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Surface-Landau-level resonance data in Bi are presented at four far-infrared frequencies: 890.7, 1362.5, 1747.1,
and 2526.6 GHz. The magnetic field positions of the resonances compare well with the predictions of a
semiclassical calculation which takes into account the deviation from the weH-established theory for the
surface-state resonances valid at microwave frequencies. These deviations occur in the far-infrared primarily
because the excitation energy he@ becomes comparable to the Bi Fermi energy. We incorporate nonparabolic
efFects into the semiclassical calculation by using the two-band model to describe surface Landau levels in the
nonparabolic conduction band of Bi. The influence of the far-infrared efFects on line shape is discussed
together with the lack of observable surface-roughness scattering.

I. INTRODUCTION

Surface-Landau-level resonance' at microwave
frequencies has proved to be a powerful method
for determining electron velocities and thermal
scattering rates point by point on the Fermi sur-
faces of metals and semimetals. 2 Because the
usual condition uv & 1 on the frequency e and relaxa-
tion time 7 must be satisfied, it would appear that
the extension of such studies to higher frequencies
is desirable, and might be especially helpful, for
example, in investigating anisotropic scattering
rates in alloy systems. Furthermore, the frequen-
cy dependence of ~, which becomes important at
higher frequencies, could be investigated as a func-
tion of Fermi-surface location.

Aside from the very important experimental con-
siderations of sample-surface preparation, which
becomes ever more crucial with increasing fre-
quency, it is necessary to examine to which extent
the theoretical assumptions valid in the microwave
regime hold at higher frequencies. To explore
such aspects, the semimetal Bi turns out to be an
ideal candidate. The surface-state resonances in
Bi have been studied in great detail at microwave
frequencies'; here, we report the extension to the
far infrared. %e begin by reviewing the main fea-
tures of surface-state resonance in the microwave
regime.

The surface level is simply an electron state bound
to the surface by the magnetic force —(e/c)vr &&5.
The magnetic field H is applied parallel to the sam-
ple surface. At microwave frequencies, the sur-
face state corresponds classically to an electron
moving in a very shallow skipping orbit along the
surface with Fermi velocity vz (Fig. 1). The orbit
is so shallow that the magnetic force (e/c) v~H is
essentially directed normal to the sample surface,
and the resulting potential increases linearly into

the sample, V= (e/c) v2Hz. The electron is there-
fore trapped in the potential well formed by this
linear potential and the surface potential, taken
to be infinite. The energy levels in this well can
be easily calculated by a semiclassical approach, 4

and are found to be in close agreement with those
obtained from the rigorous theory. ~

A. Semiclassical calculation for microwaves

The semiclassical calculation proceeds as follows.
Using the Bohr-Sommerfeld rule, we require for
the periodic z-directed momentum

~n

p, dz = 2 p, dz = (n —4) h .

Here, n is a positive integer, and the phase factor
~ is appropriate for the case of a simple linear
turning point of the motion. Evaluation of the inte-
gral for the shallow-orbit case leads to an expres-
sion for the maximal depth of penetration,

z„=(ch/e)' '
(
—

w
2 (n —-)) ' (HR')

We are for simplicity (and because of its appbca-
bllity to Bl) cons1derlng a cylllldllcal Fe11111sux-
face of radius K whose axis is along the II direc-
tion. The classical turning point is defined by E„
=(e/c)v/, Hz„; hence, the energy levels are given
by

(e 2h/c 2)1/3 H2/3 (v3 /ft)1/3 [3~1/2 (n 1)]2/3 (3)

By requiring

one obtains from Eg. (3) the resonance fields at
frequency (d:

elf ( e )~~ (2K)~
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infrared, has a number of consequences.

1. p„broadening

The energy states which participate in the transi-
tions fall in the range E~+Kr, i.e. , from deep
inside the Fermi sea to far above it. One can no
longer neglect the P„dependence of the energy dif-
ferences E„—E, because the spread in P„values
is now governed by

bP„/Pz = —K&u/EJ; & 1,
FIG. 1. Electron skipping trajectory and correspond-

ing potential well for a free-electron metal in the micro-
wave regime.

We have included here the symbol ~ to indicate that,
for a general Fermi surface, both K and v~ are
to be taken in the plane perpendicular to H. In
this expression, a„=[(3v/2) (n —z~)] ~~. The energy
levels of Eq. (3) differ by only about 1/o from those
of the rigorous theory for the low-lying levels,
and agreement improves with increasing n.

