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The renormalization-group method is applied to the analysis of phase transitions in systems where the order
parameter s is coupled to a nonordering additional variable y. A variety of critical and tricritical behaviors «
first-order transitions is found as a function of the physical variables and possible macroscopic constraints

imposed on the system. For s'y coupling, the correlation function of y was found to be governed by a
correlation length which is proportional to that of the order parameter, and by a critical index g~ g~ = 2—2a; a
here is the specific-heat exponent of the appropriate unconstrained system. The singular part of the

susceptibility, y„has a critical exponent equal to a, the true specific-heat exponent. When the coupling is
s'y', a weaker singularity of' g~ appears. The crossover between this behavior and the one typical to s'y
coupling is calculated. (y) has a singular part with an exponent 1 —a, in the unconstrained case. The
breakdown of the scaling law related to the correlation function of y in the constrained case is discussed.

I. INTRODUCTION

In every real system undergoing a phase transi-
tion, there exist couplings of the order parameter
to other degrees of freedom which would not be
critical by themselves. As examples for this, one
may mention the coupling of the order parameter
o the elastic degrees of freedom ' 5 the coupling

of 3n antiferromagnet to a ferromagnetic ordering '

caused by a magnetic field or, in general, between
different magnetic modes of ordering, coupling to
electromagnetic or "gauge" fields, 8 coupling of,
e. g. , the critical point in a polar binary mixture
to an electric field or to the pressure, coupling
between different crystallographic distortions,
and many other examples.

Several new interesting phenomena are possible
when these additional degrees of freedom can also
become critical. ' ' ' However, we shall restrict
ourselves here to the case where those degrees of
freedom remain noncritical and do not compete with
the primary" orderi. ng parameter. We shall
thus refer to these variables as "nonordering" pa-
rameters. A further important assumption that
we shall make is that the nonordering parameters
are in thermodynamic equilibrium and are there-
fore treated as usual dynamic variables in the parti-
tion function. The case where there exist
"quenched" configurations of the nonordering pa-
rameter presents additional difficulties which will
not be treated here.

The two main questions that one would like to
answer are (a) How does the coupling to the non-
ordering parameter affect the critical properties
of the primary order parameter 7 (b) What are
the (presumably weak) critical singularities in-
duced by the phase transition on the nonordering

parameter?
In a theory based on extremely plausible as-

sumptions, Fisher'~ answered the first question.
He emphasized the importance of constraints
placed on the nonordering parameter which lead to
a well-defined renormalization of the critical ex-
ponents. The effect of constraints on the phase
transition was further investigated in Ref. 13,
where the possibility of a first-order transition
and tricritical behavior induced by the constraints
was treated. Griffiths and Wheeler discussed the
thermodynamics of the transition, including the
singularities in the thermodynamic functions of the
nonordering parameter. The possibility of ob-
taining a first-order transition and a tricritical
point due to the reduction in the quartic Landau
term in the free energy was pointed out by Ginzburg
and Levanyuk. "

The purpose of this paper is to give a general
treatment of the problem of coupling to a nonorder-
ing parameter using the renormalization-group
(BG) approach. ' This enables us not only to ob-
tain a coherent picture of the whole problem but
also to calculate directly the thermodynamics and
correlation functions of both the ordering and non-
ordering parameters, with and without constraints.
Nelson and Fisher have already discussed, within
the RG framework, the influence of the uncon-
strained nonordering parameter on the primary
critical behavior. We believe that our results for
the correlation function of the nonordering parame-
ter will enable one to interpret experimental probes
that couple directly to the nonordering parameter,
but not to the order parameter. Examples for such
experiments may be optical and light scattering
measurements on ferromagnets' and near the A.

point of He and 3He-'He mixtures, and dielectric
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measurements near the gas-liquid critical point'
and in a binary mixture. We believe that from
such experiments one could verify our results,
identify the primary order parameter in some
cases where this was not yet done, and also make
an independent determination of the specific-heat
critical exponent n. 4'

In Sec. II, we present the Hamiltonian which will
be treated [see Eq. (2. 1)]. We assumed a coupling
of the form s y between the order parameter s and
the nonordering parameter y. We then calculate
the RG recursion relations of the general Hamil-
tonian to order &, and represent four fixed points
which exhibit different types of critical behaviors.

