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The longitudinal susceptibility for the S = 1/2 XY model on cubic lattices is discussed on the basis of
its relationship to the free energy. A series expansion for the susceptibility is developed and its behavior
is studied at an asymptotic limit. The asymptotic behavior of the series expansion shows that the
longitudinal susceptibility is nondivergent at the critical point T„ its "singular" part behaving as

(T —T,) + ', where a is the specific-heat exponent. A related quantity, the partial longitudinal

susceptibility, which is important in the study of spin dynamics, is also shown to have a similar

nondivergent critical behavior.

I. INTRODUCTION

The conventional order-parameter susceptibility
for the Ising model is the longitudinal component
X" and for the XY model it is the transverse com-
ponent y"" (or y"). Both quantities in three di-
mensions are known to diverge strongly near T, . '
Fisher showed that the transverse susceptibility
g"" for the Ising model behaves near T, like the
energy. One may therefore expect that the longi-
tudinal susceptibility y" for the XY model also
behaves as the energy. One can in fact show using
a scaling argument that this quantity cannot di-
verge. '

The critical behavior of X" for the XY model
provides a few interesting points. If it is nondi-
vergent, the hypothesis of "critical-point stability"
first put forth by Fisher suggests the following
thought experiment: Consider an anisotropic, cubic-
lattice nearest-neighbor (nn) Heisenberg model
in an external field II„

X(X) = —Q J(S", SJ+ S'; S',)

JSfS', —Hg Q S;,

where the anisotropy parameter X is non-negative.
The stability or smoothness hypothesis would pre-
dict that as X is continuously varied, y"(X) should

behave discontinuously. In particular if we could
maintain the temperature of the system near the
critical temperature T= T,(X), then, as X changes
from Ising-like (i.e. , X= 1+) to XI"-like (i.e. ,
X= 1 —),

' the hypothesis predicts that the strongly
divergent behavior of y"(X) should vanish.

It is customary to extrapolate the critical be-
havior of a function such as the susceptibility
eumexica/ly from a finite number of exactly known

coefficients of a high-temperature series ex-
pansion. The series expansion for y"(y=O) has
been obtained. But owing to its nondivergent (or
perhaps very weakly divergent) character, it has

been found difficult to establish from the series
expansion the critical behavior of X"(A, =O). In an
earlier paper the critical behavior of y"*(X=0)
was deduced from the asymptotic behavior of its
high-temperature series. In this paper we shall
study in a similar way the critical behavior of
y"(X=0) by directly examining the asymptotic be-
havior of its series expansion.

The longitudinal susceptibility is closely related
to another physical quantity (we shall call it the
partial longitudinal susceptibility) which appears
as a, leading term in the f-sum rule. ~ It is an im-
portant quantity for the study of the dynamic be-
havior of an XY paramagnet, The partial sus-
ceptibility represents that portion of the suscepti-
bility which contains only the nn correlations;
hence, it behaves approximately as the energy of
the system. If the two susceptibilities behave
similarly in the critical region, then the longi-
tudinal susceptibility must be nondivergent since
short-range correlations alone cannot normally
lead to a divergence.

In Sec. II we have defined the longitudinal and

partial susceptibilities in terms of the anisotropic
Heisenberg model. In Sec. III the high-tempera-
ture expansions for both quantities are given and
shown to be closely related to the expansion for the
free energy. In Sec. IV the asymptotic behavior
of the longitudinal-susceptibility series is de-
scribed in relation to the asymptotic behavior of
the free-energy series. Finally, in Appendixes A-D
our various assertions are proved.

II. LONGITUDINAL SUSCEPTIBILITIES

The zero-field susceptibility is defined in the
usual way':

where in appropriate units

M'= Q Sas,
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and the angular brackets denote a thermal average.
Since [H(X), M'] =0 for all values of y, using the
general "fluctuation" theorem we can. readily write
down

(10)

The expansion (8) appears rather similar to the
high-temperature expansion for the zero-field free
energy I':

The second term in the right-hand side (HHS) of
(4) vanishes for T& T, . The susceptibility for the
XY model is then obtained by letting X =0 in (4).

