
PHYSICAL RE VIEW B VOLUME 12, NUMBER 8 15 OCTOBFR 1975

Surface roughness and the optical properties of a semi-infinite material; the effect of a
dielectric overlayer*

D. L. Mills and A. A. Maradudin
Department of Physics, University of California, Irvine, California 92664

and Xonics Corporation, Van Nays, California 91406
(Received 13 January 1975)

We derive expressions for the rate at which radiation is scattered and absorbed because of surface
roughness on a semi-infinite material, in the presence of a dielectric overlayer. We confine our attention
to the case of normal incidence. A formalism developed in an earlier paper by the present authors is
utilized in the discussion. We also present a series of numerical calculations which explore the
roughness-induced scattering and absorption of electromagnetic radiation for aluminum overcoated by
aluminum oxide, in the ultraviolet region of the spectrum. The position of the reflectivity dip produced

by roughness-induced coupling to the surface plasmon is found to shift toward the visible as the
thickness of the oxide layer increases. The size of the dip is controlled strongly by the degree of
correlation between the roughness on the vacuum-oxide interface, and that on the oxide-substrate
interface. Under conditions discussed in the text of the paper, the presence of the oxide layer can
greatly enhance the coupling between the incident radiation and surface plasmons.

I. INTRODUCTION

In the presence of roughness on the surface of a
material, light incident on the substance may be
scattered away from the specular direction, and
roughness-induced absorption ean occur. Both ef-
fects reduce the refleetivity of the material below
the intrinsic value expected for a semi-infinite
sample with perfectly smooth surface. The effect
is particularly severe for aluminum in the ultra-
violet region of the spectrum, since in the presence
of surface roughness, the incident light may couple
to the surface plasmon with remarkable efficiency. '

There has been renewed interest in this problem
recently, in part because of the need for highly re-
flecting mirror materials for use in the construc-
tion of cavities for lasers which operate in the ul-
traviolet region of the spectrum. While aluminum
has the highest intrinsic reflectivity of any materi-
al in the near ultraviolet, roughness-induced cou-
pling of the incident radiation to surface plasmons
can decrease its reflectivity significantly, unless
"supersmooth" surfaces are prepared. 2

Another method that has proved useful in increas-
ing the reflectivity of aluminum films is to over-
coat them with a dielectric layer after a very
smooth "bare" aluminum surface has been prepared.
Such an overlayer will also be present anytime the
aluminum has been exposed to an atmosphere that
permits oxidation of the surface. One is then led
to inquire about the effect of such a dielectric layer
on the surface roughness-induced coupling to sur-
face plasmons. While this is a topic that has been
explored experimentally, 4 we know of no theoreti-
cal treatment of the effect of a dielectric overlayer
on the roughness-induced scattering and absorption
of light.

There seems a critical need for such a theoreti-
cal analysis, in our view. From simple considera-
tions, one expects that a dielectric overlayer on a
metal such as aluminum will shift the ref lectivity
dip (produced by the roughness-induced coupling
to surface plasmons) toward the visible. One

would like to calculate the magnitude of this shift
for an overlayer of given thickness, and a specified
configuration of surface roughness. Perhaps more
important to understand is the relationship of the
magnitude of the dip to the nature of the roughness
on the overlayer-substrate and overlayer-vacuum
interfaces.

The purpose of this paper is to present such a
theory by extending our earlier treatment of the
surface roughness-induced absorption and scatter-
ing of electromagnetic radiation to the case where
a dielectric overlayer is present on the surface of
the material of interest. In the interest of simplic-
ity, we confine our attention here to the case
where the radiation is normally incident on the sur-
face. For this case, we obtain formulas for the
angular distribution and polarization of the radia-
tion scattered from the rough surface into the vac-
uum above the material, for the fraction of the in-
cident radiation Qux absorbed within the film, and
the fraction of the incident radiation flux absorbed
by the substrate material. The treatment is valid
in the limit that the amplitude of the surface rough-
ness is very small.

We also present a series of numerical studies
of the absorption and scattering of radiation in the
near ultraviolet (5-12 eV) by an oxidized surface
of aluminum. We find here that the magnitude of
the reflectivity dip produced by roughness-induced
coupling of the incident radiation to surface plas-
mons depends very dramatically on the manner in
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FIG. l. Illustration of the roughness on the vacuum-
oxide interface relative to that on the oxide-substrate
interface for the four cases: (a) f~ = g2 (replicating-film
model); (b) t'q ———t~ (nonuniform-film model); (o) (g&}
= (P&), but (lq t2) =0 (random-roughness model); (d) (;2
=—0, but && & 0 (rough-oxide-layer model).

which the roughness on the vacuum-oxide overlayer
is correlated with that on the oxide-substrate in-
terface.

Before we proceed with the detailed discussion,
we elaborate on this remark a bit. Consider a
smooth oxide-vacuum interface parallel to the x-y
plane located at the position z =d, while the smooth
oxide-substrate interface is also parallel to the
x-y plane at g =0. Now roughen each interface,
where g, (x, y) measures the position of the oxide-
vacuum interface at the point x, y above the plane
s =d. Similarly, fs(x, y) denotes the position of a
point on the roughened oxide-substrate interface
above the plane g =0. Then if we denote average4
over a given interface by angular brackets, we
presume g', )=(gs)=0. In our numerical calcula-
tions, we examine the following four situations,
illustrated schematically in Fig. 1:

(i) t;q(x, y) = fs(x, y) everywhere. We refer to this
as the replicating-film model [Fig. 1(a)].

(ii) g, (x, y) = —f,(x, y) everywhere. We call this
the nonuniform-film model [Fig. 1(b)]. This might
be a crude description of a lumpy oxide overlayer.

(iii) (f,) = (fs), but f,(x, y) and fs(x, y) very ran-
domly with respect to each other, so the cross-
correlation function (g, fs) vanishes everywhere.
We call this the random-roughness model [Fig.
1(c)].

(iv) ps= 0 but &, CO; i.e. , the oxide-substrate in-
terface is perfectly smooth, but the surface of the
oxide is rough. We refer to this as the rough-ox-
ide-layer model [Fig. 1(d)]. It serves as a model
of a supersmooth aluminum surface overcoated
with a nonuniform oxide film.

When we compare the results of the calculations
for the four cases described above, the position of

the reflectivity dip is very nearly the same for each
case, for an overlayer of given thickness. How-
ever, the magnitude of the dip differs markedly in
each case. In case (i), the dip moves to lower
photon energies as the oxide thickness increases,
with no dramatic change in its depth. In case (ii),
the dip again moves to lower frequencies, but in-
creases very substantially in depth, i.e. , the
roughness-induced coupling of the incident photon
to the surface plasmon is increased markedly by
the presence of the overlayer. In case (iii), there
is also considerable enhancement of the roughness-
induced coupling to the surface plasmon, although
the enhancement is smaller than for case (ii). Fi-
nally, for case (iv), once the oxide layer becomes

0
sufficiently thick (say greater than 50 A), the cou-
pling between the incident radiation and the surface
plasmon is greatly decreased.