For a typical metal at frequency - 30 6Hz, one
finds II „-10 Oe for the low-level transitions, also
in this field range z„-10 ' cm (comparable to the
skin layer &). The cyclotron radius R (=chK/eH)
is -1 cm, however, so that the orbits are indeed
very shallow and the skipping electron is localized
to nearly a point on the Fermi surface with param-
eters K and e~.

B. High-frequency considerations

At microwave frequencies, the level spacing @~
is very small compared to the Fermi energy E~;
therefore, for T- 4 'K one has

the minus sign indicating that only those levels for
E~&E~ are allowed, neglecting k~ T. We therefore
expect a kind of inhomogeneous broadening and con-
sequently a shift of the observed resonance due to
this P„smearing. If we write our linear potential
in the form V(pz)=(e/c)pzHz/m, then, for the
lowest P„value, we have V(P„)= V(Pz) (1 —hu&/Ez).
Such a softening of the potential forces the energy
levels closer together; hence, the magnetic fieM
at which the resonance is observed must be shifted
upwards.

2. Large orbit

The skipping orbit in the high-frequency case
no longer comprises a small segment —or "point"—
of the total cyclotron orbit. With the higher fre-

@co & k~T&& E~ (6)

(h+-1K, and for Bi, E~-300K). The microwave
photons impart no momentum parallel to the sur-
face, so that for a, given transition, the momentum
component P„parallel to the surface is conserved.
The transition, of course, must take place within
about k~T of the Fermi energy; this means that
the allowed P„values have a spread about P~ of

n.P„/P ~ = ks T/E ~ && 1 .

k~T «S(d &E~. (6)

This condition, which in Bi is attained in the far

The energy differences E„—E are, as a result
(for small m, n), essentially independent of P„,
and the allowed transitions take place within the
manifold of p„values at energy~ Ne. This situation
is illustrated in Fig. 2.

Raising the frequency sufficiently causes Eq. (6)
to be replaced by

ta)

QgkT
0 0

(bj

FIQ. 2. Allowed transitions about the Fermi energy
for (a) microwave frequencies and (b) far-infrared fre-
quencies as applicable to Bi. f is the Fermi occupation
function.
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quencies, the resonances occur at higher magnetic
fields [Eg. (5)], and the corresponding cyclotron
radii become smaller. A formulation of the quan-
tization condition, ' equivalent to Eq. (1), is that
the magnetic flux through the orbit be an integral
number of flux quanta, with this number defining
the energy-level number. Hence, as the field in-
creases and the cyclotron radius decreases, one
must increase the size of the skipping orbit rela-
tive to that of the cyclotron orbit in order to emeiose
the same number of flux quanta. The limiting
situation is reached at cyclotron resonance itself,
when the whole orbit encloses an integral number
of quanta. Such a deviation of (Z/@2')~~/2 from its
"point" value will give another contribution to the
shift in the resonance when the orbit is noncircular.

3. Nonlinear potential

Along with the increasing size of the skipping
orbit relative to the cyclotron orbit, a related ef-
fect of the high frequency becomes important. The
Lorentz force is certainly no longer normal to the
sample surface; the magnetic potential is there-
fore no longer linear, and the next-order quadratic
term must be taken into account. The potential
well becomes steeper, causing the energy levels
to spread apart, thus leading to a shift of the ob-
served resonance to lower fields.

4. Nonparabolic band effects

A final point, applicable in the case of Bi, is
that nonparabolic band effects become important
when the excitation energies become sufficiently
large. In the following sections, we consider, in
some detail, this and the above modifications to
the microwave theory.

II. GENERALIZED SEMICLASSICAL CALCULATION

Emboldened by the success of the simple semi-
classical approach in calculating the energy levels
for the microwave surface states, we now generalize
this approach to include the high-frequency effects
described above. We treat first the case of a
parabolic band structure, and indicate at the end
of this section how the results are modified to in-
clude nonparabolicity. Our generalized quantiza-
tion closely parallels that of Kaner, Makarov, and
Fuks. 8

A. Generalized energy levels

We consider the quadratic dispersion relation

p~ g (E= ' +
i p„i—zi +V(z),

2m2 2m~( " c (12)

vrhere we have explicitly included the surface po-
tential

V(z)=0, z&0,

V(z) =, z & 0.

The electron is thus bound in the z direction by the
effective potential

1 gH
V„f= P„+ z +V(z),

2m' c

and undergoes subsequent periodic motion in this
direction. The orbit center s0, defined by V,«
—V(z)=0, is given by

z, = —cP„/eH . (14)

We assume for the moment P„» 0, that is, we treat
only orbits smaller or equal to a half cyclotron
orbit; the results are easily extended to include
the more general case.

