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Boltzmann-equation approach to harmonic generation in a magnetic field
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Second-harmonic generation is investigated in the presence of a dc magnetic field transverse to the direction of
propagation of the acoustic wave. The classical Boltzamann-equation approach is used with a constant-
relaxation-time Ansatz. The flux at the second-harmonic frequency is calculated in terms of the flux at the
fundamental. It is found that at high fields our results reduce to those of Spector, At low fields, the conditions
for observing the effect of cyclotron resonance on the flux at the second-harmonic frequency are investigated.

I. INTRODUCTION

The effect of a magnetic field transverse to the
direction of propagation of an acoustic wave on the
linear gain or loss due to acoustoelectric inter-
action has been investigated both theoretically~ and

experimentally. 3' Recently, there has also been
a revival of interest in frequency-mixing effects,
mainly because of the role they play in the growth
of domains of acoustic flux under conditions of
acoustic amplification. Most of the work in-
volving nonlinear acoustoelectric interactions has
been done either using a phenomenological theory
or in the absence of external magnetic fields. Use
of a phenomenological theory limits the validity of
the calculation to situations where the sound wave-
length is much greater than the average distance
the carrier travels between collisions. In a mag-
netic field, this limits the validity of such a theory
to the high-field regime where qB«1, where Jl is
the cyclotron radius of the carriers. Therefore,
in the low-field regime qA &1, a phenomenological
theory is not applicable. In this region, cyclotron
resonance greatly alters the acoustic attenuation
due to the linear acoustoelectric interaction. ' It
is therefore of great interest to investigate the
effects of a magnetic field on second-harmonic
generation due to nonlinear acoustic interaction
using a theory that does not limit the validity of
the calculation to strong magnetic fields and long
wave lengths.

In Sec. II we present the theory of second-har-
monic generation in a piezoelectric semiconductor
due to the acoustoelectric interactions between the
ultrasound and the conduction electrons, in the pres-
ence of a dc magnetic field applied transverse to
the direction of propagation of the acoustic wave.
This is done using the classical treatment for a
free-electron gas, obeying nondegenerate statistics,
in a partially ionized background supporting the
sound wave. This model is a simple approxima-
tion to an n-type impurity semiconductor. The
constitutive equation giving the response of the
electron gas to the electric field, the collision

drag effect, and the electron density gradient ac-
companying the sound wave, is developed using
the Boltzmann equation. The second-harmonic
flux is calculated using the constitutive equati. on
together with Maxwell's equations and the equation
of state for a piezoelectric semiconductor. This
approach is valid for both regimes qB «1 and
qB» 1, where q is the acoustic wave vector and
B is the radius of the cyclotron orbit for the elec-
trons. Finally, we present the discussion of our
results in Sec. III.

II. THEORY

Following the same approach as in our previous
paper, "we can write the ac current density in the
form

J]=cr)JE. + A»E~Eq, (2. 1)

8$; BT;,
8x~

(2. 2)

Here, p is the density, $; is the displacement, and
the stress tensor T;,. i.s determined by the equa-
tions of state for a piezoelectric semiconductor

ij ii SkikiPijk k )

D;= CE;+47iP;ikS, k,

(2. 2)

(2.4)

(2. 5)

is the strain tensor, C;», are the elastic con-
stants, P&» are the piezoelectric constants, E is
the electric field, D is the electric displacement,
and e is the static dielectric constant.

Supplementing Eqs. (2. 1)-(2.5) with Maxwell's
equations, we can solve for the displacement vec-
tors $; for the fundamental and the second har-
monic, following the approach of Hefs. 6, ll, and

where o and A are the linear and nonlinear conduc-
tivity tensors.

