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An intensive numerical investigation reveals a gross error in the density of states reported in 1967 by
Anderson and McMillan. Whereas they obtained a broad double-peaked resonance that appeared suAiciently
reasonable to justify their prescription, correct evaluation of their formula yields a single structureless
resonance far too narrow to be representative of a transition-metal d band. This conclusion is verified by
algebraically reducing their expression for the density of states to a form that is easily evaluated by hand,
Anderson and McMillan also err in claiming that their dispersion relation leads to a vanishing wave number

at resonance. The zero wave number is on an extraneous branch and would have led to a nonintegrable
singularity in their density of states. Evidently the Anderson-McMillan prescription is inadequate as a
description of the effects of s-d hybridization on the density of states of transition metals.

I. INTRODUCTION

Several years ago Anderson and McMillan (AM)
presented a simple theory for the density of one-
electron states in transition metals. ' Basing their
arguments on the newly understood resonant nature
of d bands, they proposed an application of mul-
tiple-scattering theory similar to the more recent
coherent potential approximation. Their final re-
sult for the density of states purported to capture
the essentials of resonant s -d hybridization with-
out reference to the geometrical arrangement of
the ions. It has therefore attracted some attention
in the area of disordered systems, but to my
knowledge there is no record in the literature that
their prescription has ever been utilized.

This article details an unsuccessful attempt to
reproduce the density of states reported by Ander-
son and McMillan. Section II describes the Ander-
son-McMillan prescription and quotes their ex-
pression for the density of states. Section III ex-
hibits the conflict and localizes its source by com-
paring the results of intermediate stages of the
calculation with the published results of Anderson
and McMillan. Section IV presents a numerically
independent check of the density of states based on
an algebraic simplification of the Anderson-Mc-
Millan formula. The existence of extraneous
branches of the Anderson-McMillan dispersion re-
lation is demonstrated numerically in Sec. V, and
the behavior of the "zero branch" is derived analyt-
ically in Sec. VI. Additional evidence supporting
the present calculation is given in Sec. VII; con-
clusions are in Sec. VIII.

II. METHOD OF ANDERSON AND McMILLAN

Anderson and McMillan argue that in first ap-
proximation, the behavior of d electrons on a given
atom of the liquid is adequately simulated in an en-
ergy-dependent potential of the form

vj~, Ej= vMT (r), r r,
C(E),

where v„T(r) is an ordinary muffin-tin atomic po-
tential, x, is the Wigner-Seitz atomic radius, and
the complex number C(E) represents a spatially
uniform medium chosen to simulate the effect of
multiple scattering from the other atoms. To de-
termine C(E), Anderson and McMillan require that
a plane wave propagating in C suffer no forward
scattering due to the disturbance v(r, E) —C(E).
Thus determined, C defines an effective disper-
sion relation k, (E) according to

k, (E}=E—C(E) .
The subscript in Eq. (2) and the following is to re-
mind the reader that k, is the complex wave num-
ber in the medium C(E).

The density of states per atom is determined
from the Green's function for the potential v(r, E)
by restricting the trace to the interior of the Wig-
ner-Seitz sphere; i. e. ,

Im
p(E)= — G(r, r, E)d'y .

& r&rs

Here the Green's function is defined by the dif-
ferential equation

[E+V —v(r, E)]G(r, r, E)=5(r —r'), (4)

with the boundary condition that G consists only of
outgoing waves outside the Wigner-Seitz sphere.
The spherical symmetry of v(r, E) allows a closed
expression for p(E) in terms of the atomic loga-
rithmic derivatives at the Wigner-Seitz radius.

