It will be
shown in this paper that the above-mentioned lat-
tice operators are conjugate to the operators that
define the kq coordinates. Physically, the mean-
ing of the mutually conjugate operators is very
simple. The kq coordinates assume values in the
unit cells of the reciprocal and direct lattices
while the eigenvalues of the lattice operators are
the discrete Bravais and reciprocal-lattice vectors.

For simplicity, let us consider the one-dimen-
sional case (the generalization of the results to
three dimensions is straightforward). In what
follows we show that it is extremely simple to de-
fine lattice operators (operators whose eigenvalues
are the Bravais and reciprocal-lattice vectors} in
the kq coordinates. Suppose that we choose the
wave function C(kq) in the kq representation to be

1 . 2m
(kqq) = „,exp i qk —kk—am), (2)

with / and m assuming values from —~ to +~. The
eigenvalues of the operators (1}are ma and

l(2v/a), the vectors of the Bravais and reciprocal
lattices, correspondingly. (1) are therefore lattice
operators and (2) their eigenfunctions (they form
a complete set in the periodic space of k and q).
In addition, the operators (1) are evidently conju-
gate to k and q when taken as periodic coordinates.

It would seem that this completes the construc-
tion of the lattice operators in the kq representa-
tion. However, the following remark shows that
this is not so. In defining the kq representation
the phases were chosen in such a way as to make
any wave function C(kq) to be Bloch-like, namely,
C(kq) has to satisfy the following quasiperiodic
conditions'

C[k+(2w/a)q] =C(kq), C(k'q+a) =e'4'C(kq). (3)

In the space of Bloch-like function (3) the funda-
mental operators x and P are'

(4)

The functions y, (kq) in (2) do not satisfy the
quasiperiodicity conditions (3) and they do not
therefore belong to the kq space. [One could
certainly use a different phase convention which
would change both (3) and (4); we find however
that the phase choice leading to (3) and (4) is most
convenient. ]

periodic in both k and q with the periods 2v/a and

a correspondingly. Then in analogy with the angu-
lar coordinate in quantum mechanics the operators
conjugate to k and q will be correspondingly

9 8
g
—and —z —,
&k Bq

(The choice of sign will become clear from the
connection with the x and P operators. ) Their
eigenfunctions are
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The functions q), (kq) in (2) can be made to be-
long to the kq space by multiplying them by a
phase factor exp[io. (kq)] that satisfies conditions
(3).

amples for o, (kq). First,

a, (kq) =kq,

where (13)

exp(in [k+(2v/~)q]} = e'",

exp [ia(kq+a}] = e'"e'~

The functions (2) will become

(5)

1 ~ 2m
C, (kq)=, eexp i—qf —ikom+io(kq)). (6)2~ k/2 a

k=k for -v/a&k&m/a

and k is periodic in k with the period 2))'/a. k can
be called a sawlike function of k. For this choice
of phase the eigenfunctions in the x representation
of the lattice operators Q and K will become [ac-
cording to formula (10)]

The lattice operators will correspondingly be mod-
ified

1 .27)
I

sin(m/a)(x-ma)
7a a (7)/a)(x -ma) (14)

. B Bo.(kq)=1 +
Bk Bk

. B Ba(kq)
Bq 8q

(8)

Q is the Bravais lattice operator, while K is the
reciprocal-lattice operator. The phase n(kq) in
relations (6)-(8) has to satisfy the (Iuasiperiodicity
conditions (5) and is otherwise arbitrary.

Apart from the arbitrariness in phase o. (kq) the
construction of the lattice operators Q and K and
their eigenfunctions in the kq representation is
now completed. Q and K are the lattice operators
because their eigenfunctions (6) form a complete
set with the eigenvalues ma and l(2w/a) corre-
spondingly (m and I assume integer values from
—~ to +~). In addition Q and K are conjugate to
exp(ika) and exp[i (2w/a)q] correspondingly:

[Q, exp(ika)] = —a exp(ika),

(K, exp[ i (2))'/a)q]} = (2w/a)exp[i (2w/a)q].
(9)