The above remarks show that in the presence of
an oxide film (or a dielectric overlayer), the
strength of the roughness-induced coupling to the
surface plasmon depends very sensitively not only
on the amplitude of the roughness, but also on the
manner in which the roughness on the oxide-vacu-
um interface is correlated with that on the oxide-
substrate interface. This is a principal conclusion
of the present paper.

The remainder of the paper is organized as fol-
lows. In Sec. II, we sketch the derivation of ex-
pressions for the roughness-induced scattering of
normally incident light, along with the roughness-
induced absorption within the film on the substrate.
The approach is similar to that employed by us
earlier, ' and although the final formulas are rather
cumbersome for the present case, the presentation
here is brief. We then present the results of the
numerical calculations in Sec. III.

In an Appendix, we describe certain Green's
functions of the electromagnetic field equations,
for the present geometry. These Green's functions
may be employed in a variety of problems. For
example, the limiting form of these Green's func-
tions with retardation ignored have formed the ba-
sis of atheory of the inelastic scattering of low-en-
ergy electrons by electronic excitations in semi-
conductors.

II. DERIVATION OF THE THEORETICAL FORMULAS

The geometry which forms the basis of the pres-
ent paper is illustrated in Fig. 2. In the absence
of roughness on the two interfaces, the vacuum-
overlayer interface is the plane z =d, and the over-
layer-substrate interface the plane z =0. In the
presence of roughness, the function f&(x, y) mea-
sures the elevation of point (x, y) on the vacuum-
overlayer interface relative to the plane z =d.
Similarly, fs(x, y) describes the elevation of a
point on the overlayer-substrate interface relative
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(0) pand the right-hand side of Eq. (2. 3) in a Taylor
series by means of the well-known expansionI

e(x+ a) = e(x)+ a8(x) + ~ ~ ~ (2. 4)

where p(x) is the Dirac 5 function. Then Eq. (2. 3)
reads

(b)
e(x, ro) = ep(z, p1) + &e(x, p1) (2. 8)

where

e, (z, p) =e(z-d)+E e(d-~)e(z)+~ 8(-z) (2.6)

(c)

I 2
4g (x~ p1) = &1(x, y)(g1 —1)8(z —d)

+ (~2- «1)4(~, X)8(~) .
Then Eq. (2.2) may be arranged to read

VxVxE(x, ) —( / ) (g, )E(x, )

= (p1'/c')~c(x, ~)E(x, ~).

(2. 7)

(2. 8)

(4)

WEIEPEEYEEPEEEIYEYPIY/i
=0, f2=-0

FIG. 2. Geometry considered in the present paper.
The thickness of the oxide layer, &~(x,y), measures the
position of a point on the oxide-vacuum interface from
the plane z=d, and $2(x, y) measures the position of a
point on the oxide-substrate interface from the plane
z=d.

to the plane z =0. The overlayer material is pre-
sumed to be described by the isotropic, complex,
frequency-dependent dielectric constant &&, while
the substrate is described by the frequency-depen-
dent dielectric constant q2, again complex and pre-
sumed isotropic. To study the ref lectivity of the
structure, we look for solutions of Marvell's equa-
tions which vary harmonically with time:

E(x, t) = E(x, p1) e '"', (2. 1)

where the electric field amplitude E(x, 1p) obeys

VxVxE(x, (g) —(p1 /c )g(x, p1)E(x, co) =0. (2 2)

To solve Eq. (2. 8) in the limit $1(x, y) and fp(x, y)
are small, we follow the approach used in our pre-
ceding paper. ' We introduce a set of Green's func-
tions D~„(x, x', +) which satisfy

~&P(~, (o)&1, —
S +~1,& ]I

p, c exyexg

xD, „(xx';p1) =4p8„8(x—x'), (2. 9)

along with boundary conditions appropriate to the
present scattering problem.

In terms of these Green's functions, we may re-
write Eq. (2. 8) in integral form

2

E~(xq pp) =Eg (Xq p1) — ~ Q d S D~„(X~ X qp1)4'
x Aq(z', (g)E„(x', 10). (2. 10)

In Eq. (2. 10), E1P'(x, p1) is a solution of Eq. (2. 8)
with Aq(x, p1) =0. The formal structure of Eq.
(2. 10) is identical to Schr5dinger's equation of
quantum mechanics, when it is written in integral
form. 7 For small &&(x, p1), we may generate an
approximation analogous to the first Born approxi-
mation of quantum mechanics by iterating Eq. (2. 10),
and approximating the amplitude of the scattered
wave E„"(x,p1) by retaining the first term. Tins
gives

&& e(z —f,(x, y))+ &me(g, (x, y) —&), (2. 3)

For the geometry of Fig. 2, for the spatially
varying dielectric constant, we have

E(x &d) =e(~ d C1(~, y))+ ~le(d+ f1(~, X) —~)

. 2

E~1 '(x, p1)=,g dsx' D„,(x, x';~)
4mc'

x ag (x', (0)E,"'(x', pp) . (2. 11)

where in Eq. (2. 3), E}(x) is the Heaviside step func-
tion which assumes the value unity when its argu-
ment is positive, and vanishes when its argument
is negative.

When both f, (x, y) and $2(x, y) are small, we ex-

The electric field amplitude E1p'(x, p1) which ap-
pears in the right-hand side of Eq. (2. 11) is the
electric field associated with the incident field, in
the absence of surface roughness. The Green's
functions D„„(x,x', p1) are constructed in the Appen-
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We also write (where i =1 or 2)

(2. 13)

We pressume here that the incident electric field
is normally incident on the structure, with electric
field parallel to the x axis. Then we have

E„"'(x', (o) = 6„„E"'((o,z') . (2. 14)

After these forms are substituted into Eq. (2. 11),
the scattered field assumes the form'

dix of the present paper. Thus, it is a straightfor-
ward (but algebraically complex} matter to evaluate
the scattered fields in the vacuum, within the over-
layer, or within the substrate. We call the reader' s
attention to the rather extensive discussions in
Ref. 5, which explore a number of issues we do
not exan1ine here.