The maximum penetration depth ~„of the elec-
tron occurs at the classical turning point V,«(z„)
=E„. E„ is the energy of the nth quantum level,
and we take the zero of energy at V,«=0. We
have therefore

z„=(c/eH) [-P„+(2m&E„)~/2] .
Application of the quantization rule

«n

P, dz = (n ——,')h, n = 1, 2, . . . ,
0

(15)

together with the use of Eqs. (12}and (15), yields
an implicit solution for the energy levels:

(n —«)h =—(m~m2) E„rasicn~1-
2c i/2 & Px
eH ' ' "

( 2m, E„

~

~

p2 )1/2 ( p2 )1/2-

2m, E „, IPm, E„&l

As a check on this expression we consider two
limiting cases.

(17)

1. Orbit center at the surface

The vector potential in the Landau gauge is there-
fore given by

A = (Hz, 0, 0).

Making the replacement p„-p„+(eH/c) z (e &0),
one obtains for the total energy

(P. , P,)=2" +2'
1 3

(10)
Setting P„=0 in Eq. (17) gives the well-known

result

appropriate for a cylindrical Fermi surface. The
magnetic field H is along the cylinder axis y, and
the ~ direction points into the sample surface.

E„=h(o, (2n —z) (18)

where &o, =(eH/c) (m&m2) ~/2. That is, the energy
levels are spaced at twice the cyclotron frequency.
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2. Prunge-Nee limit —grazing incidence

We divide the total energy E„ into its contribu-
tions from motion parallel and normal to the sam-
ple surface,

E„=(P2/2m, ) +E,(n) .
For grazing incidence, one has

P'„/2m, » E,(n),

yielding the usual microwave surface-state result,

E,(n) = (2m, ) ~ (ehP, /m&c)2~3H ~3

x [-,'~(n ——,')]'~& (21)

In Fig. 3 is depicted the energy-level scheme
of Eq. (1V) in the high- and low-frequency limits
as a function of P„(i.e. , orbit center) for fixed
magnetic field.

B. Calculation of resonance fields

Experimentally, the frequency ~ is held fixed
and the field II is varied. We therefore wish to
find those fields II for which the resonance condi-
tion E„—E =A~ is satisfied. Additionally, we will
require that the maximum energy of the lower
state E and the minimum energy of the upper
state E„coincide with the Fermi energy E~ (see
Fig. 3). This requirement defines an allowed
range of P, values and a spread in the solutions
for H . From Eqs. (1V) and (4), we obtain the
coupled set of equations2c,g2 E ( . P

tnn eI 1 3 2m, E„)

(22)

2C 1/2 Efl —@COH~ =—(m, m, )

We summarize briefly at this point by remarking
that, besides including the effect of P„broadening
into our model, we have automatically also included
the effect of the nonlinear magnetic potential and
have exactly treated the elliptical orbits applicable
to Bi. We shall now consider the last of the high-
frequency effects listed in the Introduction.

C. Nonparabolic effects

Although we have assumed a parabolic band in
Eq. (10), it is well known that the band structure
in Bi is quite nonparabolic because of coupling be-
tween the valence and conduction bands. Nonpara-
bolicity has a strong influence on the Azbel'-Kaner
cyclotron resonance (AKCR) spectrum in the far
infrared, 7 and we must therefore also expect a
non-negligible effect on the surface-Landau-level
spectra in this frequency regime.

The energy levels E„' in the ellipsoidal nonpara-
bolic (ENP) model of the Bi band structure are
given by

E'„(1+E.'/E, ) = E„+n'u'„/2~, + .'g I,H .-(25)
Here, E& is the energy of the gap which separates
the valence and conduction bands. The k„ term
represents the subband energy variation along the
magnetic field, and the last term is the spin-
splitting factor, where p, ~ is the Bohr magneton.
We continue for the moment to ignore k~ and spin
effects. All masses appearing in this equation are
those at the bottom of the conduction band.

For the ordinary bulk Landau levels, the level
energy is simply E„=(n ~)h~, To app. ly Eq. (25)
to the surface Landau levels, we need only make
the replacement

E„-E„'(1+E„'/E )

in Eqs. (1V), (4), and (22). For E~-~, of course,
we recover the parabolic results.

