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Renormalization-group approach to a Bose system
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The renormalizatipn-group approach is extended to a Bose system within the framework of
perturbation theory. Recursion relations are obtained for the parameters of the Hamiltonian and the
correlation length index v is evaluated. The values of v and of the critical exponent g (evaluated in an
earlier paper) agree with those derived for a classical system characterized by a two-component (real)
order parameter. The agreement suggests that the universality hypothesis holds irrespective of the

quantum or classical nature of a phase transition.

I. INTRODUCTION

The renormalization-group approach to critical
phenomena initiated by Wilson' has led to a much
better understanding of the behavior of many-
body systems near the critical points. It has been
used2 to obtain expansions of critical exponents in
powers of &=4-d, where d is the dimensionality
of the system. The calculations thus far have been
confined to classical systems, ' such as the Ising
and Heisenberg-like models of a ferromagnet. It
is not obvious that the results obtained apply to
phase transitions which are basically quantum
mechanical in origin, such as the X transition in a
Bose system and the superconducting transition in
a metal. In this paper we make an attempt to ex-
tend the renormalization-group approach to a sys-
tem of bosons within the framework of perturba-
tion theory. The calculation is similar in spirit
to that of the classical S4 model. 4 The purpose
achieved by rescaling the spin variables in the S
model is achieved here by rescaling the mass of
the particles, since it is not possible to rescale
the field operators without violating commutation
rules.

In Sec. II we derive recursion relations for the
parameters characterizing a system of interacting
bosons. The fixed point of the transformation and
calculation of the critical index v are discussed
in Sec. III. In Sec. IV we compare the results for
the Bose system with those for a classical system
characterized by a two-component (real) order
parameter and conclude that the universality hypo-
thesis appears to be valid irrespective of the
classical or quantum-mechanical nature of a phase
transition.

II. RENORMALIZATION-GROUP TRANSFORMATION

AND RECURSION RELATIONS

For a system of bosons of mass —,'m, enclosed
in a volume V and interacting via a two-body po-
tential v(x), the Hamiltonian in units such that
A=1 is

q ~ ~ 0 q41

and restrict each q to the range 0 & I q i
&p„p,

being a cutoff of the order of X~ .
The grand-partition function Z is given by

Z = Tr exp[- P H(m ro uo)]

(2)

In accordance with the basic idea of the renor-
malization group, i' we attempt to construct a new
Hamiltonian by integrating out the small wave-
length modes. We write

a, =ap, +a~, ,

where

apq 0

to =p./r. ,

q ~Pp

q «Pp

q ~Pp

q «Pp

(6)

The Hilbert space of the system can accordingly
be factorized as (50 fl~), )0 and fji being the sub-
spaces on which ap, and az„respectively, operate.
One can now write

Tr Tr exp( —PH[ao„a„])
&0

The final aim is to write

H=g (q ~so)a—,a, +—g [v(A —q3)+v(ql q4)]
~ ~ ~

Q4

xa', a', a, a, 6„,(q&+qa —q3 q4)

where p=-xo/m denotes the chemical potential,
v(q) is the Fourier transform of v(r), and 5x, is
the Kronecker symbol. Since momenta large
compared to the thermal momentum &r = (4m'/m) 'i2

cannot be expected to play any role near the crit-
ical point, we shall replace the interaction term
in (l) by the simpler form
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Z= Tr exp(- PH'[ap, ]), (6) and A denotes the interaction term.
The operator e " can be expanded as

H = HH (0) + H) (1)+ I),
where

(9)

where H'[ap, ] denotes a, new interaction having the
same form as H.

Substituting (5) into (2), we can write
e "=exp(- p[HH(0)+Hz(1)]] S(p), (12)

( 1)n () ()

S(P) = Q l

' ' ' dr1' ' 'dT„[TI)(T1) ' ' 'I)(T„)],nt ~p p

(13)
where

HH(0) = g —(q'+~0) a('),a(), ,m
l ql & pp

(10) I ( )
q(HH(l)qHH(0)) @e q(HH(-1)+HH(0) 1 (14)

Hp(l) = Q ((I ++0) a1qalq ~

lql& pp

and T denotes the time-ordering operator. Taking
the partial trace of (12) over the space t)„we ob-
tain

( 1)q () r()

Tr e'"=Z, e'"H' ' Q ~ ~ ~
'

d~, ~ ~ ~ d r(TI()r) ~ ~ @(r ))
f)g n=p +l p "p

where ( )1 denotes thermodynamic average calculated with the unperturbed Hamiltonian HH(1) and Z, is a
constant.