As before, since the dielectric function &p(z ~)
which appears on the left-hand side of Eq. (2. 9}
depends on z only, and not on x and y, one may
represent the Green's function by the partial Fou-
rier decomposition

d,„(k„zlzz }= kz [gx (kp~lzz')
II

—g„„(k„(gl
zz')],

d,„(k„~
l
zz') = g,„(k„~l

zz').
II

(2. 19b)

(2. 19c)

To proceed, we now need to evaluate the scat-
tered field in the three distinct regions of interest:
in the vacuum above the overlayer, inside the over-
layer, and in the substrate. We consider each re-
gime separately.

g„„(k„~l
zz') =,„E~(k„~

l
z)E„(k„~l

z'), (2. 20a)
Wi(k„, (g

g„,(k„(o l
zz') = E„(k„(g

l
z)E„(k„(o

l
z'), (2. 20b)

g,„(k„zlzz') = E~(k„(glz)E„'(k„(glz'), (2.20c)
lit (0

where for g& d, one has

A. Scattered fields in the vacuum above the overlayer, and

the angular distribution of the scattered radiation

In this regime, we consider the limit z -+ , for
fixed g'. Then the Green's functions g„„, g„, and

g,„in Eqs. (2. 19}have the form

z

2 2'lT) c
2

x Kg(k„)d, „(k„(ol
zd) —

2(2')
' E"'((o, o)

and

E~(k„(g
l
z) =E,'(k„(g

l
z) = e"o'

E„'(k„~
l
z) = - (k,/k„) e'~'

(2. 21a)

(2. 2lb)

xJ(d k„e'"~~' "~~ gp(k„)d, „(k„~
l
z0). (2. 16)

with

kp = (&'/c' —k'„)'". (2. 22)
From the discussion in the Appendix, the func-

tions d~„(k„~l zz') are related to a second set of
functions g~„(k„~I zz') via the transformation

d.„(k„zlzz') = g S, ,„(k„)S„,,(k„)g„,„,(k„zlzz'),

(2. 16)
where

As discussed in the Appendix, the positive square
root is to be chosen in Eq. (2. 22), and if k„& ~/c,
we choose

lm(k, ) & O.

The remaining quantities in Eqs. (2. 20) and Eqs.
(2. 21) are defined in the Appendix.

The scattered electric field has the form
k)) = ~x&+ ~yg

and the matrix S(k„) is given by

(2. 17) r
E"'(x (g) = d'k S,(k„, ~) e'"'" (2. 23)

( s„a„o)
S(k„)=— —k„k„o

II

0 0

One then has the relations

d„„(k„zlzz )=Qg (k zlzz )
II

+ -zg„,(k„(o l
zz'),

l)

(2. 18)

(2. 19a)

where in Eq. (2.23),

k =k)+ z&0. (2.24)

It is a short exercise to show that the time aver-
age of the Poynting vector, (S), may be cast into
the form

2

(S ) = Re ~ d k„d k' e'
8 1FQ7

x(k[h'+(k, ',~).h(k„)]—$(k „)[k~ $*(k,', (g)]j.

(2.26)
We are interested here in the energy radiated into
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the vacuum. Thus, we confine our attention to the
contributions tothe integral from the regions k„&~/c,
k,', &~/c. As explained earlier, ' the regions with
k„& ru/c describe scattered energy which is confined
to the near vicinity of the surface, and which propa-
gates parallel to it (i.e. , stored in surface plas-
mons excited by the incident radiation, for exam-
ple). The regions k„& ~/c, k,', & ~/c give contribu-
tions to the energy flux which are small, unless
the surface plasmon in mean free path is compara-
ble to the linear dimensions of the region illumina-
ted by the incident beam.

We may calculate the Poynting vector by insert-
ing the amplitudes of the scattered fields into ( S ),
and then averaging over the distribution of surface
roughness, as we did before. The calculation pro-
ceeds along very similar lines to our earlier work.

We comment on one point, however. When one
averages over the distribution of surface rough-
ness& one encounters averages of the form (g,.(k„)~
&& g/(k, ', )). The two functions Q, (k„)~f,(k,',)) and

(t2(k„)*&2(kl'I)) describe the nature of the roughness
on the vacuum-overlayer and overlayer-substrate
interfaces, respectively. In general, the "off-di-
agonal" averages (g, (k„) &2(k )) and (f 2( kl)lfg( kl)l)

will be also nonzero. These functions contain in-
formation about the manner in which the roughness
on the vacuum-overlayer interface is correlated
with that on the overlayer-substrate interface.
These functions will vanish only if the roughness
on the outermost interface is distributed randomly
relative to that on the innermost interface, a pos-
sibility that seems unlikely for a thin overlayer.

By a straightforward generalization of our earlier
definitions, we write

(i*(k„)f;(k,', ))=(2v) &(k -k'„)& &,g, (k„), (2 2a)

where

It follows from this definition that

s gll(kll) ll g22(kll) = li (2. 29)

K, = (e, —sin'8, )'", Im(K, )& 0

«2=(e2 —sin 8,), Im(«2)&0

ds(8s, co) = («2+ cos8s) cos[((d/c)«gd] —(i/Ky)

&& (Kg+ «2 cos8 ) sin[(a&/c) Kgd],

(2. 30a)

(2. 30b)

(2. 30c)

while no simple normalization requirement exists
for

gy (kll ) or g2g (kll )i although necessarily g,2 (kll )
=g'2~(k )'.

The overlayer roughness configurations illus-
trated in Fig. 1 can be seen to correspond to par-
ticular choices of g~2(kl) For example, the rep-
licating-film model of Fig. 1(a) corresponds to the
choice g„(k„)=@22(k„)=g&2(k„), and the nonuniform-
film model of Fig. 1(b) to the choice g„(k„)=@22(k„)
= -8i2(k ).

With the above remarks and our preceding dis-
cussion in hand, one may construct expressions
for the angular distribution of the scattered energy
flux. We shall simply quote the results here, since
the algebraic manipulations are lengthy and offer
no enlightenment.

We let (df,/dQ)dQ be the fraction of the incident
radiation (recall we consider only normal incidence
here) scattered into final states with s polarization,
directed toward the solid angle dQ. In a similar
fashion, (df~/dQ) describes the angular distribution
of radiation of p polarization. The direction of the
outgoing radiation is described by the spherical
angles 8, and p„where p, is measured from the
x axis.

Before we write down the final expressions, we

define the following quantities:

gi/(kll) = d &II e " "(&g(0)&/(rll)) ~ (2.2V)

In Eq, (2.M) and Eq. (2. 27), the quantities 5& and

5& are the root-mean-square roughness amplitudes
for the vacuum-overlayer interface, and the over-
layer-substrate interface, respectively, i.e. ,

-2 cos8, ~,—+—K,
I

sin[d(~/c)«, ], (2. 30e)

h, (8„ ld) = cos[(~/c)«qd] —i(«2/K, ) sin[(~/c)«~d],

(2.30d)

d/, (8» ~) = (&2 cos 8, + «2) cos[(&u/c) v,d]

(g2)1/2 (2. 2aa)

(2. 2ab)

$,(8„~)= cos —K&d
I

—i—sin —K,d I..EpKy . K

C ] eq«2 C j

We then have'

(2. 30f)

df(8, &) (g cos8, sing, 2 12 2 2 2 2

~2~d (0' )).&ail~i —1I I ~.«. ~}I I ~.«, ~)1 gu(k )+&2I~2 —.il g22(k„)dfl c I dsgsi m I ds 0i (0

+ 25,52 Re[(g,*—1)(&2 —&,)h,*(0, (g) $,(8„&g)g„(k„)]]
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df (g (o ) 0& cos e, cos (0, IK21 2 I 2' „" '——
2 4ld ( ')l. ld (, )I2«iI~1-II Ib,«., ~)l I~.«, ~)l ~»(k)+&2I"-~il a22(I )

~P 7l C dP ~st Q) ds 0&('d

+ 2&1&2 Re[(&1 —I) (&2 &1)&.*(0,0))hk(9. , (d)@12(I(g)]]' . (2.