1/2
&& arcsin 1—

p2 1/2 p2 1/2

2m, (E„—h~) 2m, (E„—h(u)

Solving these equations numerically for the condi-
tion E„=E~yields a value H for the resonance
field and a value P„(m, n) for the parallel momen-
tum. Similarly, one obtains H' and P'„(m, n) for
the condition E„=EJ; + hv.

Assuming that all transitions between the lim-
iting fields H'„and II „occur with equal weighting,
we can write the expected resonance field

E„

0

(o)
PF P„

I

0
i' I

PF

(b)

H n= '(H'n+H~) (22)

The halfwidth of the resonance due to p„broadening
can be estimated by

~H/H-~H. „„H ~/H„, . (24)

FIG. 3. Dependen. ce of energy levels on p„(orbit cen-
ter) for a constant magnetic field. In. the far infrared
in Bi (a), the allowed transitions have unequal spacing
(-P'~). so that at constant frequency the resonances are
broadened and shifted in field position. In the microwave
case (b) the allowed transitions have constant spacing.
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CH, COOH, and one part H,O.

IV. RESULTS

H (Oe)

Bi {Trigonal)
H// binary

f = 36.26 GHz

T=2 oK

In presenting our high-frequency surface-state
data, we wish first to make some general observa-
tions concerning the appearance of the spectra and
the identification of particular transitions. %e
will then take a close look at how these spectra
evolve and scale in field position with increasing
frequency in the infrared regime. For both the
identification of transitions and the frequency
scaling we will make use of the calculations re-
sulting from the semiclassical analysis of Sec. II.

A. General observationsF/G. 4. Microwave surface-Landau-level resonances
in Bi. The transitions are identified as m —n. On the
high-field end, the AKCR resonances are labeled by their
~n values.

III. EXPERIMENTAL NOTES

The high-frequency spectrometer system used
in these studies has been well described else-
where. 7'9 We will therefore only briefly relate
those features essential to a general description
of the experiment.

The far-infrared radiation was provided by a
cw gas laser operated at four selected frequencies:
890. 7, 1362.5, 1747. 1, and 2526. 6 GHz. The
radiation is guided through a brass light pipe and
condensing cone into a TEM mode strip transmis-
sion line in the cryostat. The transmission line
consists of two parallel plates (- 25- p, m separa-
tion), one of which is the sample, the other a
polished copper plate. For such a transmission
line, the currents J induced in the plates flow along
the transmission direction. A superconducting
Helmholtz pair provides the magnetic field in the
configuration JLH. The field is modulated at a
frequency (-10 Hz) compatible with the detector
time constant.

The power transmitted through the transmission
line is detected by a Ga-doped Ge bolometer,
placed well away from the magnetic field, near the
bottom of the cryostat. Since the fractional power
change nP/P due to resonant surface-Landau-level
absorption is small, the detected signal is a mea-
sure of dR/dH, the field derivative of the surface
resistance.

The Bi sample used in these studies is a trigonal
plane sample whose size is 11&40&&3 mm . The
long axis of the sample, along the transmission-
line J direction, is parallel to the crystallographic
bisectrix asis; the field II is thus along the binary
axis in the sample plane. This sample, also used
in a previous work, 7 was chemically polished in
a solution consisting of six parts HNO3, six parts

Si
( trigonai plane)

x

H

(binary axis)

Flo. 5. Schematic slice
of the Bi-electron Fermi
surface in the trigonal
plane. For a magnetic
field along the binary axis,
the central cyclotron or-
bits on the equivalent ellip-
soids are dashed in. The
relevant skipping orbits are
fractions of these cyclotron
orbits.

To provide an experimental frame of reference
for the infrared surface-state system, we show in
Fig. 4 a particularly beautiful surface-state spec-
trum in Bi taken in the more familar microwave
regime. At the lower end of the trace we see a
fairly large number of surface-state transitions,
and at the high end we see AKCR harmonics. The
transitions as marked can be directly compared
with Eq. (5); thus the field positions measure the
parameter (K/vs~),'~2. 4 The overlap integrals for

wave functions and r'f field (penetration 5) are
largest for transitions from the ground state (to
put it a bit more crudely, z, - 5), so that such
transitions dominate the spectrum for each group
of constant (n —m) peaks. Line shapes for the
resonances at microwave frequencies have been
calculated, and can be directly compared to the
experimental traces. ~' In the microwave regime,
therefore, peak positions, widths, and amplitudes
are well understood. In Fig. 5 is indicated the
location on the Bi Fermi surface of the resonant
electrons corresponding to the trace of Fig. 4.
The surface-state electrons skip about the v, = 0
line on a cyclotron orbit segment of about )0' as
viewed from the ellipsoid center.