In Sec. III, we apply the results obtained in Sec.
II to the calculation of the correlation function

(y, y, ). In many cases, the lowest-order coupling
will be, by symmetry, of the form Js y, which is
irrelevant to O(q) (e =4 —d) in the RG sense. But
the introduction of the field E conjugate to y will
result in a term proportional to Ef ys'. An ex-
ample for this is an antiferromagnet where s is
the staggered magnetization, y is the magnetization,
and E is the magnetic field. '~'~ A discussion of
the behavior of y„ the susceptibility of the non-
ordering parameter, in a system with such coupling,
with and without the field E, is given in Sec. IV.
There we also calculate the crossover indices be-
tween different critical behaviors of y, as a func-
tion of E.

The details of the RG results for the general
Hamiltonian (2. 1), interrelations among the vari-
ous fixed points, and their stabilities in the most
general parameter space, are discussed in the
Appendix. Different types of critical and tricritical
behaviors are obtained and discussed. Similar
RG results for particular restricted order-parame-
ter spaces which allowed constraints to be put only
on the energy density of the order parameter were
given in Refs. 3 and 20. The case where y is equal
to the energy density s was considered, with &ime

dependence, in Ref. 21. The largerparameter space
used here enables us to handle the correlation functions
of y, treat higher-order terms, and find the cross-
over in the critical behavior of X, discussed in

Sec. IV.
The results are summarized in the Sec. V,

where we also obtain the singular behavior of (y)
at a constant E when T-T, both above and below

Tc '

II. GENERAL HAMILTONIAN AND RG PROCEDURE FOR
s2y COUPLING

We shall study the partition function z, based on
the general Hamiltonian (in units of hs T)

1
(t+q )s s + M l

's s ~ s ~ s
. q pq& + qtI

1
+ p, ,

~

yqSqiS i+ 2P
~q ~q~

1 p
yqy-q+ 2 ~ yp

(y, y, ) = (p/P) ((s)',(s),), (2.2)

i.e. , the correlation function of y is proportional
to that of the energy density; the case where the
order parameter s is coupled to the energy density
was treated including the dynamic effects in Ref.
21. For q40, (y, )=0 as h, -O and 8(y, )/Bh,
=(y, y, ). For q=O, one is interested in the sus-
ceptibility g, = ((&y0)~) = (y0) —(y0)~, which is pro-
portional to the specific heat, and its singular con-

0 gq„. Q q

(2 1)
The integrals f, are taken over Iql &1 in a, d= (4
—e)-dimensional space. By J', we mean that the
integral is over q40, and Q is the volume of the
system.

Equation (2. 1) is a typical field-theory Hamil-
tonian for the ordering parameter s, with a cou-
pling of the type f s y dx to the nonordering pa-
rameter y. This coupling signifies a modulation
of the local values of T, due to the field y(x). This
kind of Hamiltonian was extensively used in the
literature, ' " ' ' ' and was derived for a specif-
ic microscopic. model in Ref. 7., on the same level
as the usual Landau-Ginzburg-Wilson Hamiltonian
for a single-order parameter. The four-spin cou-
pling constant v enables us to impose macroscopic
constraints~'3'5'~P on the system. We single out the
q=0 component of y and (s )„ the reason being
that the constraint will affect only these components.
It should be kept in mind that it is possible to
eliminate some of the terms in Eq. (2. 1) by shifting
the variables y, and performing the Gaussian in-
tegrals over them. This will result in a number of
physically equivalent Hamiltonians, and RG fixed
points. The reason why we shall eventually deal
with the general form (2. 1) is that it gives us an

easy handle on the correlation function of the y,'s.
Using the general K of Eg. (2. 1), one could also
add higher-order "anharmonic" terms, which will
be argued below to be irrelevant. The large pa-
rameter space of Eq. (2. 1) will permit us to deal
with higher-order coupling terms such as f s y,
and to calculate the crossover between several
different critical behaviors of the nonordering
parameter y. The general form (2. 1) includes
several models with and without coupling and the
possibility of placing constraints either on y or on
the energy of the system. aP'~'

Before discussing the RG transformation on Eq.
(2. 1), we note that by adding terms on the form
h, y, to Eq. (2. 1) and taking the appropriate deriva-
tives before and after eliminating the y, 's, one
easily finds that
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n„=—o./(1 —o.), (2. 4)

which is consistent with our RG results.
The RQ operation on the Hamiltonian transforms