Anderson and McMillan give an expression for
p(E} which will be written here as a sum over angu-
lar momenta of a factor p, (E), which is indepen-
dent of the choice of k„ times a factor Ima, (E, k, ),
which contains the effect of k, ,
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p(E) =Q p, (E) Ima, (E, k,) . (s) @,=j, +in (i4)

As given in Eq. (AM 4. 1),

K r "s
p, (E)=—(2l+1) 8,(», r) r dr

0

(2I 1) I t r2 tt2( )
yl( t It s)

m
+

dE ~ r.glK r
BK

(8)
where» =E and 8I(», r) is a regular solution of the
radial Schroedinger equation for the muffin-tin
atom (AM 2. 9'),

(
1 d 2 d l(l+ 1)—~ —r —+vMT(r)+, yI(», r) =EgI(», r) .dr dr

(7)
In addition, 6, is the phase shift of 8, in the muf-
fin-tin plateau region (r & r & r,), where gI is nor-
malized such that (AM 2. 11)

AI(», r) = cos6,j,(»r) —sin6, n, (»r), r & r & r, , (8)

RI(», r) —i8I(», r) —i e"' k, (»r), r& r„, (is)

so that a, =i and Ima, =1 when k, =K.
To complete the AM prescription, one must

specify the complex wave number k, (E). This is
determined by requiring that the forward scatter-
ing element of the t matrix vanish (AM 3.7),

—g(2l+I) e"I sin6;=0,
kc

(is)

where 6', is the complex phase shift of the regular
solution of the radial equation in the dispersive
medium outside r, . In terms of the logarithmic
derivative y, (E, r, ), the complex phase shift is
given by (AM 3.8)

As a check on the sign of a, , we may take the free
boundary condition k, = » (no medium outside). It
is easily checked using the above expressions for
8I and SII (AM 2. 11 and AM 2. 14}that

and y, is the logarithmic derivative of 8, at the
Wigner-Seitz radius (AM 2. 2)

yI = yI(E, r, )

k,j,'(k, r, ) —y, (E, r,)j,(k, r, )

III. COMPARISON OF RESULTS

(17)

d=—in8I(», r)
r=rs

(9)

cos6Ij I(»r, ) —sin6, n,'(»r, )=K
cos6,j,(»r, ) —sin6, n, (»r, )

(10)

The derivative of Eq. (10) with respect to» is to
. be taken at fixed 6, and r, . This completes the
specification of p, (E).

The quantity a, is defined in terms of an irregu-
lar solution OtI(», r) of the radial equation, (7).
The required normalization is such that on the
muffin-tin plateau (AM 2. 14),

XI(», r) = sin6, j,(»r)+ cos6, n, (»r),
r &r&r ~

Now a, is determined so that the linear combina-
tion RI(», r) —aIAI(», r) (r~ r, ) matches smoothly
onto an outgoing wave in the dispersive medium
outside r, . Matching logarithmic derivatives of
~I —aI gI and k, (k, r), we have (AM 4. 5)I~

(d/dr)st, (», r) —aI(d/dr)JI(», r)
xI(», r) — e a(IIr)»

yCl p (i2}

where

and

k,'(k, r, )' k, (k, r.)
' (13)

In the last part of Eq. (8), y, is to be formally re-
garded as a function of », 6, , and r, (AM 2. 1),

yI = yr(» 6I r.)

Every effort has been made to ensure compara-
bility of the present calculation with that of AM.
As input for the calculation, Mattheiss has kindly
furnished a table of logarithmic derivatives for
the iron potential used in his band-structure cal-
culations. '~ This table is believed to be the same
as was supplied to Anderson and McMillan. Equa-
tions (5) et seq. were encoded for computation as

AM wherever such indication was given. De-
tails of the present calculation may be found in Ap-
pendix A.

Figure 1 compares the results of the present
calculation with the density of states~3 published
by Anderson and McMillan. The disagreement is
startling. Whereas AM found a split resonance
with a full width at half height of 0. 28 Ry, I obtain
a single peak whose width is only 0. 016 Ry. This
is an order of magnitude narrower than the d bands
in bcc crystalline iron, whose typical spread is
0. 32 Ry. Despite its narrow shape, the present
p(E) envelopes more states (5. 7 states on the in-
terval shown in Fig. 1, not counting spin) than
does the AM result (4. 2 states on the same inter-
val). The remainder of this section will demon-
strate that the discrepancy illustrated in Fig. 1
arises during the numerical evaluation of the coef-
ficient Ima&, which incorporates the effects of the
medium C(E).