The zero-field free energy can be similarly de-
fined,

E(X) =ln Trexp[- PR(II, =O)] .
Now observe that

E(A. = 0) =N ln2+ g (K "/n! ) Tr P"

There exists a rather simple relationship between
a„and f„(he cne, between the susceptibility and the
free energy). Consider the nth coefficient of ex-
pansion (8):

a„=Q Tr Ss Ss ~ (S' S ~ ) (Sq Sq.) ~ . ~ (S„'S„.), (12)

(Ss Ss.) .

Thus, P 'E (X =0), which has all the nn pair cor-
relations, is the susceptibility whose long-range
spin correlations are all truncated. We might
call 8 'E(X=O) the partial susceptibility, denoted
by ™y".For T & T, we can write

X"(0) = 4 + X"(0) + &'*(0),

where ~" contains all the long-range correlations.
As T- T,+, one would for X ~ 1 expect I y" I

-
I
&"

I

indicating that the critical behavior is determined
essentially by long-range correlations alone. How-
ever, for the XF model we will show that in the
critical region I&"

I « Ig" I. Thus one finds, in-
stead, y"- y" as T- T,+ .

III. HIGH-TEMPERATURE EXPANSIONS

where sums on BR' and on the nn pairs nn', pp',
. . . , vv' are implied. Since S' is itself a traceless
operator, the lattice vectors R and R' must both
be degenerate with some nn vectors among the set
nn', PP', . . . , vv'. The number of ways the vectors
Ag' can be degenerate is limited due to the rela-
tion for S= —,', which may be written as,

We have shown in Appendix A that repeated ap-
plications of (13), together with one simple a,s-
sumption, lead to the desired result

(14)

for all n~ 1. Hence,

For T & T„ the longitudinal susceptibility may
be given a series expansion as [see Eq. (4)]

—=g a„(K"/n! ), (8)

The partial susceptibility may be similarly ex-
pressed [see Eq. (6)],

where K= P J; the trace (Tr) is to be taken over
terms linear in N only (N is the total number of
spins) normalized by 2 "; in the second sum 8 WIi',
otherwise unrestricted; and, using the raising and
lowering operators S' = S"+ i S', we have reex-
pressed the XF Hamiltonian in a reduced form

and from (7) it follows that 6(0) =0. These conclu-
sions are valid if our assumption, that nn vectors
in (12) are nondegenerate (e. g. , no. '

HAPP'),

is val-
id. As we shall see, the assumption is valid
asymptotically (that is, as the order of expansion
becomes large).

Because of (13), the diagonal operator S' con-
tributes to (12) only as numerical prefactor through
one of its eigenvalues (+ —,

' or ——,'). Thus, a„and f„
must have exactly the same set of configurations.
The role of the operator may be regarded as merely
lattice decorating a given configuration of f„. Evi-
dently there are a number of ways a given config-
uration can be decorated depending on the nature
of the configuration. This number, a weighting
factor, shaH be denoted by 8„(i), where i refers to
the ith diagram of f„. Then, one can write (12) as
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with

f„=+n)(n; i) f„(i),
where n)(n; i) denotes the weighting factor of the
ith diagram f„(i). One expects that asymptotically

lim 8„(i)= 8„
n"~

so that in that limit

(16)

+n= en +]~ n&

(19)

In Sec. 1V we shall study 8„ in the asymptotic limit
(n- ~) and show that 8-O(n). Thus, the critical
behavior of the susceptibility is related to that of
the free energy simply by a temperature derivative.

I

IV. ASYMPTOTIC BEHAVIOR OF HIGH-TEMPERATURE
SERIES

In this section we shall study the asymptotic be-
havior of the longitudinal-susceptibility series.
Owing to the relation (13}, it was pointed out that the
coefficients of expansion for the susceptibility and
free-energy series, respectively, a„and f„, both
have identical basis graphs and that the two are
thus related by (16). As n becomes very large,
highly degenerate graphs" begin to contribute with
greatly diminished weights to the over-all values of
the coefficients and they can be neglected from (16) .
This sort of approximation evidently becomes more
accurate as n- ~. In this spirit we shall examine
the asymptotic behavior of 8„(i) and in particular
extract the n dependence from (16).