X into X', where K' is obtained by integrating out
all variables y, and s, with momenta such that
b l q I & &, where b& &. By rescaling the momentum
variables by b, and the variables y, », yp, and s,
by c, cp, and P, respectively, ' ' $C' will be of the
same form as X. We notice that cp may differ
from c, which is related to the possible special
role of yo. The rescaling factor r (s, = fs'„) is
chosen to keep the coefficient of q~ equal to unity.
To order & it has the usual value" &=b' ' . This
rescaling factor is appropriate to s being the crit-
ical order parameter. We restrict ourselves to
cases where y does not have a critical behavior,
thus c and c, are chosen' so that P'= P and Po

—P, .
This causes the gradient y term to be irrelevant,
and is equivalent to the assumption that the fluctua-
tions of y, are not critical. It will also follow that
higher-order terms which do not appear in Eq.
(2. 1), such as Jy2so, fy" (n~3), are irrelevant
in the RG sense.

tribution behaves like t . Thus the critical ex-
ponent of g, is

y, =n,
where n is the specific-heat exponent of the sys-
tem. We remark that correlation functions of the
type (y, s, ) are also easily obtainable.

When a constraint is imposed on the value of gp,
yo = 8, ((~yo)o) =0. One may replace the term
poyo f s2 by go f 8so, which will shift the critical
temperature by 4ro= go 8/Q. The inverse sus-
ceptibility g, will be given by So in@/98, and one
immediately finds that y, = n~. Here, n~ is the
specific-heat exponent of the constrained system.
According to Fisher, '~ we expect the following
renormalization for n,

The RG recursion relations for P and Po [Figs.
1(f) and 1(g)] to order e are

p' = pc2b ~(1 —2A ~) p o
= po coo b ~(1 —2Aow),

where

~o d" qz = —,so= —,and A 2 Lp
'

po (+e )'

The rescaling factors that make P'=P and Po=Po
are

c=b ' (1+A2z), co=b ' (1+Aow) . (2. 5)

The other RG recursion relations to order & are
(Fig. 1)

u' = b'(u —36A2u + 24A o zu —4A 3@ '),
g ' = b'g (1 —24A2 u+ 10A2 z),
v ' = b'v(1 —24Aou+ 8Aoz —4Asv),

w =b'w(1 —24Aou+ 8A2z —8A2v+2A2 w),
r'= b (r+ 12A& u —4A, z+4A, v —2A, w) .

(2.6)

In the last equation, we included a term —2A& se

for x. This term arises from the shift $p gp
—co po A, /Po, which is made to eliminate a linear
term cp pp Ay gp which appears in the renormalized
Hamiltonian. 7

We shall restrict ourselves in the rest of this
section, for the sake of clarity, to the Hamiltonian
which describes a linear coupling between a scalar
nonordering parameter and a critical parameter

—K= —II(~, u; s)+ p (s'), y, + —'-
yo s, s,

~ q

+ ~2p yq y-q+ E
~

y'(x) (2. 7)

ignoring higher-order irrelevant terms. E is the
field conjugate to y, and —.H(x, u; s) is the uncoupled
usual Ising Hamiltonian. E can be eliminated by
shifting y(x), causing a shift of T„

(o)

EIj,—K= —II J' — 'M' S ~+ p,
p

(s'), y,

(b) && —&& XX
C

Fj:G, 1. (a)-(g) are graphs contributing to order e to
the recursion relations of ~, u, z, v, 7~, ,8, and g„, respec-
tively.

y —
yo s, s,+2p y y, — . (2 6)n „, '-' „'-' 2P

This Hamiltonian corresponds to the Hamiltonian
(2. 1) with the initial restrictions on the parame-
ters: v=0, P=Po, zWO. Note that we did not re-
quire so=a; this includes the possibility TWO, m=0,
which corresponds to a constraint on y. In the latter
case yo= 8 and the initial term (go 8/0) f s can be
treated as a shift of z, resulting in zv, ff 0.

There are four fixed-point solutions of Eq. (2.6)
which satisfy these initial conditions. Each of them
has a different eritieal behavior; these fixed points
are
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TABLE I. Fixed points with the initial condition v=0, p & 0. Their critical indices, v; their crossover indices Q~,
and the corresponding eigenvectors 4

&
of the RG recursion relations.

0 0

S1

i—
9

i—
06

1 ~ 0

i — i-
RI1 9 6

2—3P —+ —g
1
6

+ —E
i
i2

(2, 3, 0, 0)

(2, 3, 0, 3)

(1,2, 0, 0)

(1,2, 0, 2)

(1,2, 0, 0)

(1,2, O, 2)

(o, o, 1,o)

(0, 0, 1,2)

(0, 0, 1, 0)

(0, 0, 1,2)

(0, 0, 0, 1)

(1,3, O, —3)

—E1
3

(o, o, o, 1)

(0, 0, 0, 1)

(1, 3,0, 0)

(0, 0, 0, 1)

& = {lnb/A2) &, p=A&E/(b —1), 4 = (u, z, g, M)), Q& =ln~;/lnb.