We first examine p2(E), which is completely in-
dependent of the medium. Since Ima, is unity
when k, is set equal to», we see that pI(E) is the
lth contribution to the density of states when the
medium is replaced by free space. Thus p2(E) de-
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FIG. 1. Density of states of iron according to the An-
derson-McMillan prescription, as calculated in the pres-
ent work (solid line) and by Anderson and McMillan
(dashed line read from AM Fig. 5). The present p(E) is
not singular but reaches a well-defined maximum of
-130.9 Ry ~ at E=0.7135 Ry.
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scribes the shape of the bare atomic d resonance.
The present calculation of p2(E) is compared in
Fig. 2 with the published results of AM. Evidently,
p~(E) cannot be the source of disagreement.

Before evaluating a, , it is necessary to deter-
mine the complex wave number k, (E) as defined by
Eqs. (16) and (17). As can be seen from Fig. 3,
the present calculation of k, (E) is substantially the
same as in AM. The only difference of note is that
AM claims that both Rek, and Imk, vanish at reso-
nance. This point of disagreement will be con-
sidered later in Secs. V and VI. For the present
it is sufficient to note that this disagreement is

0
0 0.2 0.4

/i (o.u. ")
0.6 0.8

FIG. 3. Complex dispersion relation. for the Anderson-
McMillan effective medium as calculated in the present
work (solid lines) and by Anderson and McMillan (dashed
lines read from AM Fig. 2). The disputed behavior of
k, (E) at resonance is shown. on. an energy scale expanded
by a factor of 10. The dotted lines at resonance were
inferred from the text of AM and are therefore only
schematic.
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restricted to a narrow range of energies (0. V05 to
0. V25 Ry) and thus cannot account for the signifi-
cant disparity in the densities of states at ener-
gies such as 0. S Ry where there is no discernable
disagreement in the dispersion relations.

All that remains is the calculation of Ima, from

(d/dr)x, —y', st,
(d/dr)8, —y', 8,

io cot5, [an,'(/cr, ) —y,'n, (vr, )]+[aj,'(ar, ) —y',j,(ar, )]
cot5, [vj,'(vr ,) —y fj, ( -a)r] —[an,'(ar, ) —y', n, (zr, )]

'

0
0.i 0.2 0.3 0.4 0.5 0.6 0.7

E(Ry)
0.8 0.9 ).0 1.1

FIG. 2. l =2 contribution to the density of states in the
absence of the effective medium. The present calcula-
tion of Eq. (6) for g(E) (solid line) is compared with AM
Fig. 1 (dashed line).

The results for l=2 are graphed in Fig. 4, and
tabulated values at three key energies are given
in Table I. Evidently the origin of the disagree-
ment is buried somewhere in the evaluation of Eq.
(19). The computer codes that generated the pres-
ent calculation of Ima2 were verified by machine
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The first of these was proved by Anderson and Mc-
Millan (cf. AM 2. 20). Proof of the second is as
follows:

Start with Eq. (18) for a, and factor out X, and

8, to leave

/ I~
/j a&=- &

~l yl y l
(28)

1.0

where y, stands for the logarithmic derivative of
X) at r=r, ,

0.5
(d/dr)~,

yi
r

(24)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1-2
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FIG. 4, Factor Im a2 which modifies the l =2 contri-
bution to p(E) to account for the effective medium, as
calculated in the present work (solid line) and by Ander-
son and McMillan (dashed line read from AM Fig. 6).

and where y, is familiar as the logarithmic deriva-
tive of 4, . The trick is to express y, in terms of

oth yr and the Wronskian of ~r an

(d/dr@, (d/dr)g,
yr+

2

d= yr + &s
—&s -&r —4i

=y, +(~r,'ygst, ) '. (26)

evaluation in the limit k, = z (where a, =i) and by
hand evaluation using the computed k, (E).

JV. NUMERICALLY INDEPENDENT CHECK

The last equality follows from the known forms of
g, and st, on the interval r„» r» r, [Eqs. (8) and
(11)]. Substituting this expression for y, into Eq.
(28) gives

This section will develop and evaluate an expres-
sion for p(E) which is mathematically equivalent
to the Anderson-McMillan expression but which is
so different with regard to numerical implementa-
tion as to constitute an independent check on the
calculation.