The equation of motion of an elastic continuum
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13. Using the results of the above references, we
have for the ratio of the flux in the second har-
monic to the square of the initial flux in the funda-
mental

P2 g [e 2n-28 + e-40.~s
&(0)

—2e" &' &"cos(2q, —q,)s],
where

(2. 6)

8 2g

2

(2 V)[1 —(4v/ia) c)o„((u)][2c„((u)—a„(2(u)]

Here we have taken the wave vector of the acoustic
wave to lie along the z axis. Also, in (2. 6) and
(2. '7), n; are the absorption (amplification) coeffi-
cients for the acoustic wave of frequency &; using
the linear theory, v, is the velocity of sound in the
semiconductor, and P is the appropriate compo-
nent of the piezoelectric tensor.

To determine the linear and nonlinear conduc-
tivity tensors, we have to determine the ac current
density by solving a transport equation for the
electron distribution function. The electronic cur-
rent density in a piezoelectric semiconductor in
presence of an external magnetic field Bo is given
by

sound of frequency &;. The second and third terms
on the right-hand side of (2. 10) arise from the
collision-drag effect and from the fact that scatter-
ing is local and therefore does not change the elec-
tron density. The second term can be neglected
in semiconductors where the electron-phonon
interactions are either via the deformation poten-
tial coupling or piezoelectric coupling. ' We can
also take the self-consistent electric field induced
by the ultrasound to be longitudinal, since the
transverse field induced is smaller by a factor of
(v,/c), so that B;=(cq;/(d) &&E;=0. The solution
to (2. 9) can be written

f= f„,(v) + P g((v) expi(q;r —+;f), (2. 11)
i

where the first term represents the electron dis-
tribution functio~ in presence of the dc magnetic
field. But since the magnetic field alone does not
change the electron distribution, f~,(v ) is just the
equilibrium Boltzmann distribution function. We
can use nondegenerate statistics for the ele ctrons
since, in most cases where acoustic amplification
is observed, the electron density is low enough for
the electrons to obey classical statistics. g;(v) i.s
the part of the distribution function induced by the
acoustic wave of frequency &,. From Eqs. (2. 9)—
(2. 11) we obtain the equations determining g, (v)
and g, (v):

j;=—e dvv; v (2. 6) 1 I

2 z
~

d
~

S 1
d

~ '+ i(q, v, —(u)+ —g, (v)

where f(v) is the electron distribution function in
the piezoelectric semiconductor in the presence of
the magnetic field Bo and the acoustic wave. It is
determined by the Boltzmann equation

Bf Bf e v ef—+v ~ —~ ———xB
er' tN, C ev

1zvz+ ~ 0 V

+ 2i(q, v, —(u) +—g, (v)
dS

(2. 12)

e - v sf f f. —
~ +Xnan ~

C
(2. 9)

where E; and B; are the self-consistent electri'c
and magnetic fields induced in the piezoelectric
semiconductor by a sound wave of frequency co;,

f, is the distribution to which the electrons relax
in the presence of the acoustic wave but in the ab-
sence of external fields, and 7 is the relaxation
time, which is treated as a constant here. The
distribution f,(v) is given by'

f (v) f, v ——,np+n, n, +' ~ )=dt'

where the variable s is defined by

8 ~ ~ d d
(v X Bo)

PSC dv ds

(2. 13)

and

&& exp[a '(s' —s) + iq, (e' —s) —(d (s' —s)]
(2. 15)

The solution of Eqs. (2. 12) and (2. 13) can be
written

=f0(v) ——~ ~+n, —'+n, ',dg df df0 @~0

(&0 d'fE0
(2. 10) S

g1 8 I 'Pig
g2(v) = ds —&~g, ~

+ — ~Ex.v. + —fom ' v' ka& ''
&07

where fo(v) is the equilibrium distribution of the
electrons, $ is the amplitude of the acoustic wave,
and ~; is the carrier density induced by ultra-

