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A transformation is constructed which maps the spin-s Ising model onto a spin-1/2 Ising model with further-

neighbor and many-site interactions. Renorroalization-group methods may thus be applied directly to the spin-

s problem by prefacing the usual sequence of position-space rescaling transformations with this spin-

restructuring transformation. We demonstrate the method by calculating the critical interactions (i.e., the

inverse critical temperatures) of the spin-s Ising model on the triangular lattice, using the recent results of
Niemeijer and van Leeuwen for the critical subspace of the corresponding spin-1/2 Ising model. Our

evaluations agree very we11 with recent series data.

I INTRODUCTION THE SPIN-s-TO-SPIN
TRANSFORMATION

Uncertainty in the convergence properties of the
E expansion away from space dimensionality @=4
motivates direct development of renormalization-
group transformations' for systems with d=2, 3. In
particular, Niemeijer and van Leeuwen (NvL) and
others have produced impressive results for the
critical properties of the two-dimensional spin- —,

Ising model. Their transformation sys tematically
replaces each group of spins by a single effective
spin, thus inducing a change in the length scale and
a renormalization of the interaction constants, as
earlier envisaged qualitatively by Kadanoff. Start-
ing, for example, with nearest-neighbor pair inter-
actions only, this position-space rescaling trans-
formation generates further-neighbor and many-
site interactions; however, one is capable of keep-
ing track of finite numbers of such additional inter-
actions and results suggest that convergence is
rapid as successively larger numbers are retained.

In this paper we show how the results of such
spin--,' calculations can easily be extended to
arbitrary spin by prefacing the sequence of posi-
tion-space rescaling transformations with a single
"spin-restructuring" transformation, which leaves
position space (i.e. , lattice structure and length
scale) intact but maps the spin-s problem onto a
spin- —,

' problem with appropriately renormalized
interactions. Like the rescaling transformations,
the spin-restructuring trans formation introduces
further-neighbor and many-site interactions; how-
ever, convergence is again rapid, so that this ap-
pears to be no major difficulty.

In the remainder of this section, we develop the
spin-restructuring transformation. The renor-
malized spin-2 interaction constants can then be
obtained perturbatively in powers of the original
spin-s interaction constants to any desired order
in a cumulant expansion. In Sec. II this general
technique is carried out in detail for the spin-s
Ising model on the triangular lattice. By locating

in the space of spin-2 interaction constants the
intersection of the subspace onto which the spin-s
problem is mapped with the critical subspace as
given by NvL, the critical spin-s interactions (i.e. ,
the inverse critical temperatures) are evaluated.
Our evaluations for a variety of spins agree very
well with recent series data of Van Dyke and Camp.
Our procedure confirms the critical-exponent uni-
versality (s independence), since the spin-s and
spin-& critical Hamiltonians iterate to a single
fixed point. Section III discusses possible applica-
tion of the method to other problems.

Consider a spin-s Ising model. At each lattice
site i, s,' can take on the values —s, —s+1, . . . ,
s —1, and s. The general Hamiltonian is2'

&(f.u;})=+&.~. , (l. 1)
a

where K, are the interaction constants, p.,—=g'; p. ;
—= II; (s';/s) are the corresponding spin products, and
the sum a is over all subsets of lattice sites. Now

we define a new variable 0& at each lattice site

a; =sgn(p, ;) for p; WO. (1.2)

The transformation is accomplished by an Nvt-
like partial trace of the partition function

d {c;}

The sum' is over all configurations {p.;}of the spin-
s variables which are in accordance with the speci-
fied configuration (a;}of the spin-& variables, with
the added provision that for integer s, p, ; =0 is to
contribute equally to 0; =+1 and to 0;. = —1, i.e. ,
terms having p, &

——0 are kept in the sum, with a fac-
tor of &, for either specification of 0&. Then the
Hamiltonian K '(fo;}) will have the general form

b

X'({a;})=Q Lba„a~ =—It a„o,= + 1, (1.4)
b i

where we assume that the new interaction constants
will be nonsingular functions of the old ones

Lp =Lg((K,}). (1.5)
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This assumption of analyticity is also made for the
recursion relations in other works. Thus, a
spin- —, Ising model with the same lattice structure
results. The partition function has been conserved

(1.5)
(ff. ) (w;)