Equations (6) and (6) for the Anderson-McMillan
density of states can be combined as in (AM 4. 1)
to read '

1- ~s

p(E) = —P (2l+ I) 8., (z, r)r drImza, . (20)
g ~0

~a, =~—+(r,g', )
'33

yr -y~ (26)

The proof is completed by noting that zZ, /g, and
8, are real. This is obvious for positive energies
and is easily verified for negative energies by us-
ing the analytic continuation of Eqs. (8) and (11) to
imaginary z.

Inserting the identities (21) and (22) into Eq. (20)
effects a cancellation of the terms involving g', (~,
r, ), so that the Anderson-McMillan formula for
the density of states is reduced to

A greatly simplified formula for p(E) results if
one employs the following two identities:

p(E)=- Z(21+I) (27)

TABLE I. Sample results of the present calculation at three key energies,
E=0.68 and E=0.80 correspond roughly to the two peaks in p(E) found by AM, and
E=0, 714 to the single peak in the present p(E).

E(Ry)

0.680
0. 714
0. 800

k~(a. u. ~)

(0. 531, 0. 312)
(O. 396, O. 174)
(0.622, 0. 042)

(0.982, 0. 637)
{-O.54O, 5. 886)
(-0.568, 0.513)

g Im &2 p [Eq. (5)] p {AM Fig. 5)

18.96 19.88 11.0
128.9 130.1 8. 0

3.203 4. 538 11.5
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TABLE II. Sample calculations of the l =2 density of states from the simplified
Anderson-McMillan formula, Eq. (27). p2 was calculated from Eq. (28) using
the values of kc given in Table I.

E(Ry)

0.680
0.714
0. 800

—0. 7375
—1.085
—4. 110

d~, /dE

—8.165
—12.71
—99.43

(-1,077, 0, 2955)
(—l. 045, 0.1461)
(-0.810, 0.2214)

Im (&, -v2) '

l. 459
6.371
0, 02024

Eq. (27) l=2

18.96
128.9

3, 203

The simplicity of this formula is particularly sig-
nificant in the present context as it greatly re-
duces the possibility of computational error.

In fact, given k, (E), it is now trivial to calculate
p(E). The real logarithmic derivatives of the muf-
fin-tin wave functions can be read from a table,
and the complex logarithmic derivatives of the
Hankel functions can be computed without the use
of transcendental functions, ' e. g. , for l=2,

1 (k, r, ) +6ik, r, —9
r, (k, r, )'+Sik, r, -S ' (28)

2l+ I .zj,'(z) —y, (E, r, )r,j,(z)
zk,'(z) —y, (E, r, )r,k, (z)

' (29)

Equation (29) follows from Eqs. (A5) and (17).
The small-z behavior is best displayed by rear-
ranging the spherical functions as

j)(z) = z'ji(z),
Z

k, (z)=, , k, (z) .
2Z

(31)

The results of using Eq. (28) to calculate the I= 2
contribution to Eq. (27) are listed in Table II.
Note that the results of this calculation agree to
four significant figures with the values of p2Ima2
listed in Table I even at the peak of the resonance.
This agreement verifies that the present p(E) has
been correctly calculated from k, (E).

V. EXTRANEOUS BRANCHES OF k, (E)

There remains only the question of the precise
behavior of k,(E) at resonance. Although the dis-
crepancy in k, (E) shown in Fig. 3 appears slight,
it nevertheless invites suspicion of multiple branch-
es in the dispersion relation and of the possibility
of switching to a branch that passes through zero
k, at resonance. In this section, the complex k,
plane will be fully illuminated to show that although
such a "zero branch" does exist, it is quite dis-
tinct from the branch illustrated by the solid line
in Fig. 3.

We begin with a study of the analytic properties
of the Anderson-McMillan t matrix t(z, E) as a
function of the complex variable z = k,x, at a fixed
energy E. t(z, E) is defined as the sum over l of

2l +
t, (z, E)= e"i sin6;

kc~,

K,(z) = 1, k, (z) =1 iz, -
k,(z) = 3 —3(iz) + (iz)' .