61:

constrained (renormalized) Ising-like behavior;
Ising-like behavior (Ref. I);
spherical (renormalized Gaussian)-like be-
havior;
Gaussian-like behavior.

It is straightforward to obtain the correlation
function (y, y, ) from the appropriate O(e) graphical

The fixed-point parameter values, their critical
behaviors, and their stability properties are listed
in Table I. The Hamiltonian flow trajectories in
the zv-z plane with the corresponding crossover ex-
ponents are given in Fig. 2.

The most unstable fixed point is G1. It cor-
responds to an unconstrained (TWO) tricritical
point, v and is stable only if z =2m. The two tra-
jectories from it to I1 and S1 represent crossover
to unconstrained Ising behavior (I) or to the con-
strained tricritical behavior (S). The crossover
indices are equal to no (a~=2 —2d) to order e.
From I1 and S1, there is a crossover to the stable
constrained Ising behavior RI1. The crossover in-
dex from I1 to RI1 is again n, while the cross-
over index from S to RI1 is the unconstrained
Gaussian o.~ (= —,c). Rll will also turn out to be
the only stable fixed point in the general parame-
ter space of Eq. (2. 1). One may describe this
situation by regarding every system as being con-
strained, except for the particular case where the
effect of the constraint disappears.

We note that there are more fixed-point solutions
to the RG [Eq. (2.6)]. They do not represent, ex-
cept for subtle effects discussed in Sec. IV, any.

new critical behavior of the Hamiltonian (2. 1), and
are due to the various subspaces in the parame-
ter space which are spanned by the initial Hamil-
tonian. Such subspaces can be obtained by inte-
grating over some Gaussian degrees of freedom,
as discussed in the Appendix. We shall use some
of these fixed points in Sec. IV to represent a
crossover between different singular behaviors of
the susceptibility p, in a more general model. A
detailed discussion of these multiple fixed points
and the interrelations among them is given in the
Appendix.

III. CORRELATION FUNCTION &y y & IN fys' COUPLING

W/6

& Gl

2

1(—
6

RI1„

6

Sl
IF

1

2
z/e

FIG. 2. The Hamiltonian flow, and the crossover in-
dices between the fixed points of Eq. (2. 7) in the (z, zv)

plane, with z= p /P and

p2/P, unconstrained system,
K ='

0, constrained system.

The portions M & z and that to the right of the line z = 2 e
correspond to the runaway of the RG transformation.

analysis, which will be done below for (yp yp ).
However, before doing that, it is useful to note
that most of the behavior of (y, y, ) can be obtained
from general scaling arguments and dimensional
analysis. The behavior of the Hamiltonian near
a fixed point is governed by the largest RQ eigen-
value. This sets the relation between the length
scale and the temperature scale in a way which
is independent of which correlation function is
considered. Thus the correlation function (y, y, )
has, in the case where y is coupled to the order
parameter, a characteristic decay length which is
proportional to the order-parameter correlation
length $-t" [f„ is the usual reduced temperature,
t= (T —T,)/T, ]. This argument was already used
for the n spin-correlation functions, which are all
characterized by the same length $. Physically,
the spatial correlations of y are transmitted by its
nonzero coupling to s~. In addition to its correla-
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tion length, (y, y, ) is characterized by an anom-
alous dimension, related to the critical index
which we shall denote by q, , i.e. , at T„(y,y, )

-(2-&y)

g, is computed from the rescaling factor c. Di-
mensional analysis leads to' ' '

2 $4+2

Using Eq. (2. 5), we obtain, to order &,

2 —q, = 2A2 z */lnb,

(3 1)

(3.2)

where z ~ is the fixed-point value of z. The values
of g, for the different critical behaviors are

—3& =2nz, Ising and renormalized
Ising cases (3.3)

~
e =2o.~, Gaussian and spherical

cases,
where we used the z* values from Table I. These
results for the unconstrained case are the same
as those of Ref. 21, where y(x) = &(x), the energy
density.