&&exp[~ '(s' —s)+2iq, (e' —z) —2i(d(s —s)] .
(2. 16)
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To solve for gl(v) and g, (v), we choose a co-
ordinate system having the y axis in the direction
of the magnetic field Bp, which is orthogonal to
the acoustic wave vector lying along the z axis.
In this coordinate system the relation between
(r, v) and (r', v') is

v„' = vpw

sin[�

(op(s' —s) + (t)],
I

Vy=VpQ ~

Vd = Vp'W COS[(d)p(S —S) + (1)] d

x = x- (vpw/(dp) f cos[pzp(s —s) + Q] —cosg],
I I= $+ vpzz(s —s) )

= z + (vpw/(d)p) ( s in[(dp(s' —s) + (t) ] —sin(t)}',

where (dp is the cyclotron frequency, (t) is the polar
angle, and ge and u are the velocities in units of

vp, the mean thermal velocity, in the plane per-
pendicular to Bp and parallel to Bp, respectively.

Substituting from (2. 17) to (2. 15) and using the
familiar relation'

where x=qvp/&up and P„((o)= [1+z(n(op —&u)z] .
Using Eqs. (2. 17)-(2.19) in (2. 16), we obtain

g2(V ) gl(2(d 2(I E2 n2) +gp(V ) (2. 2O)

where

gP(v) = Zl Q Q fP(e )
m=-~ n=-'o

(
eT &i,vpn zzz& e" '")p

x 4 X x x, ) „(w))' .„(2w))

XZU J„XSV + J gag J„gag
2m m I

&p& VpZO

d (xwld (xw))
VpZU

and J„(z)=d/dz J„(z).
Substituting from (2. 19) and (2. 21) in (2. 8), we

can write the ac current densities induced by the
fundamental and the second harmonic as

idain8 ~ J ( )n (2. 18)
j„=o„((d)E„—nev, R((u),

jp, = o, (2io)Zp, —n2ev, A, (2(d)

(2. 22)

where J„(z) is the Bessel function of order n, we

get where

+ z „,((d)&z', —n, ev, S„(p))&„, (2. 23)

gi(v) = P fo(e )
g»»OO

ex dwven n, d„(xw) e'"')
kz) T x np P„((d)

(2. 19)

~)O 2 p d)O

o„((d)=,' Q, , dw we [J„(xw)]', (2. 24)
»»» d)O

&,(p)) = g du we [J„(xw)], (2 25)
xv, „„P„((o)()

and

~„,((o) = Q Q 2
—

p dwwe "J (xw)J„(xw)J„,„(2xw)
2o, ((z

" " n 2m(m+ n)
"

„z

g»de ff » d)O

+ dw e d (xw)d„' (xw)d, „(2xw) — f dw e d (xw)d„(xw)d„, „(2xw) (,
VpX p VpX p i

s„((d)= g g p ( )p (2 )
—

p dwwe" J (xw)J„(xw)J „(2xw)
izvp

" " 1 2m(m+n) " .„a

m ~n ~ n m+n

n
-m+

™~ n
dw e " d„(xw)d„(xw)d„.„(2xw) — dw e " d (xw)d„(xw)Z, „( xw)),

UpX y ''J VpX ~p

(2. 28)

(2. 27)

where op is the dc conductivity, and p. is the mobility of the carriers.
Using the results of the Appendix, we can write (2. 24)-(2. 27) as

(2. 28)

(2. 29)

d n=-'o +n ff- wndo
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(1 —i(ov)(1 —2i(u&)i(u& ~ ~ ~ e "
2

( 3)I (
|p)„(1—i~&)

2

~ ~

-"'"I (-' ') " - "
(/ /x) e '"

+(1 —i(ov)(l —2/(u7) Q Q Q I (x )I„(x ) I ( -,'x-)
n=-~ n „Pm+n 2»m+p ~

(2. 30)
2 1 2 —3ie~ ~ e ~ I„(—,'x ) 1 —2i&oT ~ e" I„(x ) (1 —2iv&)ice

v, (iq/) iq/ 2 2 ~ P„((u) 2 ~ P„(2(u) 2

oo ff- oo p= oo m+f/ m+p
f/=

+(1-2i&~) g g g I„(x')I„(x')I,(- ',x')-
m+n m+0

(2. 31)