(32)

Equations (30) and (31) together with the recursion
relations for the derivatives of j, and h, allow the
following form for t, (z, E):

*'t ( E)=(2t+I) " ( y' ')j'- j'" (ss)(I+ I+y, ra)k, —z k

For l = 0, k, , is to be interpreted as —lliz
I et q, (z, E) and p, (z, E), respectively, represent

the numerator and denominator of the quotient in
Eq. (33). So q, is an infinite series in z and p,
is a polynominal of degree (I+ I) in iz. Both q,
and p, are analytic in z [except, of course, when

y, (E, r, ) =~]. With these definitions, t(z, E) is
written as

e"t(z, E)=q +3z ~q+5z
Po P1 P2

(s4)

where contributions from l —3 have been discarded
in keeping with Anderson-McMillan. Now t(z, E)
will have poles arising from the l+ I roots of each
p, (z, E). As these poles tend to complicate the
numerical task of locating the zeroes of t(z, E), it
is preferable to study the analytic function f (z, E)
defined by

f(, E)="'t(, E)p.p, p.
~OP1P2+3~ 91PQP2+ 5~ 92PQP1 ' (35)

Evidently, f (z, E) has the same zeroes as t(z, E)
but without the poles.

The structure of f (z, E) is illustrated in Fig. 5.
The solid and dashed lines, respectively, are pre-
images in the z plane of the real and imaginary
axes of the complex f plane. In other words, f (z, E)
is purely real for z on a solid line, purely imagi-
nary on a dashed line, and thus zero at an inter-
section. The lines were located numerically by
evaluating Eq. (35) on a fine grid of points in the
z plane. The analyticity of f requires that each
zero in a bounded region give rise to four lines
exiting that region. This fact, together with the

Here j, is an infinite series in ~, and h, is a poly-
nominal of degree l in iz,

I
(2!+!)!! 2(2!+3) ) '
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this loop, except for the portion drawn as an ar-
row. Anderson and McMillan would replace this
smooth segment with a path bending sharply to the
origin and back.

Although the present calculation confirms that
z = 0 is a solution to t(z, E) = 0, Fig. 6 shows that
this solution belongs to trajectories originating in
the lower half plane. Moreover, there is no indi-
cation that the AM result for k, (E) actually follows
one of these trajectories through the origin; if it
did, k, would have been pure imaginary upon leav-
ing the origin and there would have been a finite
gap in the density of states (cf. Sec. VI).

VI. ANALYSIS AT SMALL k,
FIG. 5. Structure of the analytic part f(z, E) of the

Anderson-McMillan t matrix t(z, E) as a function of the
complex variable k =z/~, at a fixed energy E=0.70 Ry.
f(z, E) is real on the solid lines, imaginary on the dashed
lines, and hence, zero at their intersections. The ar-
rows indicate the directions of increasing Ref or Imf.
The locations of the poles to t&(z, E) are shown for E

=0, 1, 2.

fineness of the grid (6k = 0. 02 a. u. '), as com-
pared to the apparent scale of variation of f (5k
-0. 1 a.u. ~), indicates there are no other zeroes
off in the region illustrated.

Of the five zeroes revealed by Fig. 5, only one
is acceptable in a dispersion relation. Three lie
in the lower half plane in the vicinity of the poles
of tz(z, E) and t, (z, E). These three may be re-
jected as describing exponentially growing waves;
we expect waves that are damped by disorder.
The two zeroes in the upper half plane are but the
beginning of an infinite sequence of zeroes stretch-
ing out along the real axis and spaced asymptoti-
cally by hk, = z/r, '6 All b.ut the first of these can
be rejected as not reducing to the correct free-
electron limit. Mathematically, the infinity of
zeroes arises from the approximate periodicity of

j,(k,r, ) and h, (k,r, ) at large real arguments.
Physically, it is an artifact of allowing unbounded
alterations of the potential outside the Wigner-
Seitz sphere even in the nearly-free-electron
limit. The one zero in Fig. 5 not thus dismissed
is at Rek, -0.45 and Imk, -0.27, in agreement
with the values found in AM at E = 0.70 Ry (cf.
Fig. 3).