It is, of course, impossible to perform directly
the summation in (1.3) in order to obtain explicitly
(1.5}. We therefore treat K perturbatively and
develop a cumulant expansion. First, we introduce
the following notation:

(l. 7)

sociated with a vertex. Graphs contributing to the
mth order thus have n bonds. Because of cancella-
tions within each cumulant order, disconnected
graphs do not occur; this is expected, since other-
wise the energy per site would not be intensive.
Graphs with no odd vertices contribute only to the
additive constant Lo in K'; again, since Lo does not
affect the determination of the critical spin-s inter-
actions E', , these graphs are ignored in our present
calculation. Within each order n, we further label
with nz the remaining connected odd-vertex graphs.
All such graphs are shown for n~4 in Fig. 1. The
contribution to the cumulant expansion of the graph
(n, m) is

where Nis the number of sites. Then (1.3) gives
weak embeddings

odd
IC"g„'"' 'Q a, ,

i
(2. 2)

K'($a;})=In(e "i")»,«+Nln(s+2).

X'(lo; j}=(K)+2, ((K ) —(K)')

+ 3| ((K ) —3(x) (K ) +2(x) )

+ —,((x') —4(x) (x') —3(x')'1

+ 12 (K) (K ) —6 (K)4) + (1.9)

The second term contributes only to the additive
constant Lo in K', i.e. , to the spin- —,

' interaction
"coupling" the empty subset of lattice sites; since
Lo does not affect the determination of the critical
spin-s interactions K,', this term is ignored in our
present calculation. Expanding the first term in
powers of K,

where the product is over all odd vertices of (n, m},
and the sum is over all distinct weak embeddings
of (n, m) in the lattice. "Weak embedding" means'
that the graph is fitted into the lattice so that all its
bonds connect nearest-neighbor sites and no more
than one of its vertices is assigned to each site.
The graph coefficients g'"' depend only on s. Their
evaluation from (1.9} is straightforward, as shown
in the Appendix, although tedious; Um resulting ex-
pressions are given for n~4 in Table I.

Thus, a specific spin- —, interaction L& is obtained

by counting all distinct weak embeddings in the tri-
angular lattice which result in the said interaction.
For example, Fig. 2 shows all third-order weak
embeddings which result in a particular next-near-
est-neighbor pair interaction L,. From this figure
and (2. 2) we conclude

For each order in this cumulant expansion, we can
now explicitly obtain (1. 5). This is demonstrated
in the Appendix.

II. APPLICATION TO THE TRIANGULAR ISING MODEL

L (3) 6~3 (3)
2

The general form for such equations is

(2. 3)

We now apply this method to the triangular spin-s
Ising model with nearest-neighbor pair interactions
only; extension to more diversified short-ranged
interactions is straightforward. Our starting Ham-
iltonian is the following special case of (l. 1):

(3,3)

K((p ' )) = ff
(i j&

(2. 1) (3,7) (4, i) (4,2) (4,3) (4.4)

where the sum is over all nearest-neighbor pairs.
We proceed to obtain the renormalized spin- —,

' intre-
actions L, as power series in K by using (1.9).

In evaluating the right-hand side of (l. 9) con-
tributions to each order can be identified with linear
graphs (see Fig. 1 and Appendix): each interac-
tion is associated with a bond, and each spin is as-

(4,5) (4,6) (4,7) (4, 8) (4,9)

FlQ. 1, All odd-vertex linear graphs (n, m) contribut-
ing to the fourth-order cumulant expansion for the s
transformation. Odd (coupled) vertices are shown with
open circles.
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f2i(f2-f2i)

f,'(f, -fi)

2 (fif2f3 —fif2
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i (f3
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2 (fi.f3

—2f if2f3 —3fif2+ 8f i~2 —4f i)

fif4-3fif 2-4f if3+12fif2 —6f i

TABLE I. Graph coefficients g~" for n «4. Each co-
efficient determines the contribution of the linear graph
(n, m) to the cumulant expansion for the s ~ transforma-
tion, as given by (2.2). f&

——Ou;) )~.-+i as in (1.7) and Ap-
pendix, where the explicit evaluation of gi~ is presented.

