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A detailed analysis with a localized magnetic exchange Hamiltonian has been made of existing
thermodynamic data on bcc He with the bulk of the analysis performed at the molar volumes v =
23.34, 23.88, 24.0, and 24.25 cm’/mole for T < 50 mK. The data can be described at all v equally
well by four qualitatively different sets of exchange constants. This is true with the possible exception
of one set of specific-heat data for which it is not entirely clear that they can be described by a purely
magnetic Hamiltonian alone. Expect on the melting curve at v = 24.25 and possibly for the
just-mentioned specific-heat data, one of these four sets is the conventional set, which is supported by
exchange calculations. All this points to the possibility of a description of bcc *He different from the
conventional picture. Experiments that could clarify the situation are discussed.

The generally accepted description of the
thermodynamic properties of bee solid *He below
a temperature of 7=50 mK is based on the local-
ized exchange Hamiltonian
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Here 3™ (35"") indicates a sum over nearest-
neighbor (next-nearest-neighbor) pairs, and };
is a sum over all lattice sites; I"=30", where
o, u=x,y,z, are Pauli matrices; H, is the ex-
ternal magnetic field; y=1.556x107" °K/G; and
kg is Boltzmann’s constant. For the temperature
range of interest the exchange constants A, and
A, are taken to be functions only of the molar
volume v.'78

A, is usually considered to be antiferromagnetic,
A, <0, and A,, ferromagnetic, A,>0, with A,
being the larger in magnitude. Exchange constants
with only these signs have been obtained from
exchange calculations based on a generalization
of Herring’s theory of electron exchange in in-
sulators to the case of atom exchange in solid
SHe.” The basic problem in these calculations is
the proper selection of a localized (home-based)
wave function for a single 3He atom around its
lattice site and the correct description of the cor-
relations introduced by the hard-core repulsion
of the 3He atoms. Theoretical calculations of the
A’s have been made with a variety of home-based
wave functions and correlation functions, result-
ing, however, in A’s that vary by orders of mag-
nitude.®

12

At first a nearest-neighbor Heisenberg model
(A, =0) was quite adequate to analyze the data.
Since the experiment of Kirk and Adams® could
not be explained on the basis of such a model,
Zane proposed a Hamiltonian of the form (1) with
A,# 0.2 Stimulated by the possibility to explain
the data of Kirk and Adams with Hamiltonian (1),
McMahan and Guyer incorporated, more system-
atically, the effects of multiple-exchange pro-
cesses into an exchange Hamiltonian.® However,
their calculations still suffered from the above-
mentioned uncertainty in the choices of the home-
based wave function and the correlation function
with the attendant variation in the predicted mag-
nitudes of the A’s.

Within the present experimental accuracy and
with the possible exception of the Dundon and
Goodkind (DG) experiment® discussed below, all
known thermodynamic data for 7 <50 mK can be
described on the basis of the Hamiltonian (1) with
A, <0 and A, >0 for all v, except for v=24.25,
where the data force A, <0.° (v is always in units
of cm®/mole.) However, the data can equally well
be described by a variety of sets of A, and A, that
not only have other signs but also a great variation
in absolute values (cf. sets I-IV in Table I). The
Dundon-Goodkind experiment can also be made
consistent with the Hamiltonian (1) and the sets
I-1V of Table I. However, if one accepts DG’s
analysis of their data, only two sets, one essen-
tially set III of Table I and the other a new set
with A} and A, both negative for all v, lead to con-
sistency with all thermodynamic data.

Some experimental data require changes of
sign in A, while other data imply A, <0 for all v,
This is at variance with present exchange calcula-
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tions since such calculations have, to date,
always predicted one particular set of signs for
A, and Ay; A,<0and A, >0. However, more col-
lective pictures of bce *He cannot a priori be
ruled out and unorthodox values of A, and A,,
that describe the data for 7 <50 mK, could be
viewed as an attempt to mimic a more collective
behavior of solid *He with an effective Hamiltonian
of the form of Eq. (1). In this connective it is
interesting to note the contribution, linear in the
temperature, to the specific heat at constant vol-
ume and zero magnetic field, C,,, around 100
mK.* Dzyaloshinskii ef al. have attempted to
relate this behavior to a Fermi-liquid model of
*He.2 One should also mention the possibility of
effects on the exchange constants of the phonon
modes that have been considered by Nosanow and
Varma.

We stress that we do not want to imply that the
Hamiltonian (1) is correct nor that it is incorrect
and that a more collective description should be

made. We merely want to indicate that on the basis

of present experimental data no clear decision can
be made as to the correctness and proper inter-
pretation of the Hamiltonian (1) or as to a unique
set of A’s. In other words, the nature of the
proper Hamiltonian to describe solid *He at low
temperatures is still open.