Using (9) we can write the nth expansion of the
susceptibility as

+Tr +~ ~~'+"= Z» Ss Sn («') (pp') (yy') (»'), (20)

where sums over RR' and all nn pairs nn', PP', yy', . . . , vv' are implied. By repeated applications of (13)
we may replace the S" in (20) with the following expression:

1 tf (n-l&
—s+Yrs;&;, (an')(p))'). . . (v ')=(p+p+g, .;., Q vr(aa')(p)(). . . ( '), (21)

where g means a sum on all nn pairs; g' means the same sum except with the restriction PP' t o.o.'; g" with
yy'a ao(', pp'; etc. Now observe that the first term of the RHS of (21) is just f„. The remaining (n —1)
terms, although more complicated, can nevertheless be similarly related. In Appendixes B and C, it is
shown that for n- ~

) )(n-])

(p+g ~. . . p )&r(aa')( ).)).)). (v ') = —,'nf„+ (f0„) (22)

a„nf„+0(-f„) (23)

Hence, from (8), (20), and (21) we obtain for n- ~ —PTr S',. (S'. S.-.) (S,'S;,). . . (S„'S„-,) 6,.2 R

8x" (24)

Tr Ss ~ (Sgg SI ~ ) (S() S()l ) (s Sp P ) 5R ~2 R

X[t) a+a +s('6sr()+ I5 t()eR)+ ~ ~ ~ + (Os'& + Gse&a)]

Thus, if the critical behavior of the free energy F
is defined as F-AT '~, where b, T=T- T, and n
is the specific-heat exponent, then'2 it follows from
(24) that )i*'-b,T
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APPENDIX A: PROOF OF EQ. (14)

Let, in (12), R be fixed, say R = n, and consider
the sum over R' first. Then, with (13),

(Al)
where we have assumed that the nn vectors are
nondegenerate (e. g. , un' w PP'). If they are de-
generate, there is an overcounting which must be
handled separately (see Appendix C). Now observe
thatexceptfor the first Kronecker ~, 5R. .. the
others are all exactly paired, each pair corre-
sponding to a pair of nn lattice vectors. Hence,
the application of (13) leads to an exact cancella-
tion of all these paired terms, leaving the one un-

paired (leading) term Now car. rying out the sum
over R, we obtain

—(-.)' Tr (S'. S; ) (S& S& ) (S,'S. )

X(6s 6s.,'+6s()5s () + . +As 6s' )
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= Tr ($;$,', ) ($' $-..) ($,'$;,).. . ($„"$„-,) . (A2)

That is, the lattice vectors R and R' are now them-
selves nn vectors IR-R'

I =Ro. where Ao is the nn
distance. This is precisely the restriction on the
lattice sum for the partial susceptibility P' [see
E(I. (10)].

The third term leads to the same results as (B2).
The last remaining term, denoted as A, will be
treated later. Hence, together, for n &1,

P'T (~~')(PP')() =() —
) )f"~'"',

where

(B3)

At"' =Q»(p 'P)(PP ')Q .
Now consider the third term of the RHS of (21),

where the restrictions on the sums are yy '& nn',

(B4)

APPENDIX B:ASYMPTOTIC BEHAVIOR

Consider the second term of (21). The restric-
tion on the sum PP

'
& n n ' may be removed in the

following way: with the unaffected nn pairs denoted
as Q,

g'»(~o(')(PP ')Q

=QT r[(o(o(') —(n P) —( P 'o ') + ( P 'P) l( PP ')Q ~

(Bl)
Observe that the first term of the RHS of (Bl) again
reproduces f„. The second term can also be re-
lated to f„. For n &1, the following relation holds":

g»(~P)(PP ')Q

. QTr(o' n' )(PP ') ~ ~ ~ (vv') . (B2)n —1

PP'. These restrictions can be more readily seen
on Fig. 1. Proceeding as in the previous case, we
obtain for n ) 1,