The q =0 correlation function has the asymptotic
singular part, as t-0,

(y y ) t ~vgly/~s (3.4)

2 p. 0 ddt [b2(I I 2)2 +]2
(2m)' .()

(3.6)

(We have used here the soft-momentum cutoff. ")
At the limit &-0, we obtain

Z- —Po [w*/2(2w) ] Inf . (3.7)

Using the value Az = Inb/8&2 and substituting Eqs.
(3. 5)—(3.7) in Eq. (3.4), one gets for y,

y, = y, (A2/lnb) m*, (3.6)

y, =1+0(e), and w*=O(e), and thus to order & one
gets

where z is the true inverse susceptibility of s,
that goes to zero when f-0 like 7-t"~. The Dyson
equation for (yoyo) is

(3.5)

The only graph that contributes to 5 to order &

is the one denoted by g in Fig. 1,

which were neglected in Eq. (3.7). Hence y, de-
scribes the singular part, not necessarily the
largest part, of g, . Note that to evaluate y, , one
usually needs the second-order terms in the ex-
pansion of y,

' = A+ Bt"' in y, ln I t I . In the uncon-
strained case, we use the fact that A=O due to the
divergence of X, . In the constrained case, to

to analyze the 0(& ~) terms, which only change sign
due to the constraint. To evaluate the constrained
value of y, we used the fixed-point values of points
RI3 and S3. In the Appendix, we show that the
correlation function calculated in these cases is not

($Q $0 ) which is of course meaningless when f y is
constrained, but the correlation function ((s )0(s )0)
to which the singular part of y, in the constrained
case is proportional.

In all cases, the singular behavior of y, is
identical to that of the specific heat. '4 The results
for the critical exponents of y are summarized in
Table II. We find that the usual scaling law

(3.11)

holds only for the Gaussian and Ising critical be-
havior, and not for the constrained cases (spherical
and renormalized Ising). This is due to the fact
that y, = ~, and the Fisher renormalization of a
involves a minus sign [n- —o/(I —n)] which does
not appear in the renormalization of, e. g. , v [v- p/(I —n)), and at the same time g, (as well as q)
is not renormalized at all. This could lead one to
some worry, since the scaling law (3. 11) usually
follows simply from the scaling of the correlation
function. The reason for its failure here is be-
cause y, is not equal to lim, o (y, y, ). The con-
straint in fact affects only the Fourier component

yo and it almost does not affect the q 40 part of the
correlation function (except for the renormaliza-
tlon of p) .
IV. NONORDERING SUSCEPTIBILITY IN fs y COUPLING

There are systems in which the coupling between
the nonordering and the ordering parameters is of
the form Xf„s'(x)y2(x). Examples are the coupling
between an antiferromagnet to a ferromagnetic
ordering, ' or a binary liquid mixture with differ-

y, = (Az/Inb)to* . (3.9)

In Table I, m* is given in terms of q -=(lnb/A2)g;
hence,

TABLE II. Critical indices characterizing the corre-
lation function of y near and at T~, and the specific-heat
exponent.

Ising case

26= QG, Gaussian case
(3.10

—
~ e = —o., = o.», constrained Ising case

—2& = —aG= n~, spherical case .
When y, is negative, one has to add constant terms

Critical behavior

Ising

Gaussian

H, enormalized Ising

Spherical

—E'1
3

1
3

6

—E1
2

66

—t1
2

1—2
E'
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—X= —If(z, u; s)+ X '~ y'(x)s'(x)

p+ — y'(x)+ E y(x) (4. I)

After elimination of the linear term by shifting
y(x), we get

A,E2
—X= —II t'+

p ~ Mq s -2X —,gs
p

' ' p„'„

P t z
E2

'2J„y 2P"
(We have not written the term f x2y2, which is ir-
relevant as discussed in Sec. II. )

When EWO, we get a coupling~ f s y with a coef-
ficient —2XE/P, which was discussed in Sec. II
and found to be relevant. The fixed-point values
are of the variable (2XE) /P and thus allow a
negative sign of the interaction —2'/P, and the

(4. 2)

ing polar components near the miscibility critical
point, coupled to the polarization field. The
Hamiltonian of such systems, in the presence of an
applied field conjugate to the nonordering density,
is

sign of E is unimportant. y, behaves like the spe-
cificheatandthusdivergesat T, . A similar ef-
fective interaction

is also obtained in the constrained case (fy = 8,
8 e0). There, we obtain y, - const+ const'&& t ~,

as found in Sec. III.
In the case where E-O, which may be of experi-

mental interest, the relevant coupling term p f s2y
vanishes. The coupling f s y will not enter the
lowest order RG calculation. We can find the
singular behavior of y, by an exact thermodynamic
calculation, similar to the one used in Sec. II:

y (0 8~x~;,)
+E 6 2 ~ s Vs

(4. 2)

y (E= 0) = ——~ s = const+ cosnt'&& f . (4.4)
Q 2x

p 1-0,
p p

Thus for E=O, y, has the relative weak singularity

+A+LE IQ. '@he fixed points, their critical index v, the eigenvalues and the corresponding eigenvectors of the
general H, G recursion relations.