As the energy is varied, the zeroes of t(z, E)
trace out trajectories in the complex s plane, as
shown in Fig. 6. The motion was followed numeri-
cally by an automatic routine in energy steps as
small as 0. 0001 Ry and was checked by making
plots of the type in Fig. 5 at over two dozen se-
lected energies. The simple loop in the upper
right-hand quadrant represents the same data as
the solid lines in Fig. 3. The AM data also follow

This section will demonstrate that a careful ex-
pansion of the AM dispersion relation in the bmit
of vanishing k, yields precisely the form of the
two symmetrical zero branches shown in Fig. 6.
Moreover, this same expansion when applied at
small but finite k, also yields the nonzero branch
shown in Fig. 3, thus verifying the existence of
both branches at the same energy. The form of the
density of states for the zero branch is also de-
rived.

Under what conditions is a zero branch possible?
Inspection of Eq. (34) for e"t(z, E) shows that
t(0, E) vanishes only if (i) qo(0, E) = 0, or if (ii)
p, (z, E) vanishes like z ' for some I &0. The first
case is identical to the Wigner-Seitz condition

(Ews r ) 0 (36)

and determines the energy E" = 0. 136 Ry at the
bottom of the band in Fig. 3. The second case re-
quires that for some 1&0,

l+1+y, (E",r,)r, =0 . (37)

On the energy range from zero to 1.25 Ry, this
condition is met only for l = 2 and determines the

I

E=0.71 E=0.72

0,2—

0—

-0.2—

-0.4—
-1.0 -0.8 -0.6 -0.4 -0.2 0 0.2 0,4 0.6 0.8 1.0

Re k„(E)

FIG. 6. Trajectories in the complex plane of the zeroes
of t(z, E) from E=0.15 to 0. 125 Ry (z=k~r, ). The arrows
indicate the motion of the zeroes as the energy is increased
through resonance from 0. 71 to 0. 72 Ry. The right-
angle bends formed when two trajectories meet simultan-
eously on the imaginary axis have been rounded to show
one of the allowable choices of connectivity.
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p, (z, E)= —~k, (z) —z'k, (z) . (3S)

In the vicinity of E", e is proportional to the en-
ergy difference E -E™with a constant propor-
tionality of 35. 3 Ry . Thus & may be thought of
as a dimensionless energy parameter.

The dispersion relation is obtained by setting
t(z, E) = 0 in Eq. (34). In the limit of small c and

small z, the contributions from both l=0 and 1=2
will be of order unity, the remaining terms con-
tributing O(zz), so that z as a function of e is de-
termined by

—+5z —+O(z ) =0 . (4o)

Recalling that pz is of O(z ), we may rearrange
Eq. (40) so that the dispersion relation reads

pa= —5z'qapoqo'[I+ o(z')] . (41)

Note that through O(zs), the dispersion relation is
equivalent to setting pz(z, E) =0. To this order,
one cannot resolve the separation between the zero
and the pole of t(z, E) [hence, the necessity of us-
ing f(z, E) for numerical work]. From Eqs. (39)
and (32) the dispersion relation to lowest order in
s is seen to be

energy E =0.7171 Ry, which may be inferred to
be the energy at which Anderson and McMillan
claim k, (E) goes to zero [note that this energy dif-
fers slightly from the energy E„,= 0.7135 at which
the present p(E) reaches maximum]. It will be
convenient to introduce the notation

~= —3 —y, (E, r,)~, ,

so that

beCome singular as p& vanishes. The precise form
of this singularity is determined by taking pa as
given by the dispersion relation Eq. (41). Then to
O(zz), 5z may be replaced by 3(1 —iz), qo by —&or, ,
and q~ by —,'; po is exactly 1+yy", -iz. With these
replacements,

[1+O(z')] (45)
pp 5 z 1+yy; —jz

As z is real for small z, the lowest-order term
in the above expression will be real and hence not
contribute to p(E). The density of states arises
from the iz terms and is given by

( )
& (-&~a~.)(»0~. )'(-sea) (46)

For energies just above E", the dispersion rela-
tion is purely imaginary and the density of states
is identically zero. For energies just below E«,
the density of states becomes singular like

p(E)- (E""-E)"', (47)

5000—

4500—

where the plus/minus sign applies to the branch of
the dispersion relation that approaches the origin
in Fig. 6 from the lower left-hand/right-hand
quadrant. Note that this singularity is nonintegra-
ble; i. e. , the integrated density of states is diver-
gent.