We turn now to the surface-state spectrum at the
lowest of our available far-infrared frequencies.
Figures 6 and 7 show the resonances at 891 GHz,
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such a pattern for n —m&3.
Comparison of the 891-GHz spectrum with the

microwave spectrum of Fig. 4 reveals some rather
striking differences. First, there is a complete
absence of transitions from the lowest Landau level
at the high frequency. These are the transitions
which dominate the spectrum at microwave fre-
quenciest Second, the observed resonances are
rather broad, far broader than expected from a
naive scaling of ~v from the microwave frequency,
and somewhat broader than the AKCR peaks seen
also in Fig. 6. As we observed above, one expects
the "P„broadening" to play an important role in
the infrared. We postpone a detailed discussion of
these points until we have examined the data at
three higher far-infrared frequencies.

FIG. 6. Surface-Landau-level resonance at 891 GHz.
The transitions are marked by their m —n values. Miss-
ing transitions from the lowest I andau level are indi-
cated by dashed arrows. The upward arrows mark the
4n =3 and 4n =4 AKCH transitions (Ref. 7).

which is a factor of 25 higher than the microwave
frequency of Fig. 4. The peak positions are marked
according to the calculation outlined in Sec. II,
and we comment below in more detail concerning
this procedure. To reassure the reader who does
not yet quite trust the calculation at this point, we
remark that at 891 GHz the marking procedure
does not critically determine transition identifica-
tion; even the simple ~' scaling of Eq. (5) yields
field values which differ by only a few percent from
the marked values. The amplitude decay of the
low-field peaks in Fig. 6 is artificial, and is due
to overmodulation of the magnetic field; Fig. 7
shows the detail of the low-field region with proper
field modulation.

The surface-state spectrum in the far infrared
bears a curious resemblance to a series of AKCR
subharmonics, and it is tempting to try to interpret
the spectra as a kind of incomplete-orbit cyclotron
resonance. The orbits are, after all, no longer
small fractions of a cyclotron orbit, and for half
orbits one does expect a harmonic series [Eq.
(18)]. We note, however, that the harmonic num-
bers for the peaks obtained by such an assignation
must correspond to the difference 4n between Lan-
dau-level quantum numbers. But these differences
do not agree with the (n —m) values for the marked
surface-Landau-level transitions; in Figs. 6 and 7,
the 2-6 transition, for example, would be as-
signed on the basis of periodicity, the "AKCR" sub-
harmonic number 4n = 3, whereas in reality n —m
=4. An examination of the surface-state level
scheme [Eq. (5)] shows that, in general, transitions
from a specific Landau level follow approximately

j &„—0 @y )
(2&)

o
Bi (Trigonal )

H // binary

7 GHz
oK

I

E, P
I

80
I

120
I

160

H (Oe)

FIG. 7. Low-field detail of the 891-GHz spectrum.

B. Peak positions in the far-infrared

Spectra similar to that seen at 891 GHz are ob-
served at three higher frequencies in the far-in-
frared regime (Figs. 8, 9, and 10). In this section
we wish to examine the details of determining the
peak positions as marked in the figures.

The basic idea behind our method of predicting
the far-infrared peak positions is to carefully fit
the necessary parameters to the microwave peak
positions and then ask for the frequency evolution
of the resonance fields. At 36. 26 GHz, the 1-2
transition is observed'' at 4. V6 Oe (Fig. 4). The
ordinary Prange-Nee scaling is, of course, simply

[Eq. (5)]. In order to separate the effects in-
volved in deviation from the ~3~~ scaling, we con-
sider the calculation of Sec. II for both the para-
bolic and nonparabolic band models.

To obtain the parameters for the parabolic band,
we use Eq. (21) to write the resonance field at
microwave frequencies in the form
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Bi (Trigonal)
K // binary

f =1362 b G

Q t- (e

I

0,4
I I I

1.2
I

H (kpe)

FIG. 8. Surface-Land-Landau-level resonance at 1362 G

The transitions as mmarked are those predicted by the
Hz.

semiclassical calculation. The u wardn. e upward arrows mark the
transitions (Ref. 7).

1,0 3.0
H (kOe)

FIG. 10. Surface-Lan-Landau-level resonance at 2527
GHz. The transitions as markmarked are those predicted b

e semiclassical calculation. A 4n = 2 AKCR resonance
(Ref. 7) is marked just below 4 koe.