(I) = -'+ T-&
i ~"=- -3'A, ~/(b'-1)

I2

I3

I4

36

(2, 3, O, 3)

(4, 6, 3, O)

(1, 0, 3, 6)

(1,0, 0, 0)

1—3E

—E
1
3

(1,2, 0, 2)

(1,2, -1,O)

(o, o, 1,2)

(1,2, O, 2)

—E1
3

1
3

1.
3

(0, 0, 1,2)

(0, 0, 1,0)

{1,2, -1,O)

(o, o, 1,o)

1
3

—f1
3

1
3

1
3

(0, 0, 0, 1)

(0, 0, 0, 1)

(o, o, o, 1)

(1,2, O, 1)

{RI) V= 2+ 6E r"= ——A e/{b~ —1)

RI1 g &

RI2

RI3

RI4

i—
-72

(0) v=-,'

E6

(2, 3, o, o)

(1, o, 3, o)

{4,6, —3, —6)

{1,0, 0, —6)

1—3E

1—3C

1—3E

(1,2, 0, 0)

{o,0, 1,o)

(1,2, —1,2)

(o, o, o, 1)

1—3C

1—3C

—E'1
3

(0, 0, 1,0)

(o, o, 1,o)

{o,o, o, 1)

(1,2, 0, 2)

1—3
E'

—E1
3

—E1
3

(0, 0, 0, 1)

(1,2, —1, O)

(0, o, 1,2)

(0, 0, 1,2)

Q2

S1

—E
1
4

—E
1
4

1
4

1
2

1
2

1—4 E'

2
E' —E

(S) V=2+4~

(1,2, O, 2)

(1,2, —1,0)

(o, o, 1,2)

(1,0, 0, 0)

(1,2, 0, 0)

(0, 0, 1, 0)

(1,2, -1,2)

(0, 0, 0, 1)

(o, o, 1,2)

(1,3, 0, 0)

(1,3, 0, 0)

{0,1, 0, 0)

r+=-X,~/(b' 1)

(o, o, 1, o)

(0, 0, 0, 1)

(0, 0, 0, 1)

(1,3, 0, 0)

(1,3, 0, 0)

(o, o, 1,o)

(0, 1,1,0)

{0,0, 1, 0)

(o, o, o, 1)

(1,o, -3, o)

(0, 0, 1,2)

(0, 1,1, 0)

(0, 0, 0, 1)

(0, 0, 0, 1)

{o,o, o, 1)

(o, o, o, 1)

(1,3, 0, 0)

(1,3, o, o)

(1,3, 0, 0)

(0, 1, 0, 2)

~f15
&

= ln~;/lnb
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W/E' "

1

2
iG1

1

6

I 4 -'-

6
.RI1

z/e
6

(a)
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FIG. 3. Hamiltonian flow and the crossover indices
between the fixed points of Eq. (4. 2) in the z, zo plane.
Each of the fixed points has a different critical behavior
of X~. (a) The main critical behavior is Ising or con-
strained Ising. (b) The main critical behavior is Gauss-
ian or spherical (tricritical).

, while nonzero values of E yield, as found
before, a divergence like t, with an amplitude
of order E . This is consistent with the results
found by Fisher for the singular behavior of the
magnetic susceptibility of a two-dimensional de-
corated Ising antiferromagnet.

We now discuss the above result from the RG
viewpoint. The possible different critical be-
haviors of y„are (see also the Appendix and Table
111)

RI1: y, -const+ const'&&/~~, coupled
constrained Ising behavior;

I1; g, - t &, coupled unconstrained
Ising behavior;

I4: g, - const+ const'&& t' ~, Ising behavior
with "irrelevant" coupling.

In Fig. 3(a) we plotted these points and marked the
crossover exponents that characterize the change
of the critical behavior.