Direct computation of p(E) from Eqs. (5) and

(6) verifies this behavior. As shown in Fig. 7,
p(E) consists of two peaks separated by a narrow

or

E-E —k, /14. S .
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Thus just below E", the dispersion relation is ap-
proximately real and describes an electron with a
negative effective mass about 15 times larger than
the free mass. For energies just above E ", how-
ever, the wave number is purely imaginary.

The density of states for this branch of the dis-
persion relation can be obtained from Eq. (27)
with greater dispatch if y', is rewritten in terms
of zk, (z) and k, (z), which in turn can be simplified
by using Eq. (31). Then Eq. (27) takes on the ex-
act form

2500

2000

1500

1000

500

0.706 0 710 0.714 0.718 0,722 0.726 0.730
E (Ry)

( ) Imp( )
k, (z) dy, r,z, p(z E) dE (44)

where p, is the same polynomial that appears in
the denominator of t, (z, E) in Eq. (33). Unlike
t, (z, E), however, there is no zz' in the numerator
of Eq. (44), so it may be anticipated that p(E) will

FIG. 7. Density of states that results when the Ander-
son-McMillan formula is applied to one of the branches
of the disperison relation. that go to k, =o at resonance.
The inset identifies the corresponding trajectory in the
complex k, plane. As k, -o, p(E) becomes singular.
Had the mirror image of this trajectory been chosen
(cf. Fig. 6), the density of states would have been nega-
tive.
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gap. The higher energy peak corresponds to the
dispersion relation turning away from the negative
imaginary axis. It is nonsingular because P2(z, E)
is of order z, which is not zero in this case.

Although the preceding small-z analysis yields
exact results only when applied to the limiting
forms of the zero branch and its density of states,
it is also capable of reproducing k, (E) on the "non-
zero" branch. This is most easily demonstrated
for E = E"". Taking c = 0 in Eq. (39) and using the
same expressions for qo, qz, and pa as were used
in Eq. (45), the dispersion relation Eq. (40) now
reads

5 2
Icf( EAM) y0 s &

01+yoxs
(48)

where &= iz =ik,r, . Equation (48) is equivalent to
a cubic polynomial in f and can therefore be solved
in closed form. Taking yo(E"", r, )r, = —1.40, the
solution of Eq. (48} is k, =0.41+0.19i, in very
good agreement with the previously computed valise
k, = 0.4061+0.1850i shown in Fig. 3.

VII. ADDITIONAL EVIDENCE

VIII. CONCLUSION

Chang and Sher" at the college of William and
Mary have also attempted to reproduce the Ander-
son-McMillan density of states starting from Mat-
thiess's logarithmic derivatives. Their calculation
of Imaz, however, verifies my result over the full
energy range from zero to 1.20 Ry, except for the
interval 0. 70 to 0. 72 Ry where they conclude that
A, and Imp~ fall rapidly to zero.

In addition to the results reported here, I have
also applied the AM prescription to copper and
zinc, in both cases observing the same unphysical
effects in the density of states. Moreover, my
calculations for copper have been verified by the
independent calculations of Butler' of the Metals
and Ceramics Division, Oak Ridge National Labora-
tory.

fects of s -d hybridization on the density of states
of transition metals.
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APPENDIX: DETAILS OF THE CALCULATION

Tabulated values of y, (E, x„)r~ for five I values
and 25 energies from E = 0.00 to 1.20 Ry were ob-
tained from Mattheiss. The muffin-tin radius r
=2. 345543 a. u. and the Wigner-Seitz radius r,
=2. 667083 a.u. correspond to a bcc iron lattice
with lattice constant a= 5. 6148 a. u. Each y, (E, r„)
was converted to cot5, (E) which, in turn, was con-
verted to y, (E, r, ) as directed by (AM 5. 2) and
(AM 5.8). To obtain the necessary energy resolu-
tion of 0. 0001 Ry in the d band, y, (E, x,) was in-
terpolated using an algorithm based on quadratic
Lagrangian interpolation of neighboring triplets.
For E & 0. 500 the inverse of [y2(E, r, ) —0. 5] was
interpolated (y2 becomes singular at E = 0. 847).