Bi {Trigonal )

H // binary

f = 1747.1 GHz
T- 4 OK

I

0.5
I

1.5
I

2.5

H IkQe)

FIG. 9. Surface-Landau-level resonance ate onan a 1747 GHz.
pas mar ed are redi

ca c ation. Near 2 koe a si
sition is marked

e, a single AKCR tran-

[This is etiuivalent to Eq. (5). I The factor
2~)~3 ls, for our geometry simpl th

tron mass in the binary d' t'
y e cyclo-

sured value~a m*, (E ) =(0
iree ion, and has ththe mea-

m, ~ = 0. 0093+0.0001)mo, in ex-
cellent agz'cement with the value for the AKCR
resonances of Fi . 4g. . The Fermi energy in this
model is now fixed through Eg. (27) b our

(22) d (23)
for

an yields the predicted peak 't'

or the parabolic model at the d

positions
e esired frequencies.

or e nonparabolic model we need the Fermi
energy, the ga enerp gy, and the cyclotron mass at

the bottomtom of the conduction band. This mass is
related to the value used above by

(28)

For the Fermi ener
in Ref. 7 E =2

rgy, we use the value measu dure

of the band.
9.8+0.6 meV above the b tt

We now perform the calculation re-
cluired by Eqs. (22) and (26) for the microwavmicrowave

j
'

g E~ to give agreemeI t with the ob-
served resonance fields. W f' de in EG ——15+2 meV.
With these values for the band
now 0

e an parameter, we can
w go on and compute the infrared eak

The results for II
re pe positions.

Table I.
s or Eti. (23)] are summarizedize in

A brief word cooncerning the accuracy of the re-
sults is in order. S'er. ince the infrared peak-position
predictions are referred to the obse o served micro-
wave resonance fieield, it is the accuracy of this

mos part determines the error
limits of the predicted fields within each model.

ig. o an accuracy of abo t
Following the treatment of R fes. 2and4

we have additionally assumed that
the peak occurs at the re resonance condition of E .
5), with the factor (a2 —a, ) ~ e ual to tq g

e . . This assumption introduces an
additional uncertainty of ab t 1.ou + . 5g, sothatin
summary we must con
to wh'

nsider the microwave result
o which we are fitting and th b

prediction to have an inherent u
e su sequent scalin g

For the well-resolved peaks of the far-
infrared spectrum we judge the un

sure ield position to be about el. 5%%uo; thus
for a successful scaling theeory, we require agree-
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TABLE I. Experimental and calculated field positions for the best resolved far-infrared surface-Lan-
dau-level resonances. The experimental values are accurate to about +1.5% and the calculated values to
about +2. 5%. The calculations are label. ed as PN (~ scaling), PB (parabolic band model), and NPB
(nonparabolic band model). The last column gives the average deviation of the listed peaks for each model
from the experimental values.

m n 25
H „(Oe) Average

3-6 2-6 3-7 2-7 2-8 2-9 2-10 2-11 deviation (%)

Frequency
(GHz)

890. 7

Expt
PN
PB

NPB

181
177
184
183

206 125 145
205 122 139
216 127 146
214 126 145

95
92
95
95

75
73
76
75

63
61
63
62

54
52
53
53

47
45
46
46

3.0
1.6

1.3

1362, 5

1747. 1

Expt
PN
PB

NPB

Expt
PN
PB

NPB

358
335
359
354

522
486
538
523

410 246 ~ ~ ~ 179 145
388 231 264 174 139
425 246 285 184 147
418 242 281 182 145

619 358 ~ ~ ~ 269 209
564 335 383 253 202
644 366 429 274 218
623 357 416 267 212

5. 8
1.6

1.3

6.3
3.2

0. 7

2526. 6

Expt
PN
PB

NPB

1000
845

1030
961

1305 667
980 583

1240 689
1170 644

775 493 384
666 440 351
836 511 404
771 479 379

14.4
4, 7
3. 7

'Spin shift included,

ment between prediction and measurement of about
+4%.

Examination of Table I reveals that the nonpara-
bolic band calculation is able to account for the
observed field values at all four far-infrared fre-
quencies. In general, these observed values rise
faster with frequency than the ~ scaling would
suggest; at the higher three frequencies, the devia-
tion of observed fields from v' scaling becomes
significant. The parabolic calculation overcorrects
this deviation, and it is necessary to take band
nonparabolicity into account to reduce the upward
shift. The tendency toward a net upward shift in
peak position is suggested by a perturbation cal-
culation~3 of the "P, shift" and "nonlinear potential
shift, " which were qualitatively discussed in the
Introduction. The P„shift toward higher field is
larger than the nonlinear potential shift toward
lower field, giving a net positive shift in field posi-
tion.