Sets of *He data, more restricted than that we
considered, have been previously analyzed by
Goldstein® and by Guyer.'® Goldstein used the
pressure data of Kirk and Adams to determine
the four constants ¢; and y;, assuming a depen-
dence of the A’s on v of the form A;=¢; 0% (i=1,2),
where the ¢; and y; were taken to be volume,
temperature, and magnetic field independent.
Goldstein obtained essentially our set I, for
v <24.0, to fit the data with the Hamiltonian (1).
Guyer proceeded to determine the compatibility
of the Hamiltonian (1) with all thermodynamic data
then available but concluded that the date and Eq.
(1) were inconsistent. It is not clear that such a
conclusion is necessary, because Guyer may have
underestimated the uncertainties in the Weiss con-
stant that is obtained from the zero-field suscept-
ibility data, as well as, in the magnetic-phase-
transition temperature of *He when calculated from
the A’s by mean-field theory.

The data that we analyze can be divided into two
classes.!®

(1) High-temperature data:thermodynamic quanti-
ties in a region of T and H,, where they can be
calculated by a few terms of a high-T and small-
H, expansion. In this class belong the following:
(i) the pressure data of Kirk and Adams® for the
pressure p as a function of T and Hyat v =23.34,
23.88, and 24.0; (ii) the data of Panczyk and

TABLE I. Results of data fitting. Forwv =24.25 the ¥’s
are not known and there are two choices of the A’s for
sets I and II consistent with smaller volumes. The large
v values (with an asterisk) arise because vy, the relative
variation of A withv, can become very large when AR0;
the a’s are always amooth functions of v. In sets I and
II,A;<0 and is dominant, while in sets III and IV, A,<0
and dominant.

Volume Ay A,y
(cm®/mole)  Set (mK) (mK) 7 Vs
23.34 I —-0.39 0.14 15.9 24.3
II —-0.40 =0.014 17.5 -324.1*
I 0.094 -0.48 20.1 15.2
v —0.093 —0.45 -33.7 20.1
23.88 I -0.55 0.25 15.3 26.1
I -0.60 0.083 14.9 83.6
III 0.16 -=0.73 25.0 14.3
v —0.013 —=0.70 -=374.1% 16.6
24.0 I ~0.64  0.28 15.5 17.7
II -0.71 0.12 13.9 32.6
III 0.18 —-0.77 19.8 16.0
v '0.014 -0.83 193.2%* 14.2
24.25 I -0.6 —-0.6 e
-0.76 -0.28
II -0.6 -0.6 s see
-0.76 =0.28
III -0.6 -0.6 oo
v -0.6 -0.6

Adams!” for p as a function of T at Hy,=0 for

21.0 sv < 24.0; (iii) the zero-field susceptibility
per spin x, data of Kirk ef al.'® for 21.0 sv < 24.0;
(iv) the C, , data of Castles and Adams'! and Dun-
don and Goodkind® for 7 >5 mK and for 23.1<v
<24.13.

(2) Low -temperature data: the zero-field transition
temperature T, for the magnetic phase transition.
This class contains the following T, data: (i) Dun-
don and Goodkind® for 7 <5 mK and for v=23.8
and 23.1; (ii) Halperin ef al.!° on the melting
curve, v =24.25.

Ignoring for the moment the Dundon and Goodkind
data of class 1 which will be discussed later, all
the other data of class 1 are analyzed through
the high-temperature expansions of Dalton and
Wood!® and Baker ef al.?° for the free energy and
Xo- The first few terms of the p, x,, and C, , ex-
pansions are

vp/AT =3a/T? + v2HA /2T ++ - - | (2a)

AT xo/kgy?i=1+4c/T +++ , (2b)
and

Cyo=3Nkpd/T? ++++ (2¢)
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Here p is in atmospheres; A=8.206x107 cm®atm/
mole °K; Tis in °K; and N is the number of spins.
Furthermore,

a=Aa,+30,0,, (3a)

b=a,+30,, (3b)

c=A +34,, (3c)
and

d=N2+372, (3d)
where

a;=Ayy;
and

v, = d(;('lll Ail );

nv)

i=1,2. a, b, c, and d are functions of v only.*!

The A’s and a’s for v =23.34, 23.88, and 24.0
are derived from the data of class 1 through a, b,
¢, and d. Here d can be determined either from
C, ,or, for a wider range of v, from the volume
dependence of a, since d(d)/d(lnv)=2a. The two
methods give consistent values of d for all v.