We can rewrite (2. 22) and (2. 23) in the form
(2. 1):

(2. 32)

I.,=,', (2 %., A„.( )8,', ,

where

Onn ((d)"'"'=1 'R.(.)
( )

~...(Id) S..(~)o,', (~)
1 —R, (2(u) 1 —R, (2(u)

A. High-field limit

(2. 33)

(2. 34)

(2. 35)

In the high-magnetic-field limit, ~o)) qvp, the
conductivity tensors (2. 28)-(2. 31) can be evaluated
using the small-argument limit of the Bessel func-
tions. Using the results of the Appendix, we ob-
ta.in for the conductivity tensors

&„(&)=b+ l(d/I'dv
(2. 38)

v, (b+iu)/(up)(b+2i(o/(uv)'
(2. 37)

where ~p = v', /D is the diffusion frequency, D is the
diffusion coefficient and b = 1+ (~p~) is a, param-
eter which measures the effectiveness of the dc
magnetic field in reducing the mobility of the
carriers.

Substituting for the conductivity tensors from
(2. 36) and (2. 37) into (2. 7), we obtain the ratio of
the flux generated in the second harmonic to the
square of the flux in the fundamental

2 (4vPy/ev. )' [b'+ ((u/(up)']
Pv', I b'+(&,/&) (1+& /~, &D) ]Ib +9(~/~D) 1

(2. 38)
where &, is the dielectric relaxation frequency.

This result is the same as the one obtained by
Spector using a phenomenological theory in Ref. 13. '

The effect of the magnetic field on the second har-

monic flux generated is discussed in that reference.
The magnetic field changes the magnitude of the
intensity and downshifts the frequency at which the
second-harmonic generation is a maximum. Also,
the second-harmonic generation becomes indepen-
dent of the magnetic field for frequencies much
higher than the fr equency of maximum gain,
(d = (Mn(dD)

B. Cyclotron resonance and the low-field limit

%e expect the cyclotron resonance effects to
occur when the sound-wave frequency is of the
order of the cyclotron frequency, i. e. , ~ =&p.
In this case, the frequency denominators in the
conductivity tensors (2. 28)-(2. 31) can become
small, giving rise to the possibility of oscillatory
behavior. Under this condition x will become
much greater than unity, si, nce x= qvp/(dp =(d/QPp

&&vp/v, . Using the results of the Appendix, we get,
for the conductivity tensors in the limit of low
fields and short acoustic wavelengths (q/»1),

2op(1 —i+7') v ~ (1 —i'm) 1 —i(d7'o'„(v =
( /)p

1 — coth

(2. 38)

Vp 7T
1/2 1 —zoo~

I

R, (v) = . 1 — (1 —g+7') coth
v, iql ql EOp7

(2. 40)

r„,((o) = ' p(1 —2i(uv) 1 — (1 —j~v)iooP,

vo ql ql

&& coth m'+ coth m

v(1 —i(dT)$(d7 1 —i(dr 1 —2z~7coth m coth
(ql j (dP COp~

(2. 41)

S„((u)= p(1 —2i(u~)
vs ql
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'lT I 1 ZQ)& 7F I 1 —2 z(d'T
x — coth m+ cothi m

ql k (dp~ 2ql k &o7

(2. 42)
As the magnetic field approaches zero,

coth[(1 —in'&T)/(oo&]z approaches unity, and taking
this fact into account we obtain, for ~v &1,

~ 2

o'„(&u) = — ~ 1+iv ~ ~ coth w
Z(d~ q S 2V 1 —zM~

q vo ~p7

(2. 43)
2

47K PlVp Q' Vp 40p~

—m
~ coth m coth 7t

(2. 44)
where E is the static dielectric constant of the
piezoelectric semiconductor, and q~ = (4m'woe /
sksT)'~2 is the electron Debye wave vector. Using
(2. 43) and (2. 44) in (2. 7), we get the flux in the
second harmonic