Having the lattice operators Q, K and their
eigenfunctions (6) in the kq representation one
can find the corresponding results in any other
representation, e.g. , x and p representation. Thus,
the eigenfunctions q), (x) in the x representation
will be'

For l =0 these functions are known as the Wannier
functions for the lowest band of a free electron'
(or an "empty lattice" ). It is interesting to point
out that for the particular choice of phase in (13)
the eigenfunctions (6) with n, (kq) are closely con-
nected with the Bloch functions for an empty lat-
tice. ln the kq representation the latter are'

1 2r
C» (kq) =~exp i—ql+ikq 5(k-ks),B ga a (15)

'1
~ 7

(6 ),e exp i —ex+ik x) for k &0,

y...( )=(
1 . m

,/, exp, —i —nx+ik~x for k~ &P;

where k~ is the conserved Bloch quasimomentum.
The function (15) are eigenfunctions of the momen-
tum p [with the eigenvalues (2m'/a)l+ks] and the lattice
vector K [with the eigenvalues (2n/a)f], while the
functions (6) are eigenfunctions of both lattice op-
erators Q and K. From point of view of band
structure of a free electron it is more convenient
to label the functions (15) in such a way as to make
l have the meaning of a band index (we shall write
them now in the x representation' and denote the
band index by n) For ev. en n we have

X/2 ff/g

(o. ) = — dk C, „(kx).

Also, for the lattice operators in the x represen-
tation one has

(x~Q ~x') =Qmaq), *„(x)q),„(x'),

and for odd n,

„,exp —i —(e+1)x+r'k x)2v'' a

( )
for k)6&0,

nk)S

1 -r
)q exp i —(e+1)x+ik x)

(16)

(x~K~~) =PI—q,*„(x)q,„(x ).
2'

tm
(12)

Results (10)-(12)are clearly very sensitive to
the choice of phase c((kq} in the wave function (6).
One should point out that any phase c.(kq) satisfying
the quasiperiodicity conditions (5) is necessarily
a discontinuous function. ' Let us consider two ex-

for k &0,

where n is the band index assuming integer values
from 0 to infinity. The choice of the Bloch func-
tions for a free electron in the form (16) makes
the band energy e„(k~) a continuous and a periodic
function of k~. The Wannier functions for the
Bloch functions (16}are
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1 & n
a„(x-ma) =cocos n-+ —(x-ma)

Va a 2a

„sin(w/2a)(x -ma)
&&

( /2 )( )
for even n,

(17}
1 'It'

a„(x-ma) = ~cos (n-+1) +-
Va a 2a

sin(w/2a)(x —ma)x(x-ma)
( /2 )( )

for odd n.

For n=0 we get the same Wannier functions as
for n =0 in (14). For other values of n the set of
Wannier functions for a free electron are closely
connected to the eigenfunctions (14) of the lattice
operators Q and K. Second,

c)»(kq) = k(q - q),

where

q=q for —2«q&&a

and q is periodic in q with the period a. Let us
point out that this choice of phase satisfies con-
ditions (5) because q - q assumes only values of
the Bravais lattice vectors and a, (kq) is there-
fore periodi(c in k.
eigenfunctions in the x representation of the lattice
operators are [according to (10) and (6)]

g(„(x)= (1/v a)exp[i(2w/a)xl]e(x ma), —

where

a„(x-ma) = (1/Wa)sin(2w/a)xne(x ma) (26)

and are closely connected to the eigenfunctions (19)
of the lattice operators Q and K.

What we have shown here is that the eigenfunc-
tions of the lattice operators can be chosen to be
either closely related to the Wannier functions of
a free electron [phase u, (kq)] or to the Wannier
functions of an extremely tightly-bound electron
[phase a, (kq)]. For a better comparison of these
two cases let us write down the eigenfunctions of
the lattice operators for the phase a, (kq} in the
momentum representation (P representation). We

have

2/2

q),„(P)= — exp[- i(p/0)am]q[P —lk(2w/a)],

Since the potential V(x} is infinite at the boundaries
of any unit cell the correct Bloch functions can be
chosen to vanish at q = +-,'a and one gets (we shall
write them now in the x representation')

g„» (x) = [1/(2w)'~']sin(2w/a)xn exp[ik~(x —x)],
(24}

with n assuming values from 0 to infinity. The
energy spectrum for these functions is completely
flat (ks independent)

e„(k~) = [(2w/a)n]*.