The values of a, b, ¢, and d as a function of v
were derived from the experimental data in the
following way. First, for each v, a and d were
determined from the more reliable H,=0 data of
class 1(i) and 1 (ii). Then a value of ¢, consistent
with the data of class 1 (iii) was assumed. Since
these x, data were very uncertain, only the sign
and order of magnitude of ¢ could be determined.?®
Finally, a value of b was sought that would give —

for given a, c, and d—the best fit of the data of class

1(1).?®* a and b then determined «, and @, once A,
and A, were found from c and d. The data of class
1 (iv)—still excluding the DG data—appear to be
always consistent with the values of a—d found in
this way.*

This procedure leads to four qualitatively dif-
ferent sets of A’s and a’s (or y’s) that describe
all the experiments of class 1 equally well (DG
to be discussed later). Two sets are obtained
because the equation for d is quadratic in the A’s,
leading with the equation for ¢ to two possible
solutions for the A’s,

Ay=4ew H[5(1d - 4¢3 (42)
and

A=t 2[5(7d - 4c¢?)]*2, (4b)
where either both upper or both lower signs have
to be taken in these equations. These two sets of

A’s lead to four qualitatively different sets of A’s
because of the freedom in the choice of | c| (¢<0

always) as follows from the uncertain x, data.

Once the A’s are known and the a’s (or y’s) are
obtained, an important check is that the y’s should
be consistent with their definitions as volume
derivatives of the A’s. In view of the small volume
variations a linear volume dependence of the A’s
on v can be assumed. In Table I we list four
typical sets for each of the volumes v=23.34,
23.88, and 24.0. Sets I and II use the upper signs
and have A, <0 and dominant, while the sets III
and IV use the lower signs in Eqs. (4) and have
A, <0 and dominant. For these volumes the set I
is the conventional one with A; <0 and A,>0. One
can go continuously from set I to set II and from
set III to set IV by varying ¢ consistent with the
X, experiment.

We make two remarks:

(a) If the upper signs are chosen in Egs. (4),
then A, sO when ¢® 2d. Taking the x, data at face
value, this would imply that A, as a function of v
changes sign, with A, >0 for v >22.0 and A, <0
for v <22.0. However, a A, changing sign is at
variance with present exchange theory results.

(b) For the A’s to be real, one must have -d=> &,
This condition would be violated at v =21.0 if the
X, data are taken at face value. We stress that in
view of the insufficient accuracy of the x, data and
the ensuing uncertainty in | ¢|, these two points
should be considered with great caution.

Once the A’s and y’s are known from the class-1
data—the. DG experiment excluded—we will de-
termine their consistency with the low-temperature
data of class 2. We will use below the results
of Pirnie et al.?® which relate @=A,/A, to T./A,
for a system with Hamiltonian (1). Such a rela-
tion can be obtained by using Padé approximants on
high-temperature expansions of x, and the stag-
gered susceptibility to determine T,/A,.

(a) Dundon and Goodkind suggest the existence
of (magnetic) phase transitions at 7 = 2 mK and
T=1.4 mK for v=23.8 and at T'= 1.5 mK for
v=23.1. Using the results of Pirnie ef al., we
obtain from sets I-IV of Table I T,=2.06, 1.87,
1.46, and 1.36 mK, respectively, for v=23.88.
Each of these T, agrees with one of the measured
T,; those obtained from sets I and II with T,
=2 mK and those from sets III and IV with T,
= 1.4 mK. However, linear extrapolation down
to v=23.1 yields T, that do not exceed about 1 mK,
which is much smaller than the observed T,
=1.5 mK at v=23.1. In view of the difficulty of
identifying a phase transition at this volume, this
should not be construed as a serious inconsistency.

Dundon and Goodkind suggest the possibility of
more than one phase transition at v =23.8. If
true, this would seem to be in disagreement with
the sets I and II of Table I since these sets of A’s
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give for H,=0—at least according to mean field
theory—only one phase transition from a para-
magnetic to an antiferromagnetic phase. The
sets III and IV, on the other hand, could, using
the reasoning of Swendsen,® possibly lead to two
phase transitions for H,=0. Swendsen argued his
point in the following way. He found that the
critical temperature as a function of @ =A,/A,
exhibited an anomaly at a certain value of @. This
anomaly was characterized by a change in sign

of the difference between the Padé approximant
estimate and the random-phase estimate of the
critical temperature. Concurrently, he noted that
instabilities occur for approximately the same
value of ¢ in the mean-field and random-phase
calculations of the magnetic phases of the system.
He concluded that at this value of o a new type of
ordered state occurs, where the spins are aligned
in a canted or perpendicular fashion. Then upon
lowering the temperature, the system could first
make a transition from the paramagnetic to this
canted or perpendicularly aligned state before it
makes a second transition to the antiferromag-
netic state.