A =A, 1+2Ar'~' ~ coth~
vo ( Q)o7

coth m' coth m

.„S(2

4. 1 2V 1 —zco~x 1+43zm'" ~ coth m

Vo o

~ 7 -12
}]2~V th

1 —2Z(dT

VO (dp

where

2 8nP e~ q
gpv,' s (mvao)' (q'+q', P

'

(2. 45)

(2. 48)

The cyclotron resonance in the flux of the second
harmonic will occur for 2Q) = pp, hen &p7 & 1,
we will see the cyclotron resonance, while when
wp'& 1, the cyclotron resonance will be damped out.
Therefore, the best candidate for observing cyclo-
tron resonance would be semiconductors with rel-
atively long relaxation times. For semiconductors
like n-InSb and GaAs, with w =10 sec, the con-
dition +ov' &1 pushes the frequency of the acoustic
wave above the region of interest. However, in
germanium at 10 K we have a & of 10 sec from
the cyclotron-resonance experiments'6 and an np

of 10'3 cm is obtainable, and the velocity of
sound is v, =10 cm/sec. From (2. 45) we see that
for the cyclotron-resonance effect to be appre-
ciable, m'~2 v,/vo coth[(1 —&or)/&gory]m must be of
the order of unity. This implies a cyclotron-res-
onance frequency of 10 Hz for Ge at 10 K. Going

down in temperature lowers the ratio of v,/vo and
hence the cyclotron frequency needed to make the
resonant term observable. However, in Ge the
acoustoelectric interaction is via the deformation-
potential coupling and our theory has to be modi-
fied accordingly. This would change the frequency
dependence of Ao given by the Eg. (2. 46), and the
maxima would no longer occur at q =q~.

The conductivity tensors are also evaluated in
the Appendix for the case when the magnetic field
goes to zero. In this limit our results agree with
those of our previous calculation' for both the
short, and the long-wavelength regimes. They are
also in agreement with the results of Conwell and
Gangulye for ql «1, and of Wu and Spector for
ql »1.

III. DISCUSSION

In this paper we have presented the calculation
of second-harmonic generation in a piezoelectric
semiconductor in presence of a dc magnetic field
transverse to the direction of propagation of the
acoustic wave. This is done following the Boltz-
mann-equation approach with a constant relaxation
time. This approach excludes the region of very
high magnetic fields, where quantum effects may
become important. For strong magnetic fields
(wo» qvo), our results are in agreement with those
of Spector, '3 whose calculations were done using
the phenomenological approach.

In the low-magnetic-field region (&uo«qvo), we
expect to see cyclotron resonance in semiconduc-
tors with relatively long relaxation times (~ =10 '
sec). The cyclotron resonance is damped out
when the condition &p7 &1 is not met. For piezo-
electric semiconductors like n-InSb and GaAs,
with v =10 sec, the condition ~p7 &1 pushes the
frequency of the acoustic wave above the region of
interest. From cyclotron resonance'6 and mobil-
ity' data at low temperatures, we find that values
of w as long as 10' sec are now available for very
pure Ge samples. However, in Ge the acousto-
electric interaction is via the deformation-poten-
tial coupling and our theory has to be modified
accordingly.

This modification will change the frequency de-
pendence of A~ in (2. 45) but will leave the oscillat-
ing part of (2. 45) unchanged. For the cyclotron-
resonance effect in the flux of the second harmonic
to be appreciable, the condition m'~' v,/vocoth[(1

L&d7')/(goT]m = 1 must'be met. For the Ge sample
at 10 K, this implies a cyclotron-resonance fre-
quency of 10'~ Hz. Going down in temperature
lowers the ratio v,/vo and hence lowers the cyclo-
tron-resonance frequency needed to observe the
cyclotron resonance. Even in Ge, the effect of the
cyclotron resonances on the harmonic generation
would be much less striking than the effect on the
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linear gain or loss. This is because the resonant
term here will not be much greater than the non-
resonant term due to the factor of v,/vp.