As a function of E, we can change the initial ef-
fective value of u (see the Appendix) to get a run-
away (first-order transition) or tricritical point
(for a special limiting value of E). The fixed points
corresponding to the possible tricritical points are

S1: y, -const+ const'&t, coupled
constrained tricritical behavior;

61: y, -t G, coupled unconstrained
tricritical behavior;

64: y, - const+ const'x g G, tricritical
behavior with an "irrelevant"
coupling of y.

These points and their crossover behavior are
given in Fig. 3(b). The crossover between the two
sets (Sl, Gl)-(RI1, Il) is shown in Fig. 2 (see
also the Appendix).

The crossover exponent in all cases is found to
be equal to the specific-heat exponent which char-

acterizes the corresponding unconstrained system.
An amusing crossover is the one from I4 to I1.
This is a crossover between two fixed points in
both of which the main critical behavior is identical
However, I4 is an Ising fixed point with no relevant
coupling to the nonordering field. Thus, the singu-
larity of g„ is extremely weak (-f' ). ll is also
an Ising fixed point, but it has a relevant coupling
to y, which causes a (weak, -t ) divergence of y, .

The singular behavior of y, as a function of E
(note that E is, e. g. , the electric field in the case
of the polar binary mixture, and the magnetic field
H for the antiferromagnet) suggests that a detailed
measurement of the (nonlinear) y„as a function of
E will be extremely valuable. Such a study should
obtain both the t (or const+ f in the constrained
case) and the (const+ /' )behaviors and the cross-
over between them. The appropriate crossover
exponent is also equal to n. Thus in principle a
whole y„(E, f) function should be fitted with a single
parameter n. The analysis of the dielectric con-
stant in the binary mixture case is currently under
study.

V. SUMMARY AND CONCLUSIONS

We have applied the RG method to O(z) for dis-
cussing the critical behavior of the coupled Ham-
iltonian (2. 1) with and without the constraint yo
= const. We have not considered more general
constraints' but it is possible to see that those
can only lead to one of the behaviors found here
[plus possible terms which are irrelevant to O(e)].
The critical behavior can stay Ising-like, be re-
normalized, become first-order, and, for special
initial conditions, become tricritical. The tricriti-
cal behavior may be Gaussian, spherical, or Ising-
like, the former being "doubly tricritical" in a
large enough parameter space. An interesting
multiplicity of the fixed points was analyzed in de-
tail with the appropriate trajectories in the parame-
ter space.

We find, for the case of s y coupling, that the
correlation function (y, y, ), as well as (s,s, )
and (y, s~, ), are characterized by a correlation
length $ which is proportional to that of the order
parameter ((s,s, )) correlation function. The
critical index g, was found to be 2 —2~, where a
is always the specific-heat exponent of the appro-
priate unconstrained system. The singular part
of y, is always characterized by the critical ex-
ponent y, = n. n here is the specific-heat critical
exponent, which is renormalized in the constrained
case. Thus, the scaling law y, = p(2 —r)„) is valid
only in the unconstrained system.

Adding a constant field E conjugate to y, results
in an ideal critical behavior, with a T, shift linear
in E, in agreement with Fisher's general assump-
tion. 7' '" By taking the derivative of the free
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energy with respect to E, one immediately finds
that the singular part of (y) at a constant E behaves
as I t l

' when I t I -0, where

and the corresponding eigenvectors of the lin-
earized RG, R ~, defined by

This relation is derived above T, . Below T„
there should be a singular contribution to (y) char-
acterized by this value of P, .

The singular part of y, was obtained for g ay ~

coupling. When the field E conjugate to y vanishes,
y, has a singular part which behaves like t' . For
E+0 or the constrained case, the critical behavior
changes, with a crossover exponent equal to the
corresponding unconstrained n, to that of the s y
case, i.e. , a divergence t in the unconstrained
case, and a singular part f & (ns &0) in the con-
strained case. We believe that these results will
be relevant for the interpretation of magnetic sus-
ceptibility measurements in antiferromagnets,
dielectric measurements in polar liquids and liquid-
mixture critical points, and possibly many ad-
ditional cases.

Thus, the coupling to a nonordering parameter
can lead to a variety of types of phase transitions.
Experiments that couple directly to the nonorder-
ing parameter may yield interesting information
on the phase transition. Some examples '7 for
such experimental probes were- given in Sec. I.