Q "Tr(no. ')(PP ')(rr ')Q

+A, +B,
n —1

(as)

n+A,'"'+B,'"',
n —1

where the remainders A3"' and B3"' are defined as
(B6) and (B7), respectively, but with one added
degree of freedom through a new pair of nn lattice
vectors &6'. That is,

A'"'=gT
I. ( ')(PP')(s's)+( ')(6's)(rr')

+(s's)(pp ')(rr')Ass')Q.
as"'= g»l(& )(sp6')(rr')+(»)(PP ')(6'r')

(B9}

+ (s 'o(')(Ps)(rr') + (»')(Ps)(s'r ') + (s'o. ')(PP')(r s)

where

As"'=g»f(«')(r 'r)+(r'r)(PP')](rr')Q, (B6)

a,'"'=QT.f(~r)(r'p'). (r'~')(Pr) j(rr')Q. (B7)

As may be apparent from (B6) and (B7), the re-
mainders A~"' and B2"' are of different types.
Whereas the former has unmixed nn lattice vectors,
the latter has mixed nn lattice vectors. These are,
as turned out, the only two types of remainders
that the other terms of (21) can have.

The fourth term of the RHS of (21) can thus be
immediately written down. For n &1,

Q'"»(c(o(')(PP ')(rr ')(» ')Q

+(«')( 'sP')(rs)1(»')Q. (B10)

By induction it is possible to write a similar ex-
pression for any other term in (21). Thus, we ob-
tain

P ~IXX///8/A 1YZ///XX//z Fi YZ/ZZ//1/2

&XDWD/8 i&/llllllN 2&DWZXZXP

(
«-1)g+F'+ +P )»(»')(vs') "( ')

A(n) B(n)

where'4

A(n) A(n) A(n) ~ ~ ~ A(n)

B(n) B(n) +B(n) + ~ ~ ~ B(n)+ 3
+'''+

(B11)

(B12)

(B13)

FIG. 1. g "Tr(c(n ') (pp ') (rr')Q. The restrictions im-
posed on the lattice sums [see Eq. (B5)] are &p' &ecu',
PP' only. The allowed values of the nn vectors pp' are
schematically shown here. For fixed values of ecv ' and
PP' (shaded strips), the allowed values of yp' correspond
to the unshaded areas. Al. l other nn vectors contained in
Q [see Eq. (B1)] have unrestricted lattice sums and are
thus not shown here.

A (n) ~A (n)
l (B14)

Now the lattice vectors which appear in (Bl) and
(B10), also in (B6) and (B7), are arbitrary. This
implies that the three separate components of A3"',
for example, are each identical. Hence, for1~l(n —1,
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APPENDIX C: DEGENERATE EXPANSIONS

a'

(A)

The expansions (Al), (A2), and (22) are valid
provided that nn vectors are all nondegenerate.
When nn vectors are multiply degenerate, the can-
cellations described in obtaining (A2) are not exact-
ly satisfied. This sort of multiple degeneracy in
nn vectors occurs at higher-order expansions. We
shall show below the simplest cases of multiple
degeneracy which can lead to imperfect cancella-
tions. Consider the following:

D(1) = —2 g Tr S',S;,(oo')(PP ')(rr')(»') (»')

t 8' ra

B',"'= pl(l —l)B2"'. (815)

With (814) and (815), &(") and B'"' can be directly
given by

A(") = -.' n(n —1)A)("' (816)

FIG. 2. Degenerate lattice vectors in Eq, (Cl) are
schematically illustrated. Lattice vectors which appear
on the circles are degenerate, e. g. , 0. ' =P =p' = 6 in the
upper figure. (Note that the four inner vectors in the
upper or l.ower circl.e become coincident if the circle
shrinks to a point). Pairs of vectors connectedby straight
lines, e.g. , ~~ ', are. ..nearest neighbors with lines
denoting nn distances. The four outer vectors, e. g. ,
cyP'p6' in the upper figure, are thus interlinked via one
common nn point.