The first-order term in (15) gives a contribution similar to HH(0), viz. ,

-up dr P a(),(v)apq(r) l,2
~(exP[(1/m)P(((( +)'0)] —I]

&p PP(ql&1)p (
l q l & I()

(i6)

It also gives a contribution similar to the interac-
tion term in the original Hamiltonian, viz. ,

Vl QP ff 4
2

p
C (i6)

-2&= &PPC (19)

(20)

where d denotes the dimensionality of the system,
(16) can be written

—
4V

d~ aoq, ~ ~Oq2 ~ apq3 V apq4 i
(17)

ap, (~) denoting operators in the interaction picture.
Introducing the dimensionless parameters

S2 B

f, (s, q) dT a(), (r)ap, (~),
lqf& p

and (17) as

(16')

s'U P B

drao, '' ao, (r)5x .
qy

' 'q4

where

f1(s, 1) =
Jl

(e'" '"' —1) '2+

1&l ql &('

(17')

The second-order term in (15) gives contribu-
tions of the same form as (17 ). They are indicated
diagrammatically in Fig. 1. The dashed lines
represent the operators a... a~() while the solid lines
represent single-particle Green's functions Gp cor.-
responding to momenta larger than po. The con-
tribution of diagram 1(a) is

3~2 p-d ~B' f, (s, 1') dr Q—apq)(r) ' ' '
apq (r) 5x8V p QQ q ~ ~ ~ q1

where
2

1&l ql &P-1 2s (I +'v

(22)

(23)

In writing (22) we have ignored the effect of external momenta on the internal lines. This is justified since
P»1. The contribution of diagram 1(b) can also be written in the form (22), the only difference being that
f, is replaced by f„where
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f, (s, «)=-4« J g(e'"*"—() '(«"'"' —() '
1)l I)(:

We neglect for the moment the contributions of higher-order diagrams, postponing their discussion until
Sec. IV. The grand-partition function then takes the form

Z=Zg Tl e

where the new Hamiltonian 0' is given by
2 a(f

pH' = p, s[q p, +r+ st&(s, r)]ao,ao, +
&& g [U —;s'0 f2—(s,r)]ao

&

' '' ao 4&Krt
qy' '

q4

fa(s, r) = 5[f,(s, r)+f, (s, r)].

(25)

(26)

To bring H' into the same form as the original
Hamiltonian, we rescale momenta according to

q'=gq .
The density of states in momentum space accord-
ingly changes by the factor & ". Unlike the case of
classical spins, the operators ~, cannot be re-
scaled without spoiling commutation rules. We

may, however, rescale the mass of the particles
according to

m =g gyes.

f,(s, r) =s 'g, (r), f,(s, r) = s-'ga(r),

z, («( f -2 .(s ~ «),d g 2

&&fql& « "~

ga(r) =
d g 2

2 ~(q +r)
&&lql& « i

(33)

(34)

(a5)

The recursion relations (31), (32) after several
iterations consequently become

(36)

(3'l)

Defining

b, =a~«-~, V' = g~V,

we then obtain

pH' = P s (q p, + r') b b,
I ql &P~

~~2

qg q2 q3 q4 Kr &

qS'"q4

(28)

(29)

A nontrivial fixed point (r, 'U ) of this transfor-
mation is given by

r (1 —f ) = ( 'U*g, (r*), (39)

(39)~*= (1 —t'-') 5 g2'(r*).

At a fixed point, the correlation length becomes
infinite, i.e. , it corresponds to a critical point
of the system. Assuming r* to be small, we may
expand the g's as

where

s'=
pp, / m'=f s,

r' = g'[r+ suf, (s, r)],

(ao)

(31)

(32)

III. FIXED-POINT CORRELATION LENGTH INDEX

'U'=(' '['U —2szf2(s, r)].
The use of the rescaled volume V' in (29) takes

account of the changed density of states. Equations
(30)-(32) are the recursion relations for the three
parameters (s, r, 'U) characterizing the Hamiltonian

pa.