In Eq. (2. 31) and Eq. (2. 32), k„ is the projection of the wave vector of the scattered wave vector on a
plane parallel to the surface. Thus, the magnitude of k„ is given by

I
kg I:(0&/c) slngg . (2. 33)

B. Scattered electric fields within the overlayer, and the fraction of the incident energy
absorbed within the overlayer

To compute the scattered electric field within the film, we may use Eq. (2. 15), with the Green's func-
tions dgg(k„(0l zd) and dgg(k„(0 I z0) glvell by Eq. (2. 19).

If we define (as in the Appendix)

k = [(0&'/c')4, —k'„]'", Im(k ) «&,

then the electric field within the film has the form

(2. 34)

E(g)(x (0) )I(f k eikll xll [h(+)(Q (0) e+iklg+ h(-)(I( (0) e-iklz]

where after some algebra, one finds

2 I kkk k

(L& (&2 &1) E(o) 0 g k klk2kg (II) kg (1&
2 2 2

g) g 0) (&1 —1) (0) (kod kgkg kokl („& 1
gi 0&)

(2 )2 2 E (o)i d) e 01( II) k2 ok2IIi (k )
~g + (k )

2
0) (~2 21) Z(0)i 0&~ rk kgkg klk2 +(0& +(1)l

2 —1 kk
~g~ ( lli(d)=+

(2 %2 2 E (o&id)e ~1(k ) 2g ~ +
/2 i2 2E (0) )4( )k2grik ) 0271'g 0 I2&J C

(2.36)

(2.36)

(2. 37)

(2. 38)

k2
—[((d'/c')~2 —k'„]'"Im(ko) & 0,

k, =[(~'/c') —k'„]"'Im(k, ) 0.

(2. 39)

(2.40)

The coefficients C,"", C,"', etc. are given by

C."& = —.'(1+crk2/k, ),

C,""= 2 (k 2/&1+ o k2/kl),

A,' ' = 2(I+ o'k /k ) e'0 e '"ld

~(g) —(I/& +ok /k ) eikod -igkld

(2.41a)

(2. 41b)

(2. 41c)

(2.41d)

It is now a straightforward, but tedious matter

In Eqs. (2. 36), (2. 37), and (2. 38), we have as in
the Appendix,

f(1) Q Q f(1)
(y=+1 g'm1

where

(2.42)

to evaluate the fraction of the incident radiation
absorbed by the overlayer. By symmetry, the only
component of the Poynting vector which has a non-
vanishing value is the z component (S,). The rate
at which energy is dissipated in the film is then
I„I„((S,) l,~ —( S,) l,~), where I,I., is the area il-
luminated by the incident beam. We calculate this
quantity, and divide by the rate at which incident
energy strikes the surface to form an expression
for the fraction f"' of the incident energy absorbed
by the overlayer. The quantity f(1' has the form

ld (0

c Ikol (kllk, l +k„kl) +a ik2 &&a "o 2 0) kl, k2 k2
I dk(kgi (g) I t, kl (.kl kl ' c I dg(kgi (d) I kl kl
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+52I22 ~(l g22(k }e ' 1 1 (p cos p ~ 2 ~+&p e I
+(p2 ((s2-sko)2 I 2 c lkol (k)lkll +kIIk1) 1 ) kp & 1 ko )

I dp(kII) &d) I e( k1 ) e) kj j
+(psin'y, ~ ~„(„' ) (2 I1+o'—~ 1+&p —

I
+5,62(go-q, )(g*, —l)S,*(0,o)) e '"1'g„(k„)

x (p'cos q,~ "2
I

~+(p .+ I

—+(p—I+(psi q, —s I+(p'~~
I

I+(p—) 2 c k() (k1 I k1 l + kIIk( )k2 i~E I ~k& 1 ko1 . 2 o) kl, k* ') k()

'&o ldp(k„, p)) I (,&1 k,*) e) k1&
' c Id, (k„, &d) I k()

+6,52(g2 —el)(q) —1)$,(0, o))e" 1 g12(k„) o cos g,~+is'2 2 (c ) 2 c kp(k) tk) I +kIIk()kp 1 ~k() E2 k2~+ g ~ ~+ge~
(d ~ dp(kII~ (d) ~ E1 k) E) kl

+(psin p~~ (2 1+(p —
~ 1+(p2 (d ky & kp ~k

C & its ~ kg ]

In Eq. (2. 42), we have

d, (k„, o)) = (kp —k2) cos (k,d) —i k, — sin(k, d)
kok2

1

(2.43)

dp(k p)) = (Eokp k2} cos(kid)

g„„(k„(oI«')= ~ Ik, E„'(k„o)Ie)E„(k„&pIe'), (2.45a)
II 4 lIp /

g„(k„&oI
«') = ~,k, E,'(k„&d

I 2)E,'(k„(d
I
2'), (2. 45b)

yak((p co)

g,„(k„&oI22') = ~ Ik, E', (k„&dI 2)E„(k„(gI2'), (2.45c)
~iiik(i, ~)

—i -&1 sin(k, d).2k~ k2ko (2.44)

The definitions of the remaining quantities may be
found earlier in the present section.

where

E„'(k„~
I
2) = —(k,/k„) e"2',

E,'(k„(d
I 2) = e"2',

E&(k
I ) (22

(2. 46a)

(2.46b)

(2. 46c)
C. Scattered electric fields within the substrate, and the

fraction of the incident energy absorbed within

the substrate

The scattered field in the substrate then assumes
the form

We evaluate the scattered electric field within
the substrate through the use once again of Eq.
(2. 15) in concert with Eqs. (2. 19). Now we require
the Green's functions for @&0, g&a'. In this re-
gime we have

E )(x, o)) = IId k„e' " *"e' 2'@ (k, o)), (2. 47)

where the explicit form of the quantities g~ '(k„, o))
is

2 ] kk k
x~ (kII) &d) +

(2 )2 2 E '(» d}&1(kII) 2IIp ( E ("I&ld} ~ Ik
"