The degenerate vectors are also illustrated in Fig.
2(a). Those vectors which lie on the circle are
degenerate (note that the four vectors become coin-
cident if the circle shrinks to a. point). The straight
lines connecting pairs of vectors (e.g. , ()(()(') in-
dicate nn distances. Assume that the other vectors
o. P y5 are nondegenerate. The operators S' may
now be replaced by their eigenvalues. As was
pointed out, the diagonalization processes can be
viewed as decorations of vertex points.

The decorations may be divided into two types:
(i) those connecting nn pairs (e.g. , nn' or nP) and

(ii) those connecting non-nn pairs (e.g. , o. P
' or

P'5'). The difference between the expansions for
the susceptibility and the partial susceptibility, a„
and a„, respectively, is in the type-(ii) decora-
tions. The decorations for a„ leave these non-nn
distances unchanged, but the decorations for a™„can
convert the non-nn distances into nn distances
(thereby reducing the sizes of the configurations).
Applications of (13) show that the type-(i) decora-
tions are still exactly canceled, but the type-(ii)
decorations are not.

There is a second choice of multiple degeneracy,
which is entirely equivalent to (Cl), and is given
below".

D(2) = —2 g»s'Rs'R (o(o(')(PP')(ry') (»')
B'")= —,

'
n(n —1)(n —2)B~(") . X5 g, 5g, (C2)

(819)

The above results (818) and (819), together with

(811), (816), and (817), give for n- ~

A "'+B "' = , nf„+O(f ). — (82O)

Hence, the asymptotic behavior of the susceptibility
series is contained in the remainders A, and B&. It
is shown in Appendix D that for v- ~

f

A(n)
f

(
f

B(n)
f

(816)

Also, it follows from (82) that for n» 1

In Fig. 2(b), the degenerate vectors are illustrated.
The operators S' may be similarly replaced by
their eigenvalues. As in (Cl), the type-(ii) decora-
tions are not all exactly canceled. Thus, these
remainders as well as those from (Cl) together
contribute to the expansions for the susceptibility
and the partial susceptibility. This conclusion is
still valid even if the four vectors, e. g. , cvP'y6'

for (Cl), are not all distinct. If, for example,
y= 5' in (Cl), one still obtains the same results.

Using the arguments such as (82), one can show

that for large ~,
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(CS)

ThRt ls, Rs Ã-~, the reIQRinders behRve Rs

O{n 'f„). Thus, compared with Bz'"' [see (819)],
which behaves as O(n ~f„), the remainders due to
the fourfold degeneracy do not contribute asymptot-
ically. The next permissible multiple degeneracy
is a sixfold degeneracy. A similar argument may
be applied to sho% thRt the remainders due to the
sixfold degeneracy behave as O(n 'f„) and are there-
fore asymptotically of no significance.

Multiple degenerate terms such as (Cl) can occur
. Rt higher-order expansions. The first such term
is found in fifth order (n = 5). Hence, up to fourth
order, the susceptibility and the partial suscepti-
bility are expected to be term-by-term identical.
There are several fourfold degenerate terms in
sixth order. Since those factors, which distinguish
a„ from a„, are asymptotically not significant, the
thoro expansions must have the same asymptotic be-
havior Fin.ally, the expression (21) is also valid
asymptotically since multiply degenerate terms are
not included in the expansion.

APPENDIX O a'"'&a~ "~

The tvro restrictively summed expansion terms
are again shown below:

&,= g»(nn')(p p')(»') (»') t'.
I ~. a,

B,= g Tr(«')(PP ')(yy') ~ ~ ~ (»') &., ~&, (D2)

For small n, it is relatively easy to show numeri-
cally that these quantities are positive. Although
it is not essential, we shall thus assume (by induc-
tion) that both A,'"' and B,'"' remain non-negative as
g~ Qo

Consideration of the restrictions in (Dl) and (D2)
showers that, for ~ large, a,'"' contains the complete
set of diagrams for f„, whereas A,'"' contains only
a partial set of diagrams. Among those missing
are the Leading term of f„,

Q Tr(nn')(PP ')(yy') ~ ~ .(V p. ')(uv')

X6,~5~,

and its derivative terms resulting from further
degeneracy among nn vectors. The removal of
these terms from f„ thus establishes the inequality
between A,'"' and a,'"'.