There is considerable deviation from the non-
parabolic prediction for the transitions at the
highest fields in Fig. 10. We suggest as a possible
cause the failure of Eg. (23), which we have used
in calculating the resonance fields. This relation
assumes that all transitions within the allowed P,
spread contribute equally to a resonance. At
2527 6Hz, however, we are approaching the "cy-

clotron limit, " i.e. , some high-field surface-state
transitions correspond to electrons which are
nearly completing a full cyclotron orbit before
collision with the surface. The resulting resonance
fields are therefore not too far from the corre-
sponding AKCR resonances —witness the 2 4
transition in Fig. 10. Since the AKCR resonance
field is independent of P„[Fig. 3(a)], one might
expect a tendency for the surface-state resonance
to be shifted toward the AKCR field because there
are more allowed transitions per unit P„at the
high-field end. A further word of caution r.elevant
to the cyclotron limit is that in this regime a transi-
tion must occur from phase factor 4 [Eq. (16)],
valid for the surface levels, to the usual factor 2,
which applies to volume-Landau levels; in this
transition regime, our calculated fields cannot be
correct.

V. DISCUSSION

The good agreement between the experimental
fields and those calculated with nonparabolic band
effects suggests that we have included the major
mechanisms which cause deviation from the ~'
scaling law valid in the microwave regime. Al-
though complete confirmation of the ideas presented
here can come only with an extension of the Prange-
Nee surface-impedance calculation" taking into
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account the far-infrared effects in Bi, one can
nevertheless estimate the influence of the far-in-
frared effects on the surface-state line shapes. It
is this influence which we wish to discuss in this
section.

A. Transition probabilities

Turning our attention first to the lack of observ-
able transitions from the lowest bound state—
those transitions which are most prominent at
microwave frequencies —we are led to examine the
inherent probabilities of transitions between the
various quantum levels for clues.

Consider the matrix elements for the transitions.
They are of the form (y„I 8(&)l y„), ~ where 8(z) is
the rf electric field as a function of distance a into
the metal, and the y„are the z-dependent parts of
the electronic wave function. (The p„are Airy
functions in the Prange-Nee. limit, ~ but are the:
more complicated parabolic cylinder functions in
our more general case. ") As an illustration, we
take $(z) = h(0)e ~', where & is the skin depth.
For ~«6, we approximate the exponential by 1
—z/5, so that the matrix element reduces to
(y„ Iz/5 I y„), the constant term vanishing by or-
thogonality. We therefore expect the transition
probability in this case to vary as something like
(z /5)2. For z» & the transition probability van-
ishes because of the exponential decay of the rf
field. Our largest transition amplitudes should be
found for those transitions where s —~. This
qualitative picture is borne out in the detailed line-
shape calculations applicable in the microwave
regime.

Using Eq. (15) with p„values from Eq. (22), we

obtain the skipping depth z at the various frequen-
cies. To estimate the skin depth 6, we use the
ratio R/5 (R is the cyclotron radius at the funda-
mental AKCR resonance) found as a function of fre-
quency in the far infrared by Strom, Kamgar, and

Koch. 7 The results are summarized for a few

important transitions in Table II. The trend in the
infrared toward suppression of transitions from
the ground state is apparent.

TABLE II. Approximate ratios of electron penetration

z„ to rf skin depth 6. The z„values are calculated at the
resonance field for each transition.

f (0Hz}
6 (10 ~ cm)

891
4. 0"

1362
3

1747
3.6

2527
3.1"

0. 5
0. 9

0. 7
1.7
0. 8

1.1

0.2
0.4

0. 3
0. 8

0.4
0. 5

0.2

0. 4

0. 3
0. 6

0. 3
0.4

0.2

0. 3

0. 3
0. 6

0. 3
0.4

0. 2

0. 3

0. 3
0. 6

0. 3
0.4

AKCR resonances have linewidth 4H/H at least
an order of magnitude larger than the 0. 13%%uo value

expected for frequency independent v. The sur-
face-state resonances we observe are nearly
another order of magnitude broader than the AKCR
resonances. We expect the p„broadening to con-
tribute substantially to the observed linewidths.
Let us examine this possibility on the basis of the

numbers.
The observed linewidths in the infrared range

from about 10% at 891 GHz to about 15% at 2527
0Hz, and do not depend strongly on field. Using