Pl $ P1 +(n)

yield satisfactory results as will be seen below. All
spin- —,

' interactions L& generated by our fourth-order
cumulant expansion are shown in Fig. 3. The low-
est order in which each interaction first appears
and the number of sites it couples are indicated.
We note here that the graph coefficients g7 g7 ',
and g8 ' vanish for half-integer s and s =~; there-
fore, the interactions L9 L1p L11 and L»-L» are
not generated in these cases.

We have completed the s- ~ transformation for the
triangular Ising model. However, in order to get
any use out of it, , we now need the solution of the
resulting spin-& Ising model with many types of
interactions. Lacking this, we use the best ap-
proximate solution, as provided by NvL. In mak-
ing contact with their best solution, we introduce
two further approximations into our treatment:
(i) NvL's 'best seventh-order cluster expansion is
set up so as not to generate (and, therefore, not
to deal with) any interaction which cannot be con-
tained within the basic seven-site hexagon of the
triangular lattice. We shall therefore ignore
interactions I.4, I., first generated by the third-
order term in our cumulant expansion, and inter-
actions L6, L7, L8, and L„-L» first generated by
the fourth-order term. Note that L1,-L» are al-
ready not there for half-integer s and s=~. In

(2. 4)

so that (2. 3) means Aso' =66,„. It is through this
weak embedding matrix A',"' only that the lattice
type enters into the problem; its nonzero, n~ 4
elements are given in Table II. Once this matrix
and the diagram coefficients g'"' are computed,
(2. 4) provides an explicit realization of the mapping
in (l. 6) to any desired order in K. In our present
calculation, we truncate (2. 4) after n=4, since
subsequent terms generate an ever increasing num-
ber of further-neighbor and many-site spin-& inter-
actions which are not dealt with in NvL's solution,
with which we have to make contact. However, our
first four kept orders show good convergence and

n= 1
b )n= 1

Pair interactions

3 3 3 4
1 2 3 1

4 4 4
2 3 4

4 4
5 6

n= 3
b m= 7

4 10 1 10
6 16
6 18
3 16
1 12

6
4
1

Four-site interactions

4 4 4
7 8 9

16 8 4 8 2
20 8 4
10 4 2

TABLE II. Nonzero elements of the weak embedding
matrix A~ for n ~4. These relate the interaction con-
stants L~ tothe graph coefficients g~', as given in (2.4).

FIG. 2. All third-order weak embeddings in the tri-
angular lattice which result in a particular next-nearest-
neighbor pair interaction L2. The two coupled sites are
shown with open circles.

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

1
2 1
1 1

1

5 2

6
2 1 1

1
1
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A. Pair interactions

0 0 Cl

0 = 0
3,2

2,2

5,5

8,4

+is +2s +3v +9 +14

=(I, 1.607, 1.811, 1.248, 5. 782, 1.083,

2. 808, 1.372, 3.081), (2. 6)

(2. 7)

and LI —-0.27416 is NvI 's best value for the near-
est-neighbor-only critical interaction. Our s- —,

'
transformation maps critical spin-s systems onto
critical spin- —,

' systems. Thus, we substitute the
truncated (2. 4) with K=K' into (2. 5) to obtain

B. Four-site interactions

9,3 I0,3 l I,3 l2,4 l3,4 14,4

I 5,4 I6,4 I 7,4 I8,4 l9,4 20,4

2 I,4 22,4 23,4 24,4 25,4

FIG. 3. All spin-~& interactions Lb generated by the
fourth-order cumulant expansion for the s 2 transfor-
mation. Under each interaction, its label b and the low-
est order in which it first appears are given. The sites
which it couples are shown with open circles.

EQuation (2. 7) is a polynomial equation for the
critical spin-s interactions K'. Since it was de-
rived from the tangent plane, it is, of course, valid
only for solutions which map onto Lt, = L,(K') near
NvL's fixed point L,*.