Energy derivatives of 6, were coded in terms of
numerical derivatives of either tan(5, or cot6,
(whichever was locally most linear in E) accord-
ing to

' = (1+tan'5, )
' tan5,

dE
(Al)

or

' = —(1+cot~5,) ~ —cot5, . (A2)

To avoid the singularity of yz, the partial de-
rivative of y, (x, 5, , r, ) was reduced algebraically
to an expression involving only Wronskians of Bes-
sel functions,

I am grateful to Professor W. Kohn, who intro-
duced me to the work of Anderson and McMillan,
and under whose direction the present discrepancy
was discovered. Dr. Anderson's patient criticism
of an earlier draft of this paper, especially as re-
gards the zero branch, has been most helpful and

' is greatly appreciated.

On the basis of the evidence presented above,
one may conclude that the rather reasonable-look-
ing density of states reported by AM is not a con-
sequence of their theory but is instead due to a nu-
merical error in the last stages of their calcula-
tion. In fact their prescription for the effective
medium produces the wrong effect: it narrows the
resonance rather than broadening it. The bare
resonance pz(E) shown in Fig. 2 has a full width
at half maximum of 0. 110 Ry, but the AM criterion
for the effective medium, Eq. (16}, reduces this
width by an order of magnitude to 0. 016 Ry. Evi-
dently, the Anderson-McMillan prescription is
completely inadequate as a description of the ef-

——,
' r, 8, ' =-,' r, ( cos5, [xj,', j,]+sin 5,[xn,', n, ]

BK

—cos5, sin5, ([xj,', n, ]+[xn,', j,])], (AS)

where, for example,

[xj,', n, ]-=xj,'(x)n,'(x) —[xj,'(x)]'n, (x)
~ „„ (A4)

To determine k„ the forward scattering t ma-
trix Eq. (16) was coded by use of the identity

Ce"~ sin5', = (cot5', i) ', —(A6)

where cot5', is given by Eq. (IV}. As in AM, only
l = 0, 1, 2 were kept in Eq. (16). Roots of the f
matrix were located in three ways: (i) by minimiz-
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ing the absolute value squared of the t matrix,
(ii) by Mullers method, ~ and (iii) by direct ex-
amination of the real and imaginary parts of the
t matrix on an array of points in the complex k,
plane.

The coefficient a, was coded from Eq. (19) with
y', coded as in Eg. (13). It was verified by direct
evaluation that these codes correctly yield Rea, = 0
and Ima, = 1 when Rek, = z and Imk, = 0.

All the above formulas that require Bessel func-
tions were rewritten for coding in terms of "scaled
Bessel functions, " e. g. ,

j,-=s ' j,(z), etc. , (A6)

where s = z if j z I ( 1, otherwise s = 1. This elimi-
nates roundoff and truncation errors at small ar-
guments by always working with functions that are
finite at the origin.

Bessel functions of real argument were calcu-

lated from series at small arguments, upward re-
cursion at large arguments, and downward recur-
sion at intermediate arguments according to the
algorithm of Corbato and Uretsky. 0 For complex
arguments only series were used.

Note added in proof. Although attempts were
made in the early stages of this work to locate the
Anderson-McMillan computer program, it could
not be found until after this work had been sub-
mitted for publication. Recently Dr. Anderson
and I independently discovered that the AM program
indeed has an error, which has the effect of re-
placing cot&, in Eg. (19) by the inverse of 5,. This
replacement explains the discrepancy between the
densities of states shown in Fig. (1). I thank Dr.
Anderson for his active participation in the reso-
lution of this discrepancy. I also acknowledge the
support of the National Science Foundation and the
Office of Naval Research.

~Research sponsored by the U. S. Energy Research and
Development Administration under contract with the
Union Carbide Corporation, and supported in part by the
National Science Foundation and the Office of Naval Re-
search.
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