Eq. (24) to estimate the linewidths, we find for
the parabolic band case that the widths are also es-
sentially field independent, but increase roughly
linearly with frequency from about 10/o to 891
GHz to 40'%%uo at 2527 GHz. These widths are radical-
ly altered by the inclusion of nonparabolicity. The
nonlinearity of the relation given by Eq. (26) causes
a considerable energy-dependent distortion of the

E„(P„)curves of Fig. 3(a) leading to a narrowing of
the lines. (This distortion is severe enough to
cause II to be smaller th'an H', contrary to the
parabolic case. ) One now finds d H/H values
ranging from about: 4'%%uo at 891 GHz to 8%%uo at 2527
0Hz.

An improvement of the width estimation is pro-
vided by taking the spin term of Eq. (25) into ac-
count with~a g= 2(mo/m*, ). The effect of the spin

B. Linewidths
1.2
1.9

0. 5
0. 9

0, 5
0. 7

0.4
0, 7

0.4
0. 6

At microwave frequencies, the linewidth of a
surface-state resonance is a measure of the scat-
tering rate 1/w of the resonant electron on the

Fermi surface through the linewidth parameter
~7.. When v is not itself a function of frequency,
the linewidth varies as 1/&u, and in the infrared
one would expect to see resonances orders of mag-
nitude narrower than in the microwave regime.
That this is not the case is immediately apparent
upon comparison of Figs. 4, 6, and 7. Studies of
AKCR7 and of the dielectric anomaly" show that 7

is in fact quite strongly frequency dependent; the

2-5

3-5

3-6

1.4
2. 7

1.6
3.5

1.5
2. 1

1.8
2. 9

0. 6
1.2
0, 7
1.5

0. 7
1.0

0, 8
1.3

0. 5

1.1
0. 6

1.3
0. 6
0. 8

0. 7
1.1

0. 5
1.0
0. 6
1.2
0. 5
0. 8

0, 7
1.0

0. 5
0. 9

0. 6
1.2
0. 5
0. 7

0.6
1.0

'This value for & must be treated with some care, See
Hef. 4.

"Estirrated from Ref, 7.
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term is easily calculated by using the result of
the calculation without spin, II „, to give a value
for the spin term, and then iterating to conver-
gence. Qne finds a substantial increase in line-
width and, at the highest frequency, a shift in peak
position of about 2% due to the inhomogeneous
nature of the P„smearing and to the nonlinear ener-
gy scale from nonparabolicity. The width values
&H/H obtained with inclusion of spin range from
about 7'%%uc at 891 GHz to about 16% at 2527 GHz,
reflecting well the experimental observations.

Inclusion of the k„ term in Ecl. (25) is also ex-
pected to contribute to the linewidth. Judging from
the microwave results, ~ we might expect an addi-
tional contribution of - 30Vo to the linewidth, but a
nearly negligible effect on the peak position.

C. Surface scattering

It is at first glance remarkable that surface-
Landau-level resonance is at all observable in the
far infrared. At these frequencies, the skipping
electrons are no longer reflected from the surface
at glancing angles; on the contrary, resonances
are observed for electrons specularly reflected at
nearly normal angles of incidence on the surface.
Since diffusive scattering effects from surface
roughness are field and frequency dependent, ~'~7

it is clear from the large range of frequencies over
which we observe the surface states that surface
roughness effects play little or no role.

This lack of observable surface scattering follows

from the small size of the Bi Fermi surface and
the consequently relatively long electron wave-
length. Let us consider a real metal where, ac-
cidently or deliberately, ~~ surface roughness ef-
fects are observed at microwave frequencies.
Here the glancing angle is typically of the order of
1', and the parallel momentum k~ of order 10
cm ~, so that normal to the surface we have k,
-10~ cm '-. Appreciable surface roughness scat-
tering occurs when &- 2m'/k, approaches the scale
of surface roughness. 6 For typical experimental
surfaces, therefore, one expects to observe sur-
face scattering for k, +106 cm ~, a condition which
is never reached in Bi.

VI. CONCLUDING REMARKS

On the basis of our far-infrared surface-state
data in Bi, we have explored the corrections to
the Prange-Wee theory which become important
when the excitation energy @~ approaches the
Fermi energy E~. Although these corrections will
be relatively small in a real metal where E~ is
far larger than in Bi, observation of surface-Lan-
dau-level resonance in such a metal is limited
by the very stringent requirements of sample-sur-
face preparation, which go hand in hand with the
increasing Fermi wave vector k~
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