The critical spin-s interactions E.' obtained from
(2. 7) are shown in Fig. 4 and Table IV. Also shown
are values obtained by using first-, second-, or
third-order cumulant expansions instead of fourth
for the s- —, transformation. Series data of Van
Dyke and Camp' is shown for comparison. Our
deviations from this series data are shown in Fig.
5. Within each order cumulant expansion, we note
two separate trends: (i) the lower spine deviate
less, as might be expected; (ii) the half-integer
spins deviate less, again as expected, since the
s- —,

' transformation generates fewer contributions
because of vanishing graph coefficients. Our
fourth-order values deviate by 0. 8 to 10 parts in
10' from the series data (which has an uncertainty
of about 1 part in 10'). Finally, Table III justifies
our use of the tangent plane by giving the NvL fixed
point Lb, NvL's tangent plane extrapolation point
LI, and typical examples of our tangent plane ex-
trapolation points L~(K').

bLb LI =0
b

(2. 5)

where the eigenvector ~b is

I

view of the accuracy achieved by NvL, who keep
these interactions out of their treatment, we feel
that our results will not be much affected by this
omission. (ii) We follow NvL in the evaluation of
the critical interactions by using, not the true criti-
cal surface, but rather the plane tangent to it at
the fixed point. These authors report that there is,
in fact, very little curvature around the fixed point.
Since our transformation maps the critical spin-s
systems onto the same vicinity, as shown in Table
III, we again feel justified.

The locus of critical interactions L; is given by
NvL s tangent plane

III. DISCUSSION

We have illustrated how a transformation based
on the usual partial tracing of the partition function
can be used t;o map a given system onto a more
manageable one with different structure. By pref-
acing the sequence of rescaling transformations
with one such "restructuring" transformation, the
results of a specific renormalization-group calcu-
lation can be extended. In this paper, we have pre-
sented a spin-restructuring transformation. Lattice-
restructuring transformations can be developed
along the lines of the well-known dual, decoration-
iteration and star-triangle transformations. ' This
brings us to the limitation mentioned in Sec. II: in
order to get any use out of a restructuring trans-
formation, one needs the solution of the resulting
system with many types of interactions. Further-
more, the manner in which contact is made with
such a (doubtless approximate) solution limits one' s
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TABLE III. Tangent plane extrapolations.

NvI,
fixed point

NvL's
tangent plane
extrapolation

point LI

Typical, examples of our tan-
gent plane extrapolation

points L&(K ) (fourth-order
cumulant expansion)

s=4. 5

1
2
3
9

10
11
12
13
14

six-site L26
six-site L27

0.3069
—0.0183
—0. 0214

0. 0034
0. 0066
0. 0036

—0. 0022
—0.0016
—0. 0009

0. 0003
0. 00004

0.2742
0
0
0
0
0
0
0
0
0
0

0.2003
0. 0343
0. 0216

—0. 0030
—0. 0020
—0, 0017
—0. 0006
—0. 0003
—0. 0004

0
0

0. 2093
0. 0247
0. 0144

0
0
0

—0, 0001
—0. 0001
—0, 0001

0
0

0.2076
0. 0253
0. 0148

0
0
0

—0. 0001
—0. 0001
—0. 0001

0
0

accuracy.
It is also possible at least formally to apply the

transformation developed in Sec. I to other, non-
Ising systems; however, results must be inter-
preted with care. For example, the classical XF
model can be mapped onto the space of spin-& Ising
interaction constants by writing in place of (l. 2),

+1 for 0 —8& m,

0] =
—1 for —m~0;& 0.

l.0—

0.8-

c 06
K

The cumulant expansion (l. 9) follows as before and
produces effective spin--,' Ising interactions. Analo-
gous transformations are possible for the Heisen-
berg model and for models with higher spin dimen-

sionalities. These systems do not have Ising criti-
cal exponents, so either (i) the restructuring trans-
formation is itself singular for such a critical sys-
tem at least, or (ii) the restructuring trans-
formation maps such a critical system onto an-
other critical subspace flowing into an "unusual"
fixed point characteristic of the original spin
dimensionality, possibly dominated by long-
ranged interactions, which are known to affect
critical behavior. '4 (For the classical XFmodel
in d =2, the appearance of long-ranged interactions
is suggested by the work of Kosterlitz and
Thouless, "who approximately transformed it into
what ca.n be viewed as an s = 1 Ising model with
Coulomb interactions, thus giving a possible ex-

0.2—

TABLE IV. Critical spin-s interactions E'. Results
from first-, second-. , third-, and fourth-order cumulant
expansions for the s -1/2 transformation are given to-
gether with Van Dyke and Camp's series data.