As the magnetic field goes to zero, our results
reduce to those of our earlier calculation' and of
Conwell and Ganguly in the limit ql«1, and of
u and Spector' in the limit q/»1.

The calculations presented in this paper have
been done in the absence of a dc electric field.
The presence of a dc electric field can drastically
alter the absorption coefficient, changing a linear
loss to a linear gain. However, the coefficient A
1n Eq. (2. 45) is only a very weak function of such a
drift field except at very low frequencies [compare
Eq. (3. 35) of Ref. 11 to Eq. (26) of Ref. 13]. Also,
extending the calculations of Ref. 8 to the case
where a drift field is present (unpublished), we
find that the effect of the drift field on the second-
harmonic amplitude is small in the short-wave-

(Al)J„v4,„u =t u+v
a Oo

together with the recursion relations for Bessel
functions'5

(r ((o) = ~ p [—' —(1 —i(or)A(x, (d)], (A2)

//, ((d) = —(2iv p/v, q /) [
' —(—1 —i(or)A(x, (o)], (A3)

length limit (ql »1) as long as the drift velocity is
smaller than the thermal velocity of the carriers.
Therefore, although the presence of a dc drift
field will change the rate at which the second har-
monic will grow or decay with position, it will not
greatly alter our calculation of the amplitude A.

APPENDIX

The conductivity tensors (2. 24)-(2. 2'7) can be
rewritten using the relations

r,g, (&d) = [2op/1/vp(q/) ]f—(2/iql)[ —,'(1 —i(or) —(1 —i(or) A(x, &d) + —,'(1 —2i&dr) —
2 (1 —2i&dr) A(2x, 2&d)

—(1 —i(or)(1 —2i&or)A(x, &d) + (1 —i(or)(1 —2i&or)A(2x, 2&o) —(1 —i(or)(l —2i&or)i(dr C(x, &o)]

—2(1 —i(dr)pB(x, &d) —(1 —i(or)(1 —2i(or)qlD(x, (d)]', (A4)

S„(&d)= [)&(/v, (iq/)]f- (2/iql)[2 —(1 —i&dr)A(x, &d)

—(1 —2i(or)A(x, (d) + (1 —2i(or)A(2x, 2(o)

—(1 —»&dr) i&dr C(x, (d)] —2(1 —i&dr)B(x, &d)

—(1 —2i(or)qlD(x, &d)), (A5)

d„(w) e'~ = Q d~, (u)d, (v) e"
k=-~

with

(A11)

I

and using Graf's summation theorem for Bessel
functions

where

A(x, &o) = g dwwe " [J„(xw)]
Pn &d pn=-

(A6)

gg =g + v —2+v cosQ,

g) cosg=Q- vcos& ~

zv sinx= vsinG .

(A12a.)

(A12b)

(A12c)
1

1(opr P~(&d)a oo

dw e"" d„(xw)d„'(xw),

(A7) (A13)

Substituting (A10)-(A12) into (A6)-(AQ), we get

A( )
-&1 (IdT)s (x /2)(1-ces(gpTs)1

7

0

x dw u)e " [Z (xw)Z„(xw)Z„,„(2xw)],
P (AS

D(xq &d)= Q Q 2„x(o()rP„((o)P .„(2(o)

B(x, (o) =— -(1-&coT) sds e
2zql p

-(x /2)(1-cos/(/pals)

~ (&0 y Oo

-&1-8(~v &s ds' e (1 (ef&s--
2 kp "0

(A14)

x dw e
' d„.„(2xw) [ md„(xw)d „'(xw)

0

—nd „'(xw)d„(xw)] (A9)

exp ——3 —2 cos(d &s
2 0

I I
2 cos(dp'r (s + s ) + cos&dpr s (A15)

Equations (A6)-(A9) can be evaluated by express-
ing [P„(&o)]1 as D(x, (o) = —— ds e """"'1