~k2E)(kII&d ld) I

277) C

o)'(g2 —e,) (())( 0)- (
)(kok2E~(k„(dlO) k,'E~(k„&dl0) (2. 48a)

g(2)g~ }
(d (&1 1) (p)( ) I )

kgkp k2E&(kII(d l d) Ep(kII(g I d)

o)'(~2 —e,) (,)( )- („)k k„Iik2E„'(k„&0~0} E„'(k„(gIO)

(2)r) c "
kII ( kII II(kII &) ).(kII

g(2)(k ) = —&d (&1 —1)E(o)( d)f (k )
k+„(k„&did) (o (&2 —&1)E(())( 0)~ (k» )

k„„(kilo) IO)
g II&o)

(2 )2c2 o)) 1 II k IIP(k ) (2 )2 2 (d& 2 II k gr(k ~)

(2. 48b)

(2.48c)

In Ref. 5, it was argued that in the limit that the mean free path of the surface plasmon is short com-
pared to the linear size of the region of the surface illuminated by the incident beam, then the dominant

contribution to the energy absorption by the substrate comes from the energy flow in the direction normal
to the surface. This rate is equal to L„L„(S,) l,~, where again L„L„is the area of the surface illuminated

by the incident beam. It is straightforward to compute this quantity, and divide it by the energy/unit time
that strikes the surface to obtain the fraction f(2) of the incident energy absorbed within the substrate.
When this is done, we find the following expression:
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f"'= ".
~

~ ~a
d'k„l&e(k. )l c»'~,~

~

"'
~'2 «ll~~- I'I .(0 ~)l'g»(i )

I dp k))t Q)

+ 2&i&a &e[(« —1)(~2 —~i) &.*(0 ~)~&(» ~)gi2(k )1+ &a
I

&2 —&i I'I ~~(k ~) I'g22(k)))&

(2. 49)

In Eq. (2.49), we have introduced the quantities

2

~2 «l
I

~i-1I'I ~.(0 ~) I'g»(~)+2&i&&Re[(&~ —1)(&~—&~)8,*(0, )&,(k„, (o)g12(k )]
C Ids k))t ~

+ ts
I
ta —ti )'

I
t. (&„, ~)

I
't:as)k»))) .

e, (k„~) = cos (k, d) —i(ko/k~) sin(k, d),

E))(k„~)= cos(kid) —i(k, /e, ko) sin(k, d) ~

(2. 5o)

(2. 51)

III. NUMERICAL CALCULATIONS

In this section, we present the results of a set
of numerical calculations of the change in reflec-
tivity of the structure, in the presence of surface
roughness.

To carry out these calculations, we require val-
ues of the complex dielectric constant E'y of the
overlayer, and the complex dielectric constant &2

of the substrate. We have chosen to carry out the
calculations for aluminum metal overcoated with
an oxide film. For the dielectric constant of the
overlayer, we have employed the dielectric con-
stant of Al, O, films reported by Arakawa and
Williams. ' These data show that the dielectric
constant of A1203 is real below photon energies of
=8 eV, and absorption sets in for photon energies
higher than this value. For the dielectric constant
c2 of the substrate, we have employed the values
for aluminum reported by Ehrenreich, Philipp,
and Segall. "

We also require values for the correlation func-
tions g»(k), g»(k„), and g,z(k). We shall restrict
our attention to the four model situations depicted
in Fig. 1. In each case, a simple relation exists
between the three correlation functions; so we only
need specify one of them to proceed. The relations
are as follows.

(i) The replicating-film model [Fig. 1(a)]. Here
we have g, (x, y) = g, (x, y) everywhere so that

g11(~ ))) =g»(k))) =gt2(k)))

and also

(3. 1)

(3.2)

5j =52 (3.4)

(ii) The nonuniform-film model [Fig. 1(b)]. Here
we have f, ( yx) t= —g, (xt y) everywhere. Then

gll(~))) =g»( ))) = g12( ))) (3.3)

and again

(iii) The random-roughness model [Fig. 1(c)].
In this model, we presume that the roughness on
the vacuum-oxide interface is uncorrelated with
that on the oxide-substrate interface. This means
that

g„(K„)=o, (3.5)

while g» ( k „) and g» ( k „) bear no simple relation
to each other, in general. For simplicity, how-
ever, we shall choose

g»(~))) =g»( ))) (3.5)

5q =52 (3.&)

for this model, while the condition in Eq. (3.5)
holds also.

(iv) The rough-oxide-layer model. We presume
the oxide-substrate interface is perfectly smooth,
while the interface between the oxide film and the
vacuum is rough. This means that r2(x, y) =0
everywhere; so we have the conditions

g 22 (k II) gl 2 ( ~ II) t

g»(k))) « .
(3.8)

(3.9)

Each of the four models described above requires
knowledge of one correlation function gq, (k„), and

the remaining correlation functions may be obtained
from it. As in our earlier calculations, we choose
a Gaussian for g»(k„):

g„(k„)= &ra' exp( ——,
' a'k, ', ) (3. 1o)

The parameter a is the transverse correlation
length. It is a measure of the average distance
between neighboring peaks on the rough surface.

To begin, we calculate the change in ref lectivity
for a rough surface of pure aluminum, with no
oxide overlayer present. While we presented
similar calculations in our earlier work, inthepre-
sent calculation we have chosen a value for the



SUR FACE ROUGHNESS AND THE OPTICAL PROPERTIES. . . 2951

0~O

I-
0
I-
O 5—
U
LLI

0

LLI
C9

~+ IO—

PURE ALUMINUM

rms ROUGHNESS (

TRANS. CORR. LENGTH = 200 A

FIG. 3. Change in re-
flectivity for a rough alu-
minum surface, for the
case where the transverse
correlation length is chosen
to be 200 A, and the rms
amplitude of the surface
roughness is 12 A.

I I

8
PHOTON ENERGY (eV)

IO

transverse correlation length which provides a
rough fit to the data reported by Endriz and
Spicer. ' These authors have completed an exten-
sive series of experimental studies of the effect
of roughness on the ref lectivity of aluminum in the
ultraviolet.

In their paper, Endriz and Spicer have also pro-
vided detailed fits to their data. However, in their
fitting procedure, they employed theoretical ex-
pressions which have appeared in the literature, '3

but which are in error. ' In our present calcula-
tions, we have not attempted to obtain the kind of
detailed quantitative fit to the data attempted by
Endriz and Spicer. Our interest here is in a cal-
culation which provides a reasonable qualitative
fit.

We find that if we choose the transverse correla-
0

tion length a= 200 A, we obtain results rather sim-
ilar to the experimental data. In Fig. 3, we pre-
sent our results, for the case where the root-mean-
square height of the roughness (the parameter 5)
is chosen to be 12 A. The dominant contribution
to the roughness-induced change in ref lectivity
comes from roughness-induced coupling to the
surface plasmon. In aluminum, the surface plas-
mon energy is 10.6 eV, and one sees that the
minimum in the dip in the ref lectivity occurs near,
but below this energy.