(4o)

(41)

the fixed point is approximately given by

2e in' ~ 2 g, (0) f lenf

&g2(0)' 5 g2(o) &'-1 (42)

The correlation length index v can be calculated

g'(r ) =g(0)+r*g'(0)+
'U* is then seen to be small for d close to 4. The
perturbation calculation can therefore be relied
upon. Def ining

By repeating the above procedure one gets a se-
quence of parameters (s„r„~,) corresponding to
a sequence of effective Hamiltonians II, . Equation
(30) implies that after many repetitions the param-
eter s, becomes very small not withstanding the
fact that to begin with p, is of order X~'.
This circumstance enables us to write the func-
tions f, and fm in the simpler form

(a) (b)

FIG. 1. Diagrams representing the second-order
term in (15). The dashed lines represent the operators
aoq, a«, while the solid lines represent single-particle
Green's functions G .
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from the linearized form of the recursion rela-
tions. In fact v is given by

v = In&/Ink, , (43)

+ g'[I —5v*g, (0)](~, —~*). (45)

To order q, the eigenvalues of the matrix of the co-
efficients are

where ~, is the largest eigenvalue of the matrix
formed by the coefficients of the linearized recur-
sion relations. For details we refer the reader to
Ref. 4. The linearized version of (36), (3'7) is

r...-r* = i'[ I+ V*g,'(O)](r, r—*)+g'g, (0)(U, —~*),
(44)

'U...—v" = ——', &'g,'(0)u*'(r, —r*)

tions. For the Ising model, such an exercise has
been carried out by Wilson and Kogut. We have
performed a similar analysis for the Bose system
and have checked that the above assumption is con-
sistent with the set of functional equations provided
r* and '0* have the values given by (42). An im-
portant role in this analysis is played by the irrel-
evant nature of the parameter s [Eq. (30)] which
enables us to replace all Bose distribution factors
(e"' ' —1) ' by [seQ)]-', leading to a great simpli-
fication of the set of functional equations.

It is interesting to compare the results for a
Bose system with those obtained for a classical
spin system. From (47), we have for the correla-
tion length index

1+ 6 in/, = 1 —e in/.2 gi'(0)
5 ~,(0)

Substituting for &, in (43), and noting that g,'(0)
=-g2(0), we get

(46)

1
V = 2+1O&~ (48)

while from the calculation of an earlier paper' we
have for the critical exponent g the result

1
V = 2 +fQ (47)

IV. DISCUSSION

The recursion relations (30)-(32) in Sec. II have
been derived by ignoring the contributions of high-
er-order diagrams. We now wish to discuss the
effect of these diagrams on the results obtained.
The matter is important because we must make
sure that the inclusion of the neglected terms of
the perturbation expansion will not upset the sim-
ple results derived in Secs. II and III.

First of all it is not difficult to see that contri-
butions to the kinetic-energy term from diagrams
of second and higher order, and to 'U' of diagrams
of third and higher order, depend upon the exter-
nal momenta so that, in general, we must write
r'(k) and &'(k„., k4) in place of the constants
y' and'O'. More important is the fact that the ex-
pansion (15) gives rise to interaction terms involv-
ing six operators, eight operators, etc. , with ap-
propriate vertex functions u6(k„. . ., k6), u8(k„
-. . ., k,), etc. , respectively. Successive itera-
tions will lead to recursion relations for r, U, u6,
u„etc. The exact fixed point consequently is a
set of fixed functions r*(k), '0 (k„.. ., k4), zing (k„
. . ., k6), etc. , which are solutions of an infinite
set of functional equations.

What one wants to know is whether the infinite
set of functional equations has a solution that, up
to first order in g, reduces to the constants r~ and
'0* given by (42). Since it is not possible to solve
the set of functional equations directly, the best
one can do is to assume that, to first order in &,
the fixed functions reduce to two constants r* and
'U* and then check the consistency of this approxi-
mation with respect to the set of functional equa-

This result was obtained in H, ef. 7 by the Feyn-
man-graph method together with the assumption
that close to the critical point only propagators of
zero frequency were important. The approach of
this paper provides justification for that assump-
tion by revealing the irrelevant character of the
variable s. We note that the result (49) for q can
be obtained directly from the renormalization-
group approach by calculating the contribution of
second-order diagrams to r'(k).

For the n-component classical Heisenberg mod-
el, Wilson has obtained the expansions

1 (n+ 2)e
v =2+4( 8)+ O(e )~ (5o)

(n+ 2)e'
n-2(„, 8)

+0(e'). (51)
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For n = 2, (50) and (51) agree with (48) and (49),
respectively. This agreement is rather remark-
able in view of the fact that the transition in a Bose
system is basically quantum mechanical in nature.
A moment's reflection shows that this "universal-
ity" is brought about essentially by the rescaling of
the mass of the particles which means that after a
large number of iterations the mass becomes so
large that quantum effects disappear.
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