Our treatment was restricted to the case where
the number of components n of the order parame-
ter is 1, and the unconstrained specific-heat index,
n, or no, is positive. We hope to analyze the more
general problem, as well as the 0(ca) corrections,
in future work. The latter corrections are impor-
tant in the ease of biquadratic (s ya) coupling,
when the field conjugate to y is zero.
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APPENDIX: DETAILS OF RG RESULTS IN GENERAL
PARAMETER SPACE

The RG transformation (2.6) has 16 different
fixed points. These fixed points are divided into
four groups, each with four distinct fixed points.
All the fixed points within a group correspond to
the same critical behavior of the order parameter.
The four critical behaviors are Ising (I), renor-
malized Ising (RI), Gaussian (G), and spherical
(renormalized Gaussian) (S). The fixed points,
their critical indices p, the eigenvalues X, = b

1
+ ~~ yqy-q ~

q

(AI)

This has the stable fixed point RI1. It has the re-
normalized Ising index v„,= v~ /(1 —o.',), as all
other Hamiltonians in the group RI. RI2 is obtained
by integrating y, ~o from Eq. (3.3), and thus is
"once unstable. "

The constraint can be imposed on the system
with the Hamiltonian (2.7) employing a delta func-
tion 5(,f y(x) —8) = (I/2') j'P dg exp[ad(y —8)j, chang-

are given in Table III.
The multiplicity of the fixed points for each group

results from the large parameter space that we

have chosen. In fact, one can generate different
forms of K which obviously have the same critical
behavior by transformations within the variables
space. By such transformations, one can span
different subspaces of the parameter space to which
the different fixed points describing the same criti-
cial behavior belong. The main reasons that we
chose this large parameter space were the con-
venience of calculating (y, y, ), the possibility of
obtaining the crossover between different critical
behaviors of y (See. IV), and the fact that higher-
order terms could be dealt with.

The unconstrained Hamiltonian (2. 7) corresponds
to the initial condition z = w and v=0. This is the
most stable fixed point in group (I): Il. By integrat-
ing either y, 0 or y, ~o, this Hamiltonian goes to a
subspace of the parameter space in which I2 or I3,
respectively, are the stable fixed points. This in-
tegration reduces by one the number of parame-
ters, and thus reduces by one the stability of the
Hamiltonian in the total space. By integrating
both yq«and yo, the Hamiltonian goes to a more
restricted subspace in which I4 is stable.

By a further restriction of the subspaces of
points I, by demanding that u=z/2, we obtain
spaces in which the G's are the stable fixed points.
We have chosen our notation in such a way that
the same transformation that carries I1 to I2 also
carries G1 into G2, etc.

We now go on to discuss the fixed points RI and
S of constrained systems. A simple way to add a
constraint to the Hamiltonian is to fix the value of

yo = 0. The Hamiltonian will be then

—$Q= - H g+ Q~ s + p,
~

yq sqi s q qi
p. 8

q ~ q
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K K'+ S +0 ) 0

(A2)

(which do not spoil the convergence of the integrals
in the partition function), taking the Hamiltonian
into

—X= —H(p; u; s)+ p p ' y, y, —— '(x)

SP, "
2+ yp s (x)+u y s,.s. ..—

Q "e e
(A3)

This Hamiltonian corresponds to the fixed point
RI3. Integrating y gp ln this Hamiltonian yields
BI4. The above method can also be used for deal-
ing with more general constraints, which can be
shown to lead to Hamiltonians whose forms differ
from the above one by irrelevant terms only.

The fixed points S1, S2, S3, S4 correspond to

ing of the order of integration f dy, f dv - f du f dy„
and the shifting of yp:

1
yp yp+ IcQ+ (l 2) p

i

s

BI1, BI2, RI3, BI4, respectively, in the subspace
2u=z.

In order to better understand the Gaussian and
the spherical cases, let us examine again the
Hamiltonian (2. 7). We have seen that by integrat-
ing y, we obtain an effective u

uegf = u —8/2 (A4)

when —,
' z & u, the phase transition is second-order,

and the renormalized Hamiltonian will flow to one
of the I or BI fixed points. When we have a posi-
tive S (x) term, the Hamiltonian would have be-
come the usual one used to describe first-order
transitions for u,«&0 and tricritical point (u,«-0,
or u=z/2). '2" ' Thus 6 is the tricritical point in
the unconstrained subspace, and S is the same in
the constrained (renormalized) subspace.

One should also note that the Ising fixed point
may also become a tricritical point, in a large
parameter space obtainable, e. g. , when the initial
Pp 0 P and/or up a p, . This is the situation, for
example, in the magnetoelastic case. ' ' In this
picture the Gaussian point becomes a higher-order
critical point, corresponding to the case where
two tricritical lines meet.
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