We would like to comment on one feature of our
calculation, for pure aluminum. In the literature,
it is frequently presumed ' that for frequencies
above the surface plasmon energy, there is no
roughness-induced absorption by the substrate,
and as a consequence the roughness-induced change
in ref lectivity has its origin entirely in the scatter-

ing of the incident light away from the specular
direction. As we point out earlier, since the
imaginary part of the dielectric constant of the
substrate is nonzero, there is roughness-induced
absorption present at all frequencies, even above
the surface plasmon frequency. For the param-
eters chosen to describe pure aluminum, even
at 12 eV we find the dominant contribution to the
roughness-induced change in ref lectivity comes
not from roughness-induced scattering away from
the specular direction, but rather from absorp-
tion in the substrate. In the calculations reported
in the paper by Endriz and Spicer, the roughness-
induced scattering rate was found to be consider-
ably larger than that we calculate here. These
authors used a considerably larger value of the
correlation length (=1000 A) than we have. We
find that for larger values of the correlationlength,
our calculated scattering rate increases appreci-
ably, but we can no longer obtain a reasonable fit
to the ref lectivity change produced by roughness
at lower energies where the surface-plasmon-in-
duced dip occurs.

In Fig. 4, we present our calculations of the
roughness-induced change in ref lectivity for the
replicating-film model described above. One sees
that as the thickness of the oxide layer increases,
the ref lectivity dip shifts toward the visible. The
reason for the shift is that the presence of the
oxide layer modifies the dispersion relation of the
surface plasmon. ' In particular, for a metal with
bulk plasma frequency co~, in the limit that the
wave vector k,~-~, the surface plasmon frequency
for a metallic substrate overcoated with a dielectric
layer with dielectric constant E approaches the
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minimum in the ref lectivity for each value of the
oxide thickness coincides quite closely with the
minima displayed in Fig. 4 for the replicating-
film model, the most striking feature of the re-
sults in Fig. 5 is the very substantial enhance-
ment of the strength of the coupling between the
light and the surface plasmon. Note that in the
calculations illustrated in Fig. 5, we have re-
duced the rms height of the roughness on each
interface from the value 12 A used in Figs. 3 and
4 to the smaller value of 6 A. Also, note the
difference in the scale used on the ordinates in
Figs. 4 and 5.

At this point, we may appreciate that the posi-
tion of the ref lectivity minimum is controlled
simply by the film thickness, but the strength of
the interaction between the incident wave and the
surface plasmon is a very sensitive function of
the nature of the correlation between the surface
roughness on the oxide-vacuum interface, and
that on the oxide-substrate interface. The reason
for this is the following, if we compare the re-
sults in Figs. 4 and 5. When g, (x, y) = —f~(x, y),
as in the nonuniform-film model, the scattered
electromagnetic wave from the oxide-vacuum inter-
face interferes constructively within the oxide
film with that which comes from the oxide-sub-
strate interface. This greatly enhances the coup-
ling between the incident radiation and the surface
plasmon. Note that in Fig. 5, coupling to the sur-
face plasmon is strongest when d=20 A. On the
same curve, one sees an appreciable change in
ref lectivity above 9 eV, well above the surface-

plasmon-induced ref lectivity dip. The large
roughness-induced change in the ref lectivity
above 9 eV comes from energy dissipation within
the oxide layer; recall that one is past the absorp-
tion edge of the oxide film in this energy range.
The constructive interference which produces
strong coupling to the surface plasmon thus also
leads to considerable absorption within the oxide
film in the energy region above its absorption
edge. We shall see that in the random-roughness
model, where there is no correlation between the
roughness on each interface (and hence no construc-
tive interference of the type just described), in
the presence of the oxide overlayer, the rough-
ness-induced coupling of the incident radiation to
the surface plasmon is still considerably enhanced
over the value for the pure aluminum surface, al-
though the magnitude of the enhancement is smaller
than for the nonuniform-film model. This means
that in the replicating-film model, the two scat-
tered fields evidently interfere destructively, and
the enhancement effect provided by the oxide film
is supressed as a consequence.

In Fig. 6, we present the results of our calcula-
tions for the random-roughness model [Figure
l (c)]. Again the position of the minimum in the
change in ref lectivity occurs at the same photon
energy as for the replicating-film model. The
strength of coupling between the inicident radia-
tion and the surface plasmon is significantly larger
than is the case for the pure aluminum surface,
although the enhancement factor is considerably
smaller in each case than for the nonuniform-film

o~0
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FIG. 6. Change in re-
flectivity produced by sur-
face roughness, for alumi-
num overcoated with oxide
films of various thickness.
The calculations have been
carried out for the parame-
ters given in the figure, and
for the random-roughness
model illustrated in Fig.
1(c).
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model in Fig. 5.
In Fig. 7, we display the results of the calcula-

tions for the rough-oxide-layer model. As re-
marked earlier, we assume here that the oxide-
substrate interface is perfectly smooth, but rough-
ness is present on the oxide-vacuum interface.
For small values of the oxide-layer thickness, -

the interaction between the incident radiation and
the surface plasmon is enhanced, as in the other
two examples where destructive interference does
not occur between the scattered fields generated
by the pair of rough interfaces. However, as the
oxide-layer thickness increases, the strength of
the effective coupling eventually begins to decrease.
Quite clearly this occurs because the fields associ-
ated with the surface plasmon are localized to the
inner interface, and as the oxide-layer thickness
increases, the rough surface responsible for the
ref lectivity dip moves sufficiently far from the
inner interface to cut off the coupling between the
surface plasmons and the incident radiation.

With the results of the above four cases in hand,
we make some remarks about the experimental
data.

Feuerbacher and Steinman" have studied rough-
ness-induced ref lectivity dips for aluminum films,
and also for roughened films overcoated with 50 A
of LiF. The position of the ref lectivity minimum
of the roughened aluminum film overcoated with
50 A. of LiF agrees quite well with the calculations
presented above. (Of course, our calculations
were carried out for aluminum overcoated with
aluminum oxide, but in the spectral regime of in-

terest, both LiF and Al203 are transparent, and
their dielectric constants do not differ greatly. )
If one examines the magnitude of the ref lectivity
dip they observe, then for the roughened film
4B =0.25, while for the overcoated film,
&8 =0.45. Thus, while the overcoating pro-
cedure shifts the ref lectivity minimum toward the
visible, it does not greatly affect the strength of
the roughness-induced coupling of the incident
radiation to the surface plasmon. This suggests
that the LiF overlayer has roughness on its outer
surface which tracks rather closely that on the
LiF-substrate interface, as in our replicating-
film model of Fig. 1(a).