The Wannier function for the Bloch functions (24}
are

j. 1
21 —-a&@&-a

0, otherwise.
with

(27)

V(x) =g V(x na), - (21)

where

0 for xw+~a,
fI(x) =

for x=+ —,'a.
(22)

In the Aq representation the functions satisfying
the Bloch equation inside each unit cell for the
potential (21) are

1 .2m(:„(kq)=~qqp (—q(+ik (q —q)).

While the eigenfunctions (14) were closely con-
nected with the Wannier functions for a free elec-
tron, and fell off as 1/x, the functions (19) corre-
spond to extremely localized Wannier functions
which extend over one unit cells and are zero out-
side the unit cell. One can see that the eigenfunc-
tions (19) are closely connected to the Wannier
functions of a tight-binding model with the follow-
ing periodic potential

for —w &pa/R&w,
nV)=

otherwise
(28)

This is exactly the form of the eigenfunctions
(x) for a, (kq). Similarly, one can show that

the functions q), (P) for the phase a, (kq) have the
same form as q), „(x) have for the phase a, (kq).
What this means is that for the choice of phase
(w, (kq) the eigenfunctions of the lattice operators
are very well localized in P space but rather poor-
ly localized in x space (with a fall off as 1/x). On
the contrary, the choice (w, (kq) leads to a very
good localization of the eigenfunctions in x space
[functions (19)] but in p space they fall off as 1/p.

We have therefore for the first time constructed
a set of lattice operators Q and K having as eigen-
functions a complete set of orthonormal functions
and as eigenvalues the Bravais and the reciproca1-
lattice vectors. The problem of defining quantum-
mechanical lattice operators has been an outstand-
ing problem in solid state theory and there have
been attempts to find these operators. ' There are
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a number of textbooks where approaches are made
to solving this problem, in particular in connec-
tion with the Wannier functions. ' It should be
pointed out that in the kq representation the lattice
operators Q and K assume their simplest form
[(7) and (8)], while in other representations they
can be rather complicated [(11)and (12)]. This
should be expected because as was shown in this
paper [relations (9)] Q and K are conjugate to the
k and q coordinates and it is a rule in quantum
mechanics that operators and their eigenfunctions

assume usually simple expressions in the space
of conjugate coordinates (this can be compared
with the simplicity of expressing the momentum
operator P and its eigenfunctions in the x repre-sentationn).

ACKNOWLEDGMENTS

The author would like to thank Professor L. S.
Schulman and Professor C. Newman, Indiana Uni-
versity, for useful discussions.

*Supported in part by the European Research Office of
the U. S. Army under Contract No. DAJA-71-C-1977,
The Office of Naval Research and National Science
Foundation.

$0n sabbatical leave from the Technion, Haifa, Israel.
R. Peierls, Quantum Theory of Solids (Oxford U. P.,
London, 1955).

2J. Zak, Solid State Physics, edited by F. Seitz, D. Turn-
bull, and H. Ehrenreich (Academic, New York, 1972),
Vol. 27.

3J. Zak and J. Birman, Phys. Rev. B 10, 1315 (1974).
L. D. Landau and E. M. Lifshitz, Quantum Mechanics
(Pergamon, London, 1958).

5A proof of this statement will be presented in a later
publication. The author is grateful to Professor C.
Newman of Indiana University for presenting him with
a proof of the above statement.

~%. Kohn, Phys. Rev. B 7, 4388 (1973).
7E. C. McIrvine and A. W. Overhauser, Phys. Rev. 115,

1531 (1959); E. C. McIrvine, ibid. 115, 1537 (1959).
In the latter reference a possible application of the
lattice representation is outlined.

G. H. Wannier, Elements of Solid State Theory
Cambridge U. P., Cambridge, England, 1960); G.
Weinreich, Solids, Elementary Theory for Advanced
Students (Wiley, New York, 1965).