One can also use arguments similar to (B2) to
show that A~"' = O(n 'f„). Hence, the inequality is
again satisfied asymptotically.

Research supported in part by a grant from Research
Corporation.

For a recent review on the critical behavior of the XF
model, see D. D. Betts, in Phase Transitions and
CH, tice/ Phenomena, edited by C. Domb and M. S.
Green (Academic, New York, 1974), Vol, . III.

2M. E. Fisher, Physica 26, 618 {1960).
3M. E. Fisher (private communication, 1972). The

author wishes to thank Dr. Fisher for showing him
this argument.

4M. E. Fisher, Phys. Rev. 176, 257 (1968). The hy-
pothesis states that "mild" perturbations merely pro-
duce a & line along which critical exponents do not
change (although amplitudes and critical temperatures
may vary smoothly). Also, on universality or smooth-
ness, see R. B. Griffiths, Phys. Rev. Lett. 24, 1479
{1970); R. Abe, Prog. Theor. Phys. 44, 339 (1970);
and L. P. Kadanoff, in Proceedings of the Ferieo
Eermi Summer Sehoo/, Verein&, 1970, edited by M. S.
Green (Academic„New York, 1971), D. Jasnow and
M. Wortis [Phys. Hev. 176, 739 (1968)] have also
studied the changes of critical exponents caused by
changes of symmetry of the ground state. Based on
numerical evidence they were led to a related hypothesis
which reinfolces Fisher s ol'lglnal idea,

5Note that the two regions are separated by the isotropic
Heisenberg limit P =1). Thus, there are two stages in
the discontinuity: from the Ising-like region to the
Heisenberg limit and from the XF-like region to the
Heisenberg limit.

GT. Obokata, I. Ono, and T. Oguchi, J. Phys. Soc. Jpn.

23, 516 {1967);K. Pirnie {private communication to
D. D. Betts, 1968). The author wishes to thank Dr.
Pirnie and Dr. Betts for this unpublished information.
M. H. Lee, J. Math. Phys. 12, 61 (1971); J. Rogiers,
and R. Dekeyser, Phys. Lett, A 46, 206 (1973). Also
see D. W. Wood and N. W. Dalton. fJ. Phys, C 5, 1675
(1972)] who have obtained X"(&) for general spin through
sixth order.

7M. H. Lee, Phys. Rev, B 8, 1203 (1973).
8M, H. Lee, Phys. Rev. 8 8, 3290 (1973).
R. V, Ditzian and D. D. Betts, Can. J. Phys, 50, 129
(1972); S. R. Mattingly and D. D. Betts, ibid. 50,
2415 (1972).
M. H. Iee, see Ref. 6.

highly degenerate graph satisfies the inequality N
&&N„, where N& and N„are, respectively, the numbers
of directed lines and vertices of the given graph. See
also D. D. Betts, C. J, Elliott, and M. H. Lee, Can.
J. Phys. 48, 1566 (1970).

2The best numerical evidence shows that in three dimen-
sions 0. =0 ID. D. Betts and J, R. Lothian, Can. J..

Phys. 51, 2249 {1973)]and in two dimensions the specific
heat is nonsingular ID. D. Betts, J. T. Tsai, and C. J.
Elliott, in Proceedings of the International Conference
on Magnetism, Moscow, 1973 (unpublished). ]
For (B2) to be nonvanishing, all nn vectors must be ap-
propriately degenerate at least once (see Ref. 10). The
choice n'=P represents only one of (n —1) possible
choices for ~ ',

4The leading terms (those proportional to f„}are exactly
canceled and only remainders A'" and j3'" survive.