Stanford and Bennett'~ have studied the effect
of overcoating a roughened Ag surface with films
Ales roughly 250 A thick. They present several
measurements in this paper. For a supersmooth
uncoated Ag surface, they find a smooth variation
of the ref lectivity, with no sign of a dip character-
istic of roughness-induced coupling to surface
plasmons. For an uncoated surface they charac-
terize as "slightly rough, "the measured reflec-
tivity tracks that of the supersmooth surface, al-
though a clear hint of a surface plasmon dip is
present. The surface-plasmon dip appears as a
clear feature in data on a surface they character-
ize as "relatively rough. " When the slightly rough
surface is overcoated with Ales, a very large
pronounced dip appears. The ref lectivity change,
only barely visible for the uncoated surface, as-
sumes a maximum of = 0. 50 for the overcoated one.
While these measurements are carried out on a
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rather different substrate-overlayer system than
that considered here (and also in a different wave-
length regime), these data provide a clear example
of the behavior illustrated in Figs. 5 and 6, where
the overcoating produces an enormous enhance-
ment of the roughness-induced coupling of the in-
cident radiation to the surface plasmon.

The calculations in Fig. 7 suggest that if a
supersmooth aluminum surface is overcoated with
a dielectric, then if the dielectric layer is suffic-
ciently thick, the ref lectivity of the structure be-
comes relatively insensitive to the presence of
roughness on the outer surface of the overlayer.
However, it must be kept in mind that as the thick-
ness of the oxide layer increases, the ref lectivity
of the structure drops substantially in the ultra-
violet even if both interfaces are perfectly smooth,
as Ehrenreich has pointed out recently. ' We
illustrate this in Fig. 8, where we present the
ref lectivity for aluminum overcoated with an oxide
layer of uniform thickness, for the case where
both interfaces are perfectly smooth. The dot-
dashed curve is the data of Banning, "which shows
a decrease in ref lectivity at large photon energies
of the sort expected for a surface over coated w ith
an oxide film. Indeed, the data is fit reasonably
by the curve for d = 20 A, for photon energies
above 9 eV. It is tempting to suggest that the
measured ref lectivity drops below the theoretical
curve in the region from 7 to 9 eV because of
roughness-induced coupling to surface plasmons.
However, it is difficult to see how superposition
of two distinct mechanisms could produce a curve
as smooth and featureless as the data of Banning.

APPENDIX: CONSTRUCTION OF THE GREEN'S
FUNCTIONS FOR THE ELECTROMAGNETIC

WAVE EQUATION

In Sec. II of this paper, we introduced a set of
Green s functions D„„(x,x; &u) that satisfy the dif-
ferential equations

=4v6~~ 5(x —x ) (Al)

and we note that one may write

5(x- x') = 5(z —8') '~ "ae "" ' '*" *"'.. (2v)' (AS)

With these expressions, one may readily derive
a set of one-dimensional coupled differential equa-

along with the outgoing-wave boundary conditions
appropriate to the present scattering problem. In
Eq. (Al), the dielectric function co(z, &u) is given

by Eq. (2.6).
In an Appendix of our preceding paper, 5 we de-

rived the form of these Green's functions for the
semi-infinite dielectric, which corresponds to the
limit d- 0 in the present geometry. In our preced-
ing paper, we constructed the Green's functions by
directly solving the differential equation (Al). This
procedure becomes most cumbersome for the pres-
ent geometry. We present here a much more com-
pact method of constructing the Green's functions.

As in the text, we write
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tions for the functions d~, (k„cu Izz ). These equa-
tions simplify considerably if we perform a coordi-
nate rotation which aligns the x axis with the direc-
tion of kI, . This is achieved by the action of the ma-
trix

lim E„'(k„&u ~z) =e'"o'
g~+oo

(A13a)

the differential equation (A12). We denote the two
solutions by E~)(k(&u!z), and E~(k„&u!z), where we
choose the functions to satisfy the boundary condi-
tions

1
S(k„)=——k, k„O

( 0 D i:„)
(A4)

We introduce a new set of functions g, ,„.(k„&u izz )
related to d (k„ur Izz ) by the rotation just described:

lim E,'(k„(u
~
z) = e'"2',

g+aoo

where we define the quantities
2

1/t'2
CO

, z= ~ &(,a —k ™(k(2) & 0

(A13b)

(A14a)

(
(d d

~0(z, (u) ~ +, g„„(k„(u
~
zz )

dz

(A6)

dg~„(kii&d I zz )
( i)—zk„ (A7)

2
—ii:,„—g„(a~~zz )+ i, (z, ~)-i —i )dz C

d „(k„&u I zz
') = g g„.„~ (k„((/ I zz ') S .„(k„)S„,„(k„).

~ Ipt

(A6)
It is a straightforward matter to construct the

equations obeyed by the functions g„„(k„&uI«).
These equations read

(
(d

Eo(z, &u) ~—k,', + p g»(k„&u
~

zz') =4w5(z —z'),

( + )2 (/2
(A14b)

g„,(k„cu i
zz') =, , [E,'(k„(u

i
z) E,'(k„(u

i
z') e(z —z')

W~yk„, (a))

In Eq. (A14a), we presume e(and e, have a positive,
nonzero imaginary part, and for the proper square
root to be chosen for ko, we have added a positive
imaginary infinitesimal ig to the frequency. The
limit q-0 is always to be taken in Eq. (A14b).

The Green's function g»(k„&u lzz ) is to be con-
structed so that Eq. (2. 11) describes a scattered
wave which radiates into the vacuum for z & d, and
one that attenuates in the region z & 0. This Green's
function is simply expressed in terms of E, (k„+ Iz)
and E~(k„&u I z) as follows '.

x g, (k ~I«') =0,

(
(d d

~, (z, ~) —p+, g„,(k„(u
~

zz')
C dz

—'(ki( gag(kiico
~
zz ) = Oidz

d
(k(( d g„~(k~, &d

~

zz )

(A6)

(A9)

where

+E„'(k„(u
i
z) E)(k„(u

i
z') e(z' —z) j,

sE,'(k„(u I z) E),k

(A15)

(A16)

CO

+ 60 Z~ (0 2 k
j gag k)jQ) ZZ =47T~ Z —Z ~

(A10)
The remaining functions (g„„g„,g,„, g~) obey

homogeneous equations, and thus vanish identically.
We begin with g»(k„ur Izz ), since Eq. (A6) is un-

coupled with the remaining four equations. We
first observe that for a medium characterized by
the z-dependent dielectric constant e, (z, ~), Max-
well's equations yield solutions of the form

E (k„~
~
x) =jE„(k„(u

~
z) e'"~~", (Al 1)

where E„(k„~Iz) obeys the homogeneous version of
Eq. (A6):

z&d

E„(k((&u lz) = A,"'e' ('+A"'e ' " 0&z &d

g(J ) ikPs ~(j ) iA2g 0+

(A17)

D"&e"o'+D"'e "o' z &d+

is the Wronskian, a quantity independent of z."
The form given in Eq. (A15) is valid for any func-

tion eo(z, v). For the particular geometry of con-
cern here, where eo(z, &u) is given by Eq. (2.6), it
is a straightforward exercise to construct these two
functions. One has

(d d
co(zi (d) ~ —k[[ + g Ey (k[[()~z) —0i. (A12)

e inc z&0

E~(k„ur ~z) = C,"'e"0*+C"'e"(', 0&z &d (A18)

There are two linearly independent solutions of where in these expressions, with cr =+ or —,
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e"0" k~0.~ ~ + |T 0 e-i~a, d

2 kq

eikpd kpB'"= 1 + o —o cos(k d)j.