If one is not prepared to identify (magnetic) phase
transitions in the 7' <5 mK specific heat data of
DG, then these data have no bearing on the validity
of using Hamiltonian (1) and our sets I-IV to de-
scribe the magnetic properties of solid *He.

(b) We found it possible to obtain consistency
between the experiments of Halperin ef al. and
all the sets I-IV in Table I. Halperin ef al. find
T,=1.17 mK at v=24.25. Since this volume lies
outside the range of volumes used above in the
determination of sets I-IV, we have to extrapolate
in order to compare. Because straightforward
linear extrapolation of the A’s as a function of
v leads at best (set IV) to the too large value of
T,=1.72 mK, we investigated the possible con-
sistency of Halperin’s data with the previous re-
sults in a different fashion. Using Pirnie’s re-
sults for T,/A, as a function of @, one can derive
from T,=1.17 mK and a value of d=0.64 (mK)>?
(obtained by a linear extrapolation of lnd), two sets
of A’s: (i) A;=A,=-0.6 mK or (ii) A,=-0.76 mK
and A,=-0.28 mK. All four sets I-IV can be made
internally consistent, as far as volume dependence
is concerned, with (i), if one uses a rapid decrease
in b between v =24.0 and v =24.25 that seems al-
ready implied by the variation of b between v =
23.34 and v=24.0."" However, only sets I and II
can be made consistent with (ii) as far as volume
dependence is concerned. We remark that the
values of (i) and (ii) are both inconsistent with
present exchange calculations.?®

Finally, we discuss Dundon and Goodkind’s
T >5 mK specific-heat data of class 1. It is not

entirely clear that these data represent a purely
magnetic contribution to the specific heat and
that, therefore, an analysis with Eq. (2c) on the
basis of the Hamiltonian (1) is meaningful. In
fact, these data can only be described on the
basis of an expansion of the form:

Cyo/Nky=f+3d/T? =3e/T%+++- (5)
where
e=NA+3A3-9A%A,.

However, f cannot consistently be assumed to be
zero for all v, as should be the case for the
Hamiltonian (1) [cf. Eq. (2¢)]. In their least-
square analysis DG find values for d whose mag-
nitudes and v dependence are not quite consistent
with other experiments,* while their values for f
do not always include zero in their respectively
quoted ranges of uncertainty. In addition, a value
of e 20 is derived that would only be consistent
with two sets of A’s, one essentially our set III
and the other a set with both A, and A, negative for
all v(A,=-0.35, -0.57, and —0.69 mK and A,
=-0.25,-0.12, and -0.09 mK for v=23.34, 23.88,
and 24., respectively). In view of the difficulties
with d and f, it is not clear to what extent e =0 and
its consequences should be taken seriously.

Alternatively, we can try to fit the specific heat
data with Eq. (5) with d and e determined by the
sets I-IV of Table I, using fas a free parameter.
Then curves are obtained which are either in-
distinguishable or only slightly deviating, well
within the experimental accuracy, from the least-
square fits of DG.?® The values of f then obtained
are larger than those obtained by DG and would
again indicate the possible presence of an anom-
alous nonmagnetic contribution to the specific
heat.

Although the DG data of class 1 might therefore
exclude sets I, II, and IV of Table I, it seems
premature to conclude this on the basis of present
evidence.

Summarizing, one can say, that there is no
contradiction—but no unique way either—in re-
lating the known experimental data to a Hamilto-
nian of th(/e form (1), except possibly for the x,
data at v =21.0 and possibly for the Dundon and
Goodkind C, , data for T >5 mK, if one takes
f#0 seriously. There is an inconsistency (A, <0)
with present exchange calculations for v=24.25,
and there are possible inconsistencies for v <
24.0, since the x, data might imply a A, <0 and
there might be more than one phase transition at
v=23.8. The analysis by DG of their own experi-
ment requires either A’s essentially the same as
set III of Table I or both A, and A, negative for
all v.



12 SOLID *HE AS A HEISENBERG ANTIFERROMAGNET 301

While other experiments would also give valuable
information, the above discussion emphasizes,
in particular, the importance of the following: (a)
new measurements of X, as a function of 7' which
would lead to a better determination of ¢ and,
therefore, of the A’s and y’s; (b) measurements
of T, as a function of v to verify and extend the
results of Halperin ef al. and to ascertain whether
more than one phase transition occurs for H,=0
at v=23.8. These measurements in combination
with the x, and the p data would allow a decision
between the + and — signs in Egs. (4); (c) mea-
surements of p as a function of T and H, for more

v would yield the v dependence of b for v = 24.0
and thus check the consistence of the A’s and a’s
for v <24.0 and those at v=24.25; (d) an improve-
ment in the specific-heat data is needed to clarify
the situation with respect to the Dundon and Good-
kind experiment for T'>5 mK.
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