0.0
I

2

I

lo a)

S

FIG. 4. Critical spin-s interactions K'. Curves 1, 2,
and 4 represent results from the first-, second-, and
fourth-order cumulant expansions for the s —~2 transfor-
mation. Results from the third-order cumulant expan-
sion would barely be distinguishable from curve 4 in this
figure. Open circles show Van Dyke and Camp's series
data (Ref. 9) (the size of this symbol is not related to
their uncertainty, which would not show in this figure;
see Table IV and Fig. 5); ~ shows NvL's result (Ref. 2),
which in this figure is indistinguishable from the exact
solution.

First
curn

1 0. 617
1.5 0.617
2 0. 762
2. 5 0. 762
3 0. 840
3.5 0. 840
4 0. 888
4. 5 0.888
5 0. 921

10 0. 999
50 l. 075

l. 097

Second
curn

0. 385
0. 455
0. 508
0. 542
0. 570
0. 590
0. 608
0. 621
0. 633
0. 690
0. 744
0. 759

Third
curn

0.365
0.434
0.479
0. 511
0. 537
0. 555
0. 571
0. 583
0.594
0.647
0.698
0. 711

Fourth
curn

0. 3746
0. 4348
0.4798
0. 5096
0. 5344
0, 5522
0. 5679
0, 5796
0, 5904
0, 6422
0, 6919
0. 7057

Series

0. 3737-0.3740
0.4348-0. 4355
0.4769-0.4776
0. 5068—0. 5079
0. 5302-0. 5311
0.5479-0. 5491
0. 5624 —0, 5637
0. 5744-0. 5757
0. 5845-0. 5858
0. 6353—0, 6369
0. 6840—0. 6859
0. 6988-0. 6997

~Ranges of values given by Van Dyke and Camp (Ref.
9) are exhibited.
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0.09 I I

0.08—

0.07—

0.06—

& pg& &,p&p, ,&], . (A 1 )

The terms in which &ij& and &kl& have no spin in
common are zero, since, in general,

C)
h

Cl

O

Ij&
(D

Q)

O

I

CP

0.05—

0.04—

0.05—

0.02—

0.0 I—

0

-0.02—

I I I I I + I I I

2 3 4 5 Io 50
S

l, . (I ~)" =II &(I «)"&= ?If&,.(~i)",
ii i

where

f& =&(u;).'&. =.~=(s+2) 2 (u;) '
i w;&0

are single-spin sums; for example,

(s+ 1)/(2s+ 1) for integer s,
1

(2s+ 1)/4s for half-integer s,
etc.

Then the right-hand side of (Al) equals

A' Z r&(I;)'(u;)'&-&I ~I;&']

(A2)

(A3)

(A4)

FIG. 5. Deviatio ns + ~serges)/ +series ur critical
spin-s interactions K~ from Van Dyke and Camp's (Ref.
9) series data Wse„es. Curves 2, 3, and 4 represent the
deviations of the second-, third-, and fourth-order cu-
mulant expansions for the s ~ transformation. The error
bar shows series data uncertainty. + shows NvL's de-
viation (Ref. 2) from the exact solution.

+ K P, i P,y P, k
— P, i P.J P,~ P.k

«y& &yk&
i 8k

2 1 ++ 2 1 +i+k
&i~ & ok&

planation for the Stanley-Kaplan phase transition. '6)

Once the mechanism of the exponent change is un-
derstood, the method may prove of practical value.
%e plan to investigate this point further.
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APPENDIX: CUMULANT EXPANSION

We demonstrate the cumulant expansion (l. 9) by
evaluating its second-order term, starting wit.h the
spin-s Hamiltonian (2. 1),

i&k

where (A2) was used.
These two terms are of the form given in (2. 2).

The first term contributes to the additive constant
1.0 ~n K

Lo ' =(q/2) XK go' ', (A6)

where q is the lattice coordination number. The
second term corresponds to the linear graph (2, 1)
in Fig. 1 and contributes to the nearest-, next-
nearest-, and third-neighbor pair interactions I.„
I.2, and I.3. Counting its weak embeddings in the
triangular lattice as illustrated in Fig. 2 and Eq.
(2. 3),

L, (2) 2~2 (2) I (2) 2~2 (2) L, (2) ~2 (2)
1 g1 t 2 g1 s 3 g1

(A7)
which are the n=2 contributions in (2.4).
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