—i ~+o —sin(k, d)
k k,
kg k2

C(')=- 1+v1 k

k 1

eikpd
D,"' = 1+a ~ cos(k, d)

kp

+i ~ + o ~ sin(k, d)
k k

ki kp

(A19)

(A2o)

(A21)

(A22)

lim E,(k„(d
l
z) = e '"o' .

g»»OO

(A29)

Before we pr,oceed, we display the explicit form
of the fields E~,(k„o) Iz) and E„,(k„(diz). One has

E,'(k„o) lz) =e'"o', z&d
=A("'e"~g+A""e '"&' 0 & z & d+ 7

/(ll)eik2g +@(It) e-iu2g z & 0+ (Aso)

E„'(k„~
l
z) = —(k, /k„) e*"~,

=-(k, /k„)(X.'"'e*')'-a""e-'"(') O&z&d

(k /k )(B(ll) e(oog B(ll) e ikon) z& p

and we append the superscript & to the set for which

and the Wronskian is given by

W, (k„, (o) = (e"o"/k, ) [(k', —k,k()) sin(k, d)

and

E,(k„loz)) =D'"' e'"o'+D"" e '"o' z) d

(A31)

+ i(k() —k,) k, cos(k,d)] . (A2s)

The functions g„„(k()(A) Izz ) and g,„(k(((d Izz ) obey
the coupled equations (A7) and (A8). These func-
tions may be constructed by generalizing the meth-
od used to obtain g»(k„(d Izz ).

We begin by noting that if we seek a solution of
Maxwell's equations in the form

E(k„~lx) =(zE.(k„~lz)+'E.(k„~lz)]e*"(", (A24)

then the functions E„(koo)(z) and E (k))(() Iz} satisfy
the coupled equations

(&o(z, (o) —o +d o )I E„(k„o)
l
z) —ik„d E (k))(()

I
z) = 0)

(A25)

—C'"' e"&g+ C'"' e '"&' 0 &z & d

ei k2g z&0 (A32)

= —(k, /k„) e'"o', z &0.

(Ass)
In these expressions, one has, with o. =+ or —,

—+o—e oekp
(A34)

B,'" ' = e' o" —+ v —cos (k~d)
k2

E„'(k„&
l
z) = —(k, /k„) (D,""e'"+ —D""e-'"o')

(k /k ) (g(o) (o)s g() ) e )))E) p &z &d

2
—i);,„—„z,(a,„td

~

z)+ e, (z, ~) ~ —a„', )z,o:,„(o~~ z) = o.
dz

(A28)
For the geometry under consideration here,

where &o(z, o)) is piecewise constant, we must have
V 'E =0 everywhere except at the singular points
z =0 and z =d. This requires (except at the two
points)

—i + o — sin(k~d)
&0&A kg

k~q2 egkp

g(lt ) &a k2

2 &g kg

e i kgd

D = E + 0' —cos(k d)
2 ' k0

1

(A35)

d
E,(k„(d

l
z) + ik )—E (k)) (() I z) = 0. (A27)

Thus, if we are given E,(k„(o Iz), then from Eq.
(A27) we may compute E„(k„(dIz) in each regime
of interest. We confine our attention to E,(k„!z)o)
as a consequence.

There are two linearly independent sets of solu-
tions of the system of equations from Eq. (A25)
through Eq. (A27), just as when we examined Eq.
(A25). We append the superscript & to the set
E„(k„(dlz), E, (k„o) iz) for which E,'(k„o) iz) obeys the
boundary condition

+i a,—+g- sin(k, d) .k2 k&&2 (A37)
kg kp&g

Given the fields defined in Eq. (Asp)-(AS3), we
seek solutions of Eq. (A7) and Eq. (A8) in the form

(k))o) l
zz ) =~ gk & (E (k))(() l

z)E (k))(o l
z')e(z —z')

i~p CO)

+ E„'(k„o)
l z)E„(k„(d

l
z')e(z' —z)] (A38)

g,„(k„(ol
zz') =, —, [E,'(k„o)

l
z)E„'(k„o)

l
z')e(z —z')

+ E,'(k„lz)oE)„'(k„(d
l
z')e(z' —z)]. (A39)

limE (k„(() lz) =e" o',
g» +ao

(A28)
Substitution of these forms into Eq. (A7) and Eq.

(A8) show that the solution indeed has the form of
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Eq. (A38) and Eq. (A39) if we choose

~II (kll ~) = W (kit to) W (kll &) (A40)

functions in Ref. 5, we found that g„contained a
term directly proportional to 5(z —z'). Thus, we
look for a solution of the form

sin(kid) .kp &Bkg'
kg &gko

(A41)

Thus, we have left only the two functions

g„(k„~Izz ) and g„,(k„&u!zz'). lf we attempt to
search for a solution of Eq. (A9) and Eq. (A10) by
constructing the direct analogs of Eq. (A38) and

Eq. (A39), we shall find the resulting functions
fail to satisfy Eq. (A9) and Eq. (A10). We recall
that when we explicitly constructed the Green's

where W„,(k„, ~) and W„(k„,to) are given by Eq.
(A18), but with y replaced by x or z.

Explicit calculation shows that for our geometry
W (kg &) and W (kgb &) are only piecewise con-
stant; i.e. , these functions are constant every-
where, but experience jump discontinuities at z =0
and z=d. However, the function W„(k„, &) is truly
constant, with a value everywhere given by

k
(d) = . 2kPgg k'„ 0

g„(k„~I
z z') = — [E,(k„~ I

g)E,(k„(g I
g')(9(g —g')

+ Z,'(k„~
I
z)F-.'(k„~

I
z')e(z' —z)] (A42)

for g„„but for g„we take

~„(k„ I
zz') = 1'(z') V(z —z')

[&,'(k„(o
I
z)E,'(k(g

I
z') e (z —z')

+ E',(k„&
I
z)E.'(k„~

I

z') e(z' —z)]. (A43)

This form indeed solves the differential equation
with W„(k„,~) given by Eq. (A40) and Eq. (A41)
provided we choose

1'(z') = 4~c'/(o'~0(z', ~). (A44)

We now have the explicit form for all the Green's
functions required for the calculation of the scat-
tered fields in each region of interest.
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