2 "0

1 -(1-c/(1v+ tnt(i 0&) s
P„(&d) p

(A10)
~ ~ I

ds e-(1-ice)s' Z Sln(d07 S

0 (007'
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exp ——3 —2 cosMp+s
2

I I—2 cos(dpT(s+ s )+ cos(do fs' (A16)

Using the well-known relation

s N)s() P I ( )
-inc (A17)

where I„(2) are hyperbolic Bessel function of order
no

2(1 —i(d&)

(t —iror')t+ (xrocr')t)

(A2s)
The last term may be evaluated by replacing the
summation by an integration over n, and the term
is found to be of the order of I/x(q/), whereas
the first term is of the order I/ql. Therefore,
for (d»&1, we may take ql to be very large and

neglect the last term. The first term can be eval-
uated directly by using

We get for (A13)—(A16),
-x2/2

A(x, (d) = —Q I„(-,'x')
n-~O0

(A18)

m cothbm.1
5+in

Therefore, we have from (A27),

(Aso)

-x /2

S(x, ro)= —h. i t . —r i„(-,'x')), (A)9) r) = coth( )x . (A31)

00 C0 00 -Sx2/2e
2 ~ ~ ~ P„. (2(d)P .,((d)

Substituting from (Asl) in (A18)-(A21), we have,
for low fields and q/»1,

&&i„(x')I„(x')I,(- —,'x')

] xr 0 o
pe -Sx /2

qlx ~ ~ ~ P,„(2(d)& „((d)

(A2o)
(1

A(x, (d) = cothi v,
2q/ i, (do'/

(1
&(x (d) = — . . — cothi 7(

2zq/ 1- zv& ql ( cop7

(As2)

&&1.(x')1„(x')S,(- —,'x') .

In the high-field limit, x«1, (A18)—(A21) can
be evaluated using the small-argument limit of
Bessel functions. For small x, 2

(A21)

i„(x)= (-.'x)"/r(~+1) .

We obtain

A(x, (d) = —'(1 —i(dv) ~,

( )
x 1 —Z(d7'

hiql (1 —trot)t t(rect)x)'

&(x, (d) = —,'(1 —i(d~) (1 —2i(dw) ',
i 1

h(1 —hirox) (t —irot) t (root) )
'

(A22)

(A23)

(A24)

(A26)

(A 26)

.,t„(x') (A27)

using the asymptotic form of the hyperbolic Bessel
functions. For large x,

In the low-field limit, x»1, we can evaluate terms
of the type

im 1 1 —i~v
D(x, (d) =

2
—coth )T coth

(d p7 id' p~

&& Q e" "Pr~(- —,'x') .
P a CO

(A36)

Therefore, for nonzero magnetic fields, ' D goes to
zero since p is an odd function of p and I& is an
even function of p.

For zero magnetic field, A, B, C, and D can be
evaluated exactly by putting (dp = 0 in (A13)-(A16).
We get

x4(X) (d) = W — . t
2ql zql

(A36)

~1/2 (
B(x, (d) = — . . — Wi-

2iql 1- ico1 ql g iq/
(A 37)

(Ass)

C(x, ro)=& coth xcoth ) rr, (Aht)
4 q/' (do~ (dp~

f„(x)= e"/(22x)'~ . (A28) t (1 —irxt)irr' ' t —irot)

This is valid only when x)n. When n exceeds
x, the hyperbolic Bessel functions become small.
Hence, if we use (A28) to evaluate (A27), we make
an error of the form of the final term in the fol-
lowing equation:

-(x /2) I (t x2)
&+i(n(do —(d)~ n(/ x ~ 1+'i(n(do —(d)~

1 —z(d7 . 1/2 1 —2zco&
W + Z7t' rW

iql 2iql

(A40)

(Ass)
where the function w(z) is a function related to the
complementary error function

w(z) = e ' erfc(